GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

POWER QUALITY AND FACTS **EE704B**

TIME ALLOTTED: 3Hours

FULL MARKS:70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

	Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1 = 10$				
		Marks	CO No		
1. i)		1	CO3		
	a. Impulsive transien				
	b. Oscillatory transient				
	c. Both				
	d. None of these				
ii)	The most common way to calculate voltage sag is from:-	1	CO3		
	a. Apparent power				
	b. Peak voltage				
	c. RMS voltage				
	d. Average Voltage				
iii)	Two identical devices or pieces of equipment might react differently to the	ĺ	CO3		
	same power quality parameters due to				
	a. Component tolerance				
	b. Differences in their manufacturing				
	c. Both				
	d. None of these				
iv)	The parameters that define the quality of electrical power.	1	CO3		
	a. Voltage				
	b. Current				
	c. Frequency				
	d. All of these				
v)	Types of electrical transients that occur in power system.	1	CO3		
	a. Impulsive transient				
	b. Oscillatory transient				
	c. Both				
	d. None of these				
vi)	Harmonics in the system can do	1	CO4		
	a. Can cause increase in resonance				
	b. Increase loss in capacitances, noises				
	c. Make relays maloperate				
	d. All of the above				

B.TECH/EE/ODD/SEM-VII/EE704B/R18/2022

vii)	Cause of power interruption	-1	CO3
	a. Power system faults		
	b. Equipment failure		
	c. Cascading failure		
	d. All of the above		
	d. All of the above		
viii)	Which one ensures that any fault current likely imposed on a metal part will be	- 1	CO1
	safely conducted to ground or other grid systems serving as ground		
	a. Grounding		
	b. Bonding		
	c. Coupling		
	d. Isolation		
	d. Isolation		
ix)	DSTATCOM is a connected device designed to regulate the	1	COI
	either by generating or absorbing the reactive power.		
	a. series, voltage		
	b. shunt, voltage		
	c. series, current		
	d. shunt, current		
X)	Static Var compensators can regulate the voltage by	1 3	CO2
	a. Supply reactive power		
	b. consumes reactive power		
	c. Both a or b		
	d. none		
xi)	Which of the following are sag mitigation devices	1	CO4
CALL CALL	a. DVR		
	b. SSTS		
	c. Active series compensators		
	d. All of the above		
xii)	When electrical transformer is energized, which of the following	1	CO2
	harmonic component is predominate		
	a. Third Harmonic		
	b. Seventh Harmonic		
	c. Second Harmonic		
	d. Fifth Harmonic		
	GROUP – B		
	(Short Answer Type Questions)		
	(Answer any <i>three</i> of the following) $3 \times 5 = 15$	í	
		Marks	CO No
2.	Write classifications of FACTS controllers. Write applications of FACTS	5	CO1
	controllers in distribution systems.		
3.	What is surge impedance loading (SIL)? What do you mean by flat voltage	5	CO2
~ .	profile?		
4.	Explain-"Why Compensation Techniques are used in power system?"	5	CO3
5	Explain single-tuned filter for harmonic reduction	5	CO1

B.TECH/EE/ODD/SEM-VII/EE704B/R18/2022

6.	Explain in detail with necessary diagram the working principle and functioning of power quality analyzers	5	CO4
	GROUP - C		
	(Long Answer Type Questions)		
	(Answer any three of the following) $3 \times 15 = 3$	45	
		Marks	CO No
7. a.	Explain the objectives and procedures for performing power quality monitoring.	6	CO2
b.		4	CO2
c.	Illustrate in brief, about harmonics in a Thyristor-Controlled Reactor.	5	CO2
8. a.	Explain the expression for voltage and power in SVC.	7	CO1
b.		8	COI
0.	= 1.0 p.u. and $\delta = 60^{\circ}$. A SVC is planned to be connected at the midpoint of	A	
	the line to increase power transfer capability. The limits on the control range correspond to $\delta = 30^{\circ}$ and $\delta = 90^{\circ}$.		
	Find the limits of SVC susceptance if the slope (Xs) of the control characteristic is (i) 0.0 and (ii) 0.05 p.u.		
9. a.	Explain working of TSC- TCR with neat circuit diagram and waveform.	5	CO3
	Write and explain sources of harmonics in power system.	5	CO3
c.	Find out the reasons for increased concern in power quality.	5	CO3
10. a.	Define sag, swell, and interruption, under voltage and over voltage for power quality analysis.	8	CO3
b.	Explain the schematic diagram and working principle of a STATCOM	3	CO3
C.		4	CO3
11.	Write Short note: (Any three)	3x5=15	
a.		5	CO4, CO1
	What are the control objectives of UPQC?	5	CO4, CO1
c.		5	CO3,CO4
d.	UPQC	5	CO4, CO1
e.	IEEE and IEC standards for power quality analysis.	5	CO3