GURU NANAK INSTITUTE OF TECHNOLOGY
 An Autonomous Institute under MAKAUT 2020-2021 COMPUTER GRAPHICS
 CS501

FULL MARKS: 70
TIME ALLOTTED: 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable
GROUP - A
(Multiple Choice Type Questions)
Answer any ten from the following, choosing the correct alternative of each question:
$10 \times 1=10$
Marks CO No.

1. i) The type of geometric transformation applied to an object for repositioning it along a straight-line path from one location to another:
a) Scaling
01
b) Rotation
c) Translation
d) Reflection
ii) Graphics with limited features is known as
a) Active graphics
b) Passive graphics

01
CO1
c) Grayscale image
a) None of these
iii) The region code of a point is 1001 . The point is in the \qquad region of window.
a) Top right
b) Top left
c) Bottom left
d) Bottom right
iv) The refresh rate below which a picture flicker is
a) 25
b) 30

01 CO1
c) 35
d) 60
v) The rectangle portion of the interface window that defines where the image will actually appear are called
a) View port
b) Transformation viewing
c) Clipping window

01 CO3
d) Screen coordinate system
vi) ___ is the rigid body transformation that moves object without deformation
a) Translation
b) Scaling
c) Rotation
d) Shearing
vii) The method which used either delta x or delta y , whichever is larger, is chosen as one raster unit to draw the line this algorithm is called?
a) DDA Line Algorithm

01
CO3
b) Midpoint Line Algorithm
c) Bresenham`s Line Algorithm d) Generalized Bresenham`s Algorithm
viii) Which technique of color CRT is used for production of realistic image
a) Shadow mask method
b) Beam penetration method
$01 \quad \mathrm{CO} 1$
c) Both A and B
d) None of these
ix) The parametric representation of the line segment between the position vectors $\mathrm{P} 1(2,3)$ and $\mathrm{P} 2(5,4)$ is given as
a) $\mathrm{x}(\mathrm{t})=2+7 \mathrm{t}, \mathrm{y}(\mathrm{t})=3+7 \mathrm{t} \quad 0 \leq \mathrm{t} \leq \propto$
b) $\mathrm{x}(\mathrm{t})=2+10 \mathrm{t}, \mathrm{y}(\mathrm{t})=3+12 \mathrm{t} \quad 0 \leq \mathrm{t} \leq 1$
c) $\mathrm{x}(\mathrm{t})=2+3 \mathrm{t}, \mathrm{y}(\mathrm{t})=3+\mathrm{t} \quad 0 \leq \mathrm{t} \leq 1$
d) $\mathrm{t}(\mathrm{x}, \mathrm{y})=14 \mathrm{t} \quad 0 \leq \mathrm{t} \leq 1$
x) CMYK model is used for
a) Digital Painting
b) Printing

01 CO1
c) Computer display
d) All of these
xi) In a boundary fill algorithm for filling polygon, boundary defined regions may be either \qquad connected or \qquad connected.
a) 2,4
b) 4,8
c) 8,16
d) 8,6
xii) The types of hidden surface removal algorithm are
a) Depth comparison, Z-buffer, back-face removal
b) Scan line algorithm, priority algorithm
c) BSP method, area subdivision method
d) All of these

GROUP - B

(Short Answer Type Questions)
(Answer any three of the following)
2. a) What are the disadvantages of DDA line drawing algorithm?
b) Suppose an RGB raster system is to be designed using an 8inch X 8 inch screen with a resolution of 100 pixels per inch in each direction. if we want to store 6 bits per pixel in the frame buffer, how much storage in bytes do we need for the frame buffer? Also find out the aspect ratio of the system.
3. a) What is seed fill algorithm?
b) Discuss additive and subtractive colour models with an example for each.
4 Find the equation of the bezier curve which passes through $(0,0)$ and $(-4,2)$ and controlled through $(14,10)$ and $(4,0)$.
5. a) Why are hidden surface algorithms needed?
b) What is the maximum number of object that can be handled by Zbuffer algorithm?
c) Why is it easier to locate hidden surfaces when parallel projection is used?
6. Derive mid-point circle drawing algorithm.

GROUP - C

(Long Answer Type Questions)
Answer any three of the following)
7. a) Derive the Bresenham's Line Drawingalgorithm for slop $\mathrm{m}<1$.
b) Digitize a line from $(10,12)$ to $(20,18)$ using Bresenham's Line Drawing Algorithm.
c) Differentiate between raster and random scan.
8. a) Prove that two successive scaling transformations are commutative
b) Discuss Window to Viewport Coordinate transformation
c) Use Cohen-Sutherland algorithm to clip a line P1 $(70,20)$ and P2 $(100,10)$ against a window with lower left corner $(50,10)$ and upper right corner $(80,40)$.
9. a) Differentiatebetween Flood fill and Boundary fill algorithm.
b) Write down the function of 8-connected flood fill process.
c) Explain coherence property in scanline polygon filling.
d) Distinguish Bezier between curve and B-Spline curve.
10. a) Derive the transformation matrix for the 2 D rotation about an arbitrary point.
b) Magnify the triangle with vertices $\mathrm{A}(1,1), \mathrm{B}(3,2)$ and $\mathrm{C}(7,3)$ to twice its size, while keeping $C(7,3)$ fixed.
c) Explain Weiler Atherton polygon clipping algorithm with a suitable example.
$3 \times 5=15$ Marks CO No.
$2 \quad \mathrm{CO} 2$

3 CO1

2 CO 4
3 CO5
$5 \quad \mathrm{CO} 4$
1 CO 4
2 CO5
2 CO 4
$5 \quad \mathrm{CO} 2$

$$
3 \times 15=45
$$

Marks CO No.
d) Why is a homogeneous co-ordinate system needed in transformation matrix?
11 Write short notes on any three of the following: $3 \times 5=15$
a) 3D Projection

CO3
b) RGB \& CMYK Color Model CO5
c) Anti-Aliasing CO 1
d) Viewing Pipeline CO 4
e) CRT CO 2

