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Course Objectives: 
 

• To familiarize the students with concepts related to the operation analysis and 

stabilization of control systems. 

• To understand feedback systems (open loop and closed loop) and system modelling. 

• To understand time domain and frequency domain analysis of control systems required 

for stability analysis.  

• To understand the recompense technique that can be used to stabilize control systems. 

 

Course Outcome EC603: 

EC603.1 Explain  open loop, closed loop control systems and system modelling. 

EC603.2 Determine the time responses of different systems to different 

inputs.   

EC603.3 Analyze the Stability of control system using root-locus, bode plot 

and Nyquist technique. 

EC603.4 Able to examine the absolute and relative stability of different 

system. 

EC603.5 Able to design different controller, compensator to meet the desired 

specifications and analyze nonlinear control system using state 

variable. 

 

Pre requisite:  

(1) Concepts in electrical circuits (Studied in Basic Electrical). 

(2) Fundamental concepts on Laplace Transformation (studied in Mathematics) 

 

 

 

 



 

 

 

MODULE <I>: INTRODUCTION TO CONTROL SYSTEMS & 

MODELLING. 

Control system:  

In recent years, control systems have gained an increasingly importance in the development and 

advancement of the modern civilization and technology. Figure shows the basic components of a 

control system. Disregard the complexity of the system; it consists of an input (objective), the 

control system and its output (result). Practically our day-to-day activities are affected by some 

type of control systems. There are two main branches of control systems: 

  

                                            1) Open-loop systems and 

                                             2) Closed-loop systems. 

 

Open-loop systems:  

The open-loop system is also called the non-feedback system. This is the simpler of the two 

systems. A simple example is illustrated by the speed control of an automobile as shown in 

Figure below. In this open-loop system, there is no way to ensure the actual speed is close to the 

desired speed automatically. The actual speed might be way off the desired speed because of the 

wind speed and/or road conditions, such as uphill or downhill etc. 

 

 

 

Closed-loop systems: 



 

 

 The closed-loop system is also called the feedback system. A simple closed-system is shown in 

Figure below. It has a mechanism to ensure the actual speed is close to the desired speed 

automatically. 

 

Modeling of electrical system: 

 Electrical circuits involving resistors, capacitors and inductors are considered. The behavior of 

such systems is governed by Ohm’s law and Kirchhoff’s laws. 

  

Resistor: Consider a resistance of ‘R’ Ω carrying current ‘I’ Amps as shown in Figure below, 

then the voltage drop across it is v = R I 

 

Inductor: Consider an inductor ― L’ H carrying current ’i ’ Amps as shown in Figure below, 

then the voltage drop across it can be written as v = L di/dt 

 

Capacitor: Consider a capacitor ’C’ carrying current ’i ’ Amps as shown in Figure below, then 

the voltage drop across it can be written as v = (1/C)∫ i dt 



 

 

 

Steps for modeling of electrical system 

Apply Kirchhoff’s voltage law or Kirchhoff’s current law to form the differential equations 

describing electrical circuits comprising of resistors, capacitors, and inductors. 

Example 

 

Electrical systems 

 LRC circuit. Applying Kirchhoff’s voltage law to the system shown. We obtain the following 

equation; 

  

 

L(di /dt) + Ri + 1/ C ∫ i(t) dt =ei …………………….. (1) 

  

1/ C ∫ i(t) dt =e0 ……………………………………….. (2) 

  



 

 

Equation (1) & (2) give a mathematical model of the circuit. Taking the L.T. of equations 

(1)&(2), assuming zero initial conditions, we obtain 

 

Armature-Controlled dc motors 

The dc motors have separately excited fields. They are either armature-controlled with fixed field 

or field-controlled with fixed armature current. For example, dc motors used in instruments 

employ a fixed permanent-magnet field, and the controlled signal is applied to the armature 

terminals. 

  

Consider the armature-controlled dc motor shown in the following figure. 

 

Ra = armature-winding resistance, ohms 

La = armature-winding inductance, henrys 

ia = armature-winding current, amperes 

if = field current, a-pares 

ea = applied armature voltage, volt 

eb = back emf, volts 

θ = angular displacement of the motor shaft, radians 

T = torque delivered by the motor, Newton*meter 

J = equivalent moment of inertia of the motor and load referred to the motor shaft kg.m2 



 

 

f = equivalent viscous-friction coefficient of the motor and load referred to the motor shaft. 

Newton*m/rad/s 

  

T = k1 ia ψ where ψ is the air gap flux, ψ = kf if , k1 is constant  

For the constant flux 

 

Where Kb is a back emf constant --------------     (1) 

The differential equation for the armature circuit 

 

The armature current produces the torque which is applied to the inertia and friction; hence 

 

Assuming that all initial conditions are condition are zero/and taking the L.T. of equations (1), 

(2) & (3), we obtain 

Kps θ (s) = Eb (s) 

(Las+Ra ) Ia(s) + Eb (s) = Ea (s) (Js2 +fs) 

  

θ (s) = T(s) = K Ia(s) 

The T.F can be obtained is 

 
Analogous Systems 

 Let us consider a mechanical (both translational and rotational) and electrical system as shown 

in the fig. 



 

 

 

From the fig (a) 

We get M d2 x / dt2  + D d x / dt + K x = f 

  

From the fig (b) 

We get M d2 θ / dt2  + D d θ / dt + K θ = T 

  

From the fig (c) 

  

We get L d2 q / dt2  + R d q / dt + (1/C) q = V(t) 

  

Where q = ∫i dt 

  

They are two methods to get analogous system. These are (i) force- voltage (f-v) analogy and (ii) 

force-current (f-c) analogy 



 

 

Force –Voltage Analogy 

 

Force – Current Analog 

 

 

 

 

Block diagram 

A control system may consist of a number of components. A block diagram of a system is a 

pictorial representation of the functions performed by each component and of the flow of signals. 

The elements of a block diagram are block, branch point and summing point. 

 

 



 

 

Block 

In a block diagram all system variables are linked to each other through functional blocks. The 

functional block or simply block is a symbol for the mathematical operation on the input signal 

to the block that produces the output. 

 

Summing point 

Although blocks are used to identify many types of mathematical operations, operations of 

addition and subtraction are represented by a circle, called a summing point. As shown in Figure 

a summing point may have one or several inputs. Each input has its own appropriate plus or 

minus sign. A summing point has only one output and is equal to the algebraic sum of the inputs. 

 

A takeoff point is used to allow a signal to be used by more than one block or summing point. 

The transfer function is given inside the block 

The input in this case is E(s) 

The output in this case is C(s) 

 C(s) = G(s) E(s) 



 

 

 

Functional block – each element of the practical system represented by block with its T.F. 

  

Branches – lines showing the connection between the blocks 

  

Arrow – associated with each branch to indicate the direction of flow of signal 

  

Closed loop system 

  

Summing point – comparing the different signals 

  

Take off point – point from which signal is taken for feed back 

  

Advantages of Block Diagram Representation 

  

o   Very simple to construct block diagram for a complicated system 

  

o   Function of individual element can be visualized 

  

o   Individual & Overall performance can be studied 

  

o   Over all transfer function can be calculated easily. 

 Simple or Canonical form of closed loop system 

 

R(s) – Laplace of reference input r(t) 

C(s) – Laplace of controlled output c(t) 



 

 

E(s) – Laplace of error signal e(t) 

  

B(s) – Laplace of feed back signal b(t) 

G(s) – Forward path transfer function 

H(s) – Feed back path transfer function 

  

Block diagram reduction technique 

Because of their simplicity and versatility, block diagrams are often used by control engineers to 

describe all types of systems. A block diagram can be used simply to represent the composition 

and interconnection of a system. Also, it can be used, together with transfer functions, to 

represent the cause-and-effect relationships throughout the system. Transfer Function is defined 

as the relationship between an input signal and an output signal to a device. 

Block diagram rules 

 

  



 

 

 

 



 

 

 

 

 

  



 

 

 

 

 

 

Procedure to solve Block Diagram Reduction Problems 

  

Step 1: Reduce the blocks connected in series Step 

  

2: Reduce the blocks connected in parallel Step 3: Reduce the minor feedback loops 

  

Step 4: Try to shift take off points towards right and Summing point towards left 

  

Step 5: Repeat steps 1 to 4 till simple form is obtained 

  

Step 6: Obtain the Transfer Function of Overall System 

 

Problem 1 

  

1. Obtain the Transfer function of the given block diagram 



 

 

 

 



 

 

 

 

 



 

 

  

Signal Flow Graph Representation 

 Signal Flow Graph Representation of a system obtained from the equations, which shows the 

flow of the signal 

Signal flow graph 

A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations. 

By taking Laplace transfer, the time domain differential equations governing a control system 

can be transferred to a set of algebraic equation in s-domain. A signal-flow graph consists of a 

network in which nodes are connected by directed branches. It depicts the flow of signals from 

one point of a system to another and gives the relationships among the signals. 

 Basic Elements of a Signal flow graph  

Node - a point representing a signal or variable. 

 Branch – unidirectional line segment joining two nodes. 

 Path – a branch or a continuous sequence of branches that can be traversed from one node 

to another node. 

 Loop – a closed path that originates and terminates on the same node and along the path no 

node is met twice. 

 Nontouching loops – two loops are said to be non-touching if they do not have a common node. 

 Mason’s gain formula: The relationship between an input variable and an output variable of 

signal flow graph is given by the net gain between the input and the output nodes is known as 

overall gain of the system. Mason’s gain rule for the determination of the overall system gain is 

given below. 

 

Where M= gain between Xin and Xout 

 Xout =output node variable 

 Xin= input node variable 

 N = total number of forward paths 

 Pk= path gain of the kth forward path 

  



 

 

∆=1-(sum of loop gains of all individual loop) + (sum of gain product of all possible 

combinations of two nontouching loops) – (sum of gain products of all possible combination of 

three nontouching loops) 

Problem 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

MODULE <II>: TIME RESPONSE ANALYSIS. 

Time response analysis- 

We can analyze the response of the control systems in both the time domain and the frequency 

domain. But the Time domain analysis is mostly used. Thus, Time response analysis is also 

called time domain analysis. Here, we study the response, i.e. the output as a function of time. 

If the output of control system for an input varies with respect to time, then it is called the time 

response of the control system. The time response consists of two parts. 

• Transient response 

• Steady state response 

Total time response c(t) of a control system consists of transient response (dynamic response ct(t) 

and steady state response css (t). 

           c(t) = ct(t) + css(t) 

where    c(t) = total time response 

          ct(t) = transient response 

        css(t) = steady-state response 

The response of control system in time domain is shown in the following figure. 



 

 

 

Here, both the transient and the steady states are indicated in the figure. The responses 

corresponding to these states are known as transient and steady state responses. 

Mathematically, we can write the time response c(t) as 

Where, 

• ctr(t) is the transient response 

• css(t) is the steady state response 

Transient Response 

After applying input to the control system, output takes certain time to reach steady state. So, 

the output will be in transient state till it goes to a steady state. Therefore, the response of the 

control system during the transient state is known as transient response. 

The transient response will be zero for large values of ‘t’. Ideally, this value of ‘t’ is infinity 

and practically, it is five times constant. 

Steady state Response 

The part of the time response that remains even after the transient response has zero value for 

large values of ‘t’ is known as steady state response. This means, the transient response will be 

zero even during the steady state. 

 

 



 

 

 

Standard Test Signals 

The standard test signals are impulse, step, ramp and parabolic. These signals are used to know 

the performance of the control systems using time response of the output. 

Unit Impulse Signal 

A unit impulse signal, δ(t) is defined as 

The following figure shows unit impulse signal. 

 

So, the unit impulse signal exists only at ‘t’ is equal to zero. The area of this signal under small 

interval of time around ‘t’ is equal to zero is one. The value of unit impulse signal is zero for all 

other values of ‘t’. 

Unit Step Signal 

A unit step signal, u(t) is defined as We can write unit ramp signal, in terms of unit step signal, 

as Following figure shows unit ramp signal. 

 



 

 

So, the unit ramp signal exists for all positive values of ‘t’ including zero. And its value increases 

linearly with respect to ‘t’ during this interval. The value of unit ramp signal is zero for all 

negative values of ‘t’. 

Unit Parabolic Signal 

A unit parabolic signal, p(t) is defined as, we can write unit parabolic signal in terms of the unit 

step signal as, The following figure shows the unit parabolic signal. 

 

So, the unit parabolic signal exists for all the positive values of ‘t’ including zero. And its value 

increases non-linearly with respect to ‘t’ during this interval. The value of the unit parabolic 

signal is zero for all the negative values of ‘t’. 

Question and Answers 

1. The system with the open loop transfer function 1/s(1+s) is: 

a)Type 2 and order 1 

b) Type 1 and order 1 

c) Type 0 and order 0 

d) Type 1 and order 2 

 

Answer: d 

Explanation: Type is defined as the number of poles at origin and order is defined as the total 

number of poles and this is calculated with the help of the transfer function from the above 

transfer function the type is 1 and order is 2. 

2. The identical first order system have been cascaded non-interactively. The unit step response 

of the systems will be: 

a) Overdamped 

b) Underdamped 

c) Undamped 



 

 

d) Critically damped 

 

View Answer 

Answer: d 

Explanation: Since both the systems that is the first order systems are cascaded non-interactively, 

the overall unit step response will be critically damped. 

3. A third order system is approximated to an equivalent second order system. The rise time of 

this approximated lower order system will be: 

a) Same as the original system for any input 

b) Smaller than the original system for any input 

c) Larger than the original system for any input 

d) Larger or smaller depending on the input 

View Answer 

Answer: b 

Explanation: As order of the system increases the system approaches more towards the ideal 

characteristics and if the third order system is approximated to an equivalent second order system 

then the rise time of this will be smaller than the original system for any input. 

4. A system has a single pole at origin. Its impulse response will be: 

a) Constant 

b) Ramp 

c) Decaying exponential 

d) Oscillatory 

View Answer 

Answer: a 

Explanation: For a single pole at origin the system is of type 1 and impulse response of the 

system with single pole at the origin will be constant. 

5. When the period of the observation is large, the type of the error will be: 

a) Transient error 

b) Steady state error 

c) Half-power error 

d) Position error constant 

View Answer 

Answer: b 

Explanation: The error will be the steady state error if the period of observation is large as the 

time if large then the final value theorem can be directly applied. 

6. When the unit step response of a unity feedback control system having forward path transfer 

function G (s) =80/s(s+18)? 



 

 

a) Overdamped 

b) Critically damped 

c) Under damped 

d) Un Damped oscillatory 

View Answer 

Answer: a 

Explanation: The open loop transfer function is first converted into the closed loop as unity 

feedback is used and then value of damping factor is calculated. 

 

7. With negative feedback in a closed loop control system, the system sensitivity to parameter 

variation: 

a) Increases 

b) Decreases 

c) Becomes zero 

d) Becomes infinite 

View Answer 

Answer: b 

Explanation: Sensitivity is defined as the change in the output with respect to the change in the 

input and due to negative feedback reduces by a factor of 1/ (1+GH). 

8. An underdamped second order system with negative damping will have the roots : 

a) On the negative real axis as roots 

b) On the left hand side of complex plane as complex roots 

c) On the right hand side of complex plane as complex conjugates 

d) On the positive real axis as real roots 

View Answer 

Answer: c 

Explanation: An underdamped second order system is the system which has damping factor less 

than unity and with negative damping will have the roots on the right hand side of complex plane 

as complex conjugates. 

9. Given a unity feedback system with G (s) =K/ s (s+4). What is the value of K for a damping 

ratio of 0.5? 

a) 1 

b) 16 

c) 4 

d) 2 

View Answer 

Answer: b 

Explanation: Comparing the equation with the standard characteristic equation gives the value of 

damping factor, natural frequency and value of gain K. 



 

 

10. How can the steady state error can be reduced? 

a) By decreasing the type of the system 

b) By increasing system gain 

c) By decreasing the static error constant 

d) By increasing the input 

View Answer 

Answer: d 

Explanation: Steady state error is the error as it is the difference between the final output and the 

desired output and by increasing the input the steady state error reduces as it depends upon both 

the states and input. 

System Order 

The order of the system is defined by the number of independent energy storage elements in the 

system, and intuitively by the highest order of the linear differential equation that describes the 

system. In a transfer function representation, the order is the highest exponent in the transfer 

function. In a proper system, the system order is defined as the degree of the denominator 

polynomial. In a state-space equation, the system order is the number of state-variables used in 

the system. The order of a system will frequently be denoted with an n or N, although these 

variables are also used for other purposes. 

Proper Systems 

A proper system is a system where the degree of the denominator is larger than or equal to the 

degree of the numerator polynomial. A strictly proper system is a system where the degree of 

the denominator polynomial is larger than (but never equal to) the degree of the numerator 

polynomial. A biproper system is a system where the degree of the denominator polynomial 

equals the degree of the numerator polynomial. 

It is important to note that only proper systems can be physically realized. In other words, a 

system that is not proper cannot be built. It makes no sense to spend a lot of time designing and 

analyzing imaginary systems 

Example: System Order 

1=Find the order of this system: 

G(s)= 1+s/1+s+s*s 

 

The highest exponent in the denominator is s2, so the system is order 2. Also, since the 

denominator is a higher degree than the numerator, this system is strictly proper. 

In the above example, G(s) is a second-order transfer function because in the denominator one of 

the s variables has an exponent of 2. Second-order functions are the easiest to work with. 



 

 

System Type 

Let's say that we have a process transfer function (or combination of functions, such as a 

controller feeding in to a process), all in the forward branch of a unity feedback loop. 

We call the parameter M the system type. Note that increased system type number correspond to 

larger numbers of poles at s = 0. More poles at the origin generally have a beneficial effect on the 

system, but they increase the order of the system, and make it increasingly difficult to implement 

physically. System type will generally be denoted with a letter like N, M, or m. Because these 

variables are typically reused for other purposes, this book will make clear distinction when they 

are employed. 

Now, we will define a few terms that are commonly used when discussing system type. These 

new terms are Position Error, Velocity Error, and Acceleration Error. These names are 

throwbacks to physics terms where acceleration is the derivative of velocity, and velocity is the 

derivative of position. Note that none of these terms are meant to deal with movement, however. 

Position Error 

The position error, denoted by the position error constant, this is the amount of steady-state 

error of the system when stimulated by a unit step input. 

 

Velocity Error 

 

The velocity error is the amount of steady-state error when the system is stimulated with a ramp 

input. 

 

Acceleration Error 

The acceleration error is the amount of steady-state error when the system is stimulated with a 

parabolic input. 

 

Standard Inputs 

There are a number of standard inputs that are considered simple enough and universal enough 

that they are considered when designing a system. These inputs are known as a unit step, a 

ramp, and a parabolic input. 

[Unit Step Function] 

The unit step function is a highly important function, not only in control systems engineering, 

but also in signal processing, systems analysis, and all branches of engineering. If the unit step 

function is input to a system, the output of the system is known as the step response. The step 

response of a system is an important tool, and we will study step responses in detail in later 

chapters. 



 

 

 

[Unit Ramp Function]  

It is important to note that the unit step function is simply the differential of the unit ramp 

function:  

 

 

 

 [Unit Parabolic Function]  

Notice also that the unit parabolic input is equal to the integral of the ramp function: 

 

https://commons.wikimedia.org/wiki/File:Unit_Step.svg
https://commons.wikimedia.org/wiki/File:Unit_Ramp.svg


 

 

 

 

Steady State 

When a unit-step function is input to a system, the steady-state value of that system is the output 

value at time.  Since it is impractical (if not completely impossible) to wait till infinity to observe 

the system, approximations and mathematical calculations are used to determine the steady-state 

value of the system. Most system responses are asymptotic, that is that the response approaches 

a particular value. Systems that are asymptotic are typically obvious from viewing the graph of 

that response.  

Step Response 

The step response of a system is most frequently used to analyze systems, and there is a large 

amount of terminology involved with step responses. When exposed to the step input, the system 

will initially have an undesirable output period known as the transient response. The transient 

response occurs because a system is approaching its final output value. The steady-state response 

of the system is the response after the transient response has ended.  

The amount of time it takes for the system output to reach the desired value (before the transient 

response has ended, typically) is known as the rise time. The amount of time it takes for the 

transient response to end and the steady-state response to begin is known as the settling time.  

It is common for a systems engineer to try and improve the step response of a system. In general, 

it is desired for the transient response to be reduced, the rise and settling times to be shorter, and 

the steady-state to approach a particular desired "reference" output.  

Target Value 

The target output value is the value that our system attempts to obtain for a given input. This is 

not the same as the steady-state value, which is the actual value that the system does obtain. The 

target value is frequently referred to as the reference value, or the "reference function" of the 

system. In essence, this is the value that we want the system to produce. When we input a "5" 

into an elevator, we want the output (the final position of the elevator) to be the fifth floor. 

Pressing the "5" button is the reference input, and is the expected value that we want to obtain. If 

we press the "5" button, and the elevator goes to the third floor, then our elevator is poorly 

designed. 

https://commons.wikimedia.org/wiki/File:Unit_Parabola.svg


 

 

Rise Time 

Rise time is the amount of time that it takes for the system response to reach the target value 

from an initial state of zero. Many texts on the subject define the rise time as being the time it 

takes to rise between the initial position and 80% of the target value. This is because some 

systems never rise to 100% of the expected, target value, and therefore they would have an 

infinite rise-time. This book will specify which convention to use for each individual problem. 

Rise time is typically denoted tr, or trise. 

Percent Overshoot 

Underdamped systems frequently overshoot their target value initially. This initial surge is 

known as the "overshoot value". The ratio of the amount of overshoot to the target steady-state 

value of the system is known as the percent overshoot. Percent overshoot represents an 

overcompensation of the system, and can output dangerously large output signals that can 

damage a system. Percent overshoot is typically denoted with the term PO. 

Step Response of a second order system 

As you would expect, the response of a second order system is more complicated than that of a 

first order system.  Whereas the step response of a first order system could be fully defined by a 

time constant (determined by pole of transfer function) and initial and final values, the step 

response of a second order system is, in general, much more complex.  As a start, the generic 

form of a second order transfer function is given by: 

 
where a, b, c, d and e are arbitrary real numbers and at least one of the numerator terms is non-

zero.   

Step Response of Prototype Second Order Low pass System 

It is impossible to totally separate the effects of each of the five numbers in the generic transfer 

function, so let's start with a somewhat simpler case where a=b=0.  Then we can rewrite the 

transfer function as 

 

where we have introduced three constants 



 

 

 

Note: the term ζ is read as "zeta."  Also note that ω0 is always a positive number. 

The choice of these constants may seem arbitrary, but we will soon show that the choice 

simplifies the mathematics, and that all three constants have a physical interpretation that helps 

give insights into a system.  We call this the prototype second order low pass system (because 

the frequency response of this system is "low pass," don't worry if you don't know what that 

means yet). 

To find the unit step response of the system we first multiply by 1/s (the Laplace transform of a 

unit step input) 

 

Before we can solve for yγ(t) let us first try to factor the denominator into first order terms.  The 

roots of the denominator of the transfer function, s2+2ζω0s+ω0
2, are determined from the 

quadratic equation 

 

The value of ζ determines five cases of interest that are given special names (whose origin will 

soon be apparent): 

Name  Value of ζ   Roots of s Characteristics of "s" 

Overdamped ζ>1   Two real and negative roots 

Critically 

Damped 
ζ=1 

 

A single negative roots 



 

 

Underdamped 0<ζ<1 
 

Complex conjugate  

(j = √-1);  

Undamped ζ=0 
 

Pure imaginary (no real part) 

Exponential 

Growth 
ζ<0 

 

Roots may be complex or real, 

but the real part of s is always positive 

The first three cases are most important, and the last two will be discussed only briefly in what 

follows. 

Case 1: The overdamped case (ζ>1) 

In the overdamped case we have two real roots at 

 

For convenience, we will refer to these as α and β 

 

and note that 

 

The transfer function may now be written as 

 

and the unit step response as 

 

We can look this form up as the "asymptotic double exponential" in the Laplace transform table 

(or do an inverse Laplace transform using partial fraction expansion) to get: 

http://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/InvLaplaceXform.html


 

 

 

In terms of damping coefficient and natural frequency, this becomes 

 

This is quite a complicated expression, but note several things 

1. The final value as t→∞ is K, the system gains.  This is also H (0). 

2. The initial value as t→0+ is 0.  This is also H (∞). 

3. Wherever ω0 occurs, it is multiplied by t.  That means if we double ω0 we double the 

speed of the system, but don't change the shape of the response. 

4. As ζ→∞ the second term in the numerator goes to zero, and the system behaves as a first 

order system (more on this later when we discuss the "dominant pole" approximation. 

The effects of ζ and ω0 on the shape of the response are discussed later.  

Case 2: The critically damped case (ζ=1) 

To find the response of the critically damped case we proceed as with the overdamped case.  For 

ζ=1 the roots of the denominator of the transfer function are both at s=-ω0 so the transfer function 

can be written as 

 

which yields the step response 

http://lpsa.swarthmore.edu/Transient/TransInputs/TransStep.html#Case_1


 

 

 

This is the "asymptotic critically damped" form in the Laplace transform table, so 

 

We can note several characteristics of this response: 

1. The final value as t→∞ is K, the system gains.  This is also H (0). 

2. The initial value as t→0+ is 0.  This is also H (∞). 

3. Wherever ω0 occurs, it is multiplied by t.  That means if we double ω0 we double the 

speed of the system, but don't change the shape of the response. 

Case 3: The underdamped case (ζ<1) 

For the underdamped case we use the transfer function to find the step response in the Laplace 

domain, 

 
We find this form in the Laplace transform table ("Prototype 2nd order lopass step response"), so 

  

There is a lot of information in this expression.  Several important characteristics of the equation 

include: 

1. The final value as t→∞ is K, the system gains.  This is also H (0). 

2. The initial value as t→0+ is 0.  This is also H (∞). 

3. Wherever ω0 occurs, it is multiplied by t.  That means if we double ω0 we double the 

speed of the system, but don't change the shape of the response. 

4. The "decay" (e-ζω0t) has time constant τ=1/(ζω0). 

5. The frequency of oscillation is called the damped frequency, ωd 

                   

For small ζ, ωd≈ω0.  (For example, if ζ=0.2, ωd=0.98ω0; if ζ=0.4, ωd=0.92ω0) 

The topic of the effects of ζ and ω0 on the shape of the response is an important one but is 

discussed later.  

Case 4: The undamped case (ζ=0) 

When the damping coefficient is zero the system is said to be undamped.  The roots of the 

denominator of the transfer function are at s=±jω0 so the transfer function is 

http://lpsa.swarthmore.edu/LaplaceZTable/LaplaceZFuncTable.html
http://lpsa.swarthmore.edu/Transient/TransInputs/TransStep.html#Effects_of_zeta_omega_0


 

 

 

which give a step response 

 

This is a special case of the "Prototype 2nd order low pass step response" form in the Laplace 

transform table with ζ=0.  So we get: 

 

As expected from the name, the undammed system (ζ=0) has no damping and oscillates forever.  

The graph below shows 

Case 5: Exponential growth (ζ<0) 

If we consider the case where ζ is negative, we can write the transfer function in terms of the two 

roots of the denominator of the transfer function 

 

We determine the unit step response by multiplying H(s) by 1/s (a unit step input), and 

performing a partial fraction expansion (assuming, for now, that α and β are not equal): 

 

Since the real parts of α and β are negative, this solution grows exponentially as t increases.   If α 

and β are complex, the solution oscillates as it grows.  For the types of systems, we will discuss, 

these types of systems are rare.  However, they are important in the design of linear systems. 



 

 

Effects of Gain, ζ and ω0 on Second Order Low Pass Step Response 

The second order low pass transfer function is given by 

 

The graph below shows the effect of ζ on the unit step response of a second order system, for 

positive values of ζ, with H0,LP=1.  For ζ>1 the system is overdamped, and does not oscillate (it 

also does not oscillate for ζ=1).  But for ζ<1 the system is underdamped and oscillate more and 

more as ζ→0.    

  

Some notes about this image (that are true as long as ζ>0): 

• Note that critical damping (ζ=1) does not cause any unexpected behavior; this just 

reinforces the idea that critical damping is a special case mathematically, but not in terms 

of the physical behavior of a system.   

• If H0,LP≠1, the response scales with it (i.e., if H0,LP doubles, the amplitude of the response 

doubles; this is not shown on the graph). 

• The initial value (t=0+) is given by H(∞) so yγ(0
+)=0 (you can also show that the first 

derivative of yγ(t) is 0 at t=0+). 

• The final value (t→∞) is given by H(0), so yγ(∞)=1. 

The graph below shows the effect of ω0 on the step response of a second order system.   As you 

can see the shape of the system is unchanged as ω0 varies, but the speed changes (note that the 



 

 

amplitude of first, second, third... peaks are equal, independent of ω0, only their timing 

changes).  As ω0 increases, the speed of the system increases.   If ω0 doubles, the speed of the 

system doubles.  But ω0  does not change the shape of the response (this is because ω0 and t 

always occur as a pair, ω0·t,  son increasing ω0 simply increases the product ω0·t at each value of 

t). 

 

The graph below shows the effect of ζ on the step response of a second order system, for positive 

and negative values of &zeta.  For positive values of ζ the response decays with time.  For ζ=0, 

there is no damping (the system is said to be undamped).  For negative values of ζ the response 

actually grows with time.  We won't run into many situations like this, but they can occur in 

certain situations in systems that have energy being added.  Notice that the final value isn't 

defined when ζ<0. 



 

 

 

Step Response of Prototype Second Order High pass System 

The second order high pass system 

 

has many of the same characteristics as the second order low pass, with some differences as well. 



 

 

  

Similarities (marked with "+") and differences (marked with "-") to the lowpass response 

include: 

• (+) As ζ decreases, system becomes less damped (oscillates more). 

• (+) As ω0 increases, system becomes faster (this is not shown on the graph). 

• (+) If H0,LP≠1, the response scales with it (i.e., if H0,LP doubles, the amplitude of the 

response doubles; this is also not shown). 

• (-) The initial value (t=0+) is still given by H(∞), but now yγ(0
+)=1. 

• (-) The final value (t→∞) is still given by H(0), but now yγ(∞)=0. 

Step Response of Prototype Second Order Bandpass System 

The second order band pass system 

  

has many of the same characteristics as the second order low pass and high pass, with some 

differences as well. 



 

 

  

Similarities (marked with "+") and differences (marked with "-") to other second order responses 

include: 

• (+) As ζ decreases, system becomes less damped (oscillates more). 

• (+) As ω0 increases, system becomes faster (this is not shown on the graph). 

• (+) If H0,BP≠1, the response scales with it (i.e., if H0,BP doubles, the amplitude of the 

response doubles; this is also not shown). 

• (-) The initial value (t=0+) is still given by H(∞), but now yγ(0
+)=0. 

• (-) The final value (t→∞) is still given by H(0), but now yγ(∞)=0 

 

PID controllers use a 3 basic behavior types or modes: P -proportional, I -integrative and D -

derivative. While proportional and integrative modes are also used as  

single control modes, a derivative mode is rarely used on it’ s own in control systems.  

Combinations such as PI and PD control are very often in practical systems. 

 

P Controller: In general, it can be said that P controller cannot stabilize higher order processes.  

For the 1st order processes, meaning the processes with one energy storage, a large increase in 

gain can be tolerated. Proportional controller can stabilize only 1st order  

unstable process. Changing controller gain K can change closed loop dynamics. A large 

controller gain will result in control system with:  

a) smaller steady state error, i.e. better reference following  

b) faster dynamics, i.e. broader signal frequency band of the closed loop  

system and larger sensitivity with respect to measuring noise  



 

 

c) smaller amplitude and phase margin 

When P controller is used, large gain is needed to improve steady state error. Stable systems do 

not have problems when large gain is used. Such systems are systems with one energy storage  

(1st order capacitive systems). If constant steady state error can be  

accepted with such processes, than P controller can be used. Small steady state errors can be 

accepted if sensor will give measured value with error or if importance of measured value is not 

too great anyway. 

 

PD Controller: D mode is used when prediction of the error can improve control or when it  

necessary to stabilize the system. From the frequency characteristic of D element, it can be seen 

that it has phase lead of 90°. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

MODULE <III>: STABILITY ANALYSIS 
Routh stability Criterion:  
 

Routh stability criterion is a mathematical test to determine the stability of a linear time 

invariant (LTI) control system. 

 

This test requires the characteristic equation of the control system under consideration. 

Characteristic equation is nothing but equating the denominator of the closed loop transfer 

function equal to zero.  

 

Then arrange the characteristic equation terms in the decreasing order of power of s from left to 

right as shown. 

a0S
n+ a1S

n-1+ a2S
n-2+ a0S

n+ ... an-1S
1+ anS

0 = 0 

Now, arrange the coefficients of the characteristic equation into an array called Routh array as 

shown. 

 

We get two rows. The first row consists of coefficients a0, a2, a4, a6 and so on.  The second row 

consists of coefficients a1, a3, a5 and so on.  

 



 

 

Remember: - missing terms are taken zero-coefficient. 

All the remaining rows can be obtained from these two rows as 

 

 

and so on. 

For the complete array obtained, Routh stability criterion states that  

"For a system to be stable, it is necessary and sufficient that each term of the first column of the 

Routh array be positibe if  a0 > 0 . If this condition is not met, the system is unstable and the 

number of sign changes of the terms of the first column of the Routh array = number of poles of 

the given control system in the right half of the s-plane ". 

Special cases 

when you will practice Routh stability criterion, you will find that in some problems, the routh 

criterion breaks down. This may happen in two ways.  

1. When the first terms in any row is zero while the rest of the row has at least 1 non-zero term. 

Because of this zero term, the terms in the next become infinite and the routh test fails. 

 



 

 

Ex :- S3-row in characteristic equation      

S5+ S4+ 2S3+ 2S2+ 3S1+ 5 = 0  

To overcome such situations, simply replace S by 1/Z and apply Routh test for this newly 

obtained characteristic equation. 

5Z5+ 3Z4+ 2Z3+ 2Z2+ Z1+ 1 = 0 

2. when all the elements in any row of the Routh array are zero.  

Ex :- S3-row in characteristic equation      

S6+2S5+ 8S4+ 12S3+ 20S2+ 16S1+ 16 = 0  

To solve such situations, make a polynomial from the row just above the all zero row i.e S4-row 

The polynomial will be    S4+ 6S2+ 8 , differentiate it w.r.t S, we get  4S3+ 12S  

Now, replace the all zero row with coefficients of the above obtained polynomial   i.e replace 

zeros with 4 and 12. 

Note: -  Routh stability criterion only gives the number of roots in the right half of the s-plane. It 

gives no information about the nature and values of the roots. 

Root Locus Algorithm - In control theory and stability theory, root locus analysis is a graphical 

method for examining how the roots of a system change with variation of a certain system 

parameter, commonly a gain within a feedback system. This is a technique used as a stability 

criterion in the field of classical control theory developed by Walter R. Evans which can 

determine stability of the system. The root locus plots the poles of the closed loop transfer 

function in the complex s-plane as a function of a gain parameter. 

The root locus of a feedback system is the graphical representation in the complex s-plane of the 

possible locations of its closed-loop poles for varying values of a certain system parameter. The 

points that are part of the root locus satisfy the angle condition. The value of the parameter for a 

certain point of the root locus can be obtained using the magnitude condition. Suppose there is a 

feedback system with input signal and output signal.   

 

 

https://en.wikipedia.org/wiki/Loop_gain
https://en.wikipedia.org/wiki/File:Simple_feedback_system.svg


 

 

The factoring of and the use of simple monomials means the evaluation of the rational 

polynomial can be done with vector techniques that add or subtract angles and multiply or divide 

magnitudes. The vector formulation arises from the fact that each monomial term in the factored 

represents the vector from to in the s-plane. The polynomial can be evaluated by considering the 

magnitudes and angles of each of these vectors.  

According to vector mathematics, the angle of the result of the rational polynomial is the sum of 

all the angles in the numerator minus the sum of all the angles in the denominator. So to test 

whether a point in the s-plane is on the root locus, only the angles to all the open loop poles and 

zeros need be considered. This is known as the angle condition.  

Similarly, the magnitude of the result of the rational polynomial is the product of all the 

magnitudes in the numerator divided by the product of all the magnitudes in the denominator. It 

turns out that the calculation of the magnitude is not needed to determine if a point in the s-plane 

is part of the root locus because varies and can take an arbitrary real value. For each point of the 

root locus a value of can be calculated. This is known as the magnitude condition.  

A graphical method that uses a special protractor called a "Spirule" was once used to determine 

angles and draw the root loci. The root locus only gives the location of closed loop poles as the 

gain is varied. The value of does not affect the location of the zeros. The open-loop zeros are the 

same as the closed-loop zeros.  

In addition to determining the stability of the system, the root locus can be used to design the 

damping ratio (ζ) and natural frequency (ωn) of a feedback system. Lines of constant natural 

frequency can be drawn radially from the origin and lines of constant damping ratio can be 

drawn as arccosine whose center points coincide with the origin. By selecting a point along the 

root locus that coincides with a desired damping ratio and natural frequency, a gain K can be 

calculated and implemented in the controller. More elaborate techniques of controller design 

using the root locus are available in most control textbooks: for instance, lag, lead, PI, PD and 

PID controllers can be designed approximately with this technique.  

The definition of the damping ratio and natural frequency presumes that the overall feedback 

system is well approximated by a second order system; i.e. the system has a dominant pair of 

poles. This is often not the case, so it is good practice to simulate the final design to check if the 

project goals are satisfied. 

Construction of Root Locus  

Follow these rules for constructing a root locus. 

Rule 1 − Locate the open loop poles and zeros in the ‘s’ plane. 

Rule 2 − Find the number of root locus branches. 

We know that the root locus branches start at the open loop poles and end at open loop zeros. So, 

the number of root locus branches N is equal to the number of finite open loop poles P or the 

number of finite open loop zeros Z, whichever is greater. 

Mathematically, we can write the number of root locus branches N as 

N=P 



 

 

if P≥Z 

N=Z 

if P<Z 

Rule 3 − Identify and draw the real axis root locus branches. 

If the angle of the open loop transfer function at a point is an odd multiple of 1800, then that 

point is on the root locus. If odd number of the open loop poles and zeros exist to the left side of 

a point on the real axis, then that point is on the root locus branch. Therefore, the branch of 

points which satisfies this condition is the real axis of the root locus branch. 

Rule 4 − Find the centroid and the angle of asymptotes. 

• If P=Z 

•  , then all the root locus branches start at finite open loop poles and end at finite open loop 

zeros. 

•  If P>Z 

, then Z number of root locus branches start at finite open loop poles and end at finite open loop 

zeros and P−Z 

• number of root locus branches start at finite open loop poles and end at infinite open loop 

zeros. 

•  If P<Z 

, then P number of root locus branches start at finite open loop poles and end at finite open loop 

zeros and Z−P 

• number of root locus branches start at infinite open loop poles and end at finite open loop 

zeros. 

So, some of the root locus branches approach infinity, when P≠Z 

. Asymptotes give the direction of these root locus branches. The intersection point of 

asymptotes on the real axis is known as centroid. 

We can calculate the centroid α by using this formula, 



 

 

α=∑Realpartoffiniteopenlooppoles−∑RealpartoffiniteopenloopzerosP−Z 

The formula for the angle of asymptotes θ is 

θ=(2q+1)1800P−Z 

Where, 

q=0,1,2,....,(P−Z)−1 

Rule 5 − Find the intersection points of root locus branches with an imaginary axis. 

We can calculate the point at which the root locus branch intersects the imaginary axis and the 

value of K at that point by using the Routh array method and special case (ii). 

• If all elements of any row of the Routh array are zero, then the root locus branch 

intersects the imaginary axis and vice-versa. 

• Identify the row in such a way that if we make the first element as zero, then the elements 

of the entire row are zero. Find the value of K for this combination. 

• Substitute this K value in the auxiliary equation. You will get the intersection point of the 

root locus branch with an imaginary axis. 

Rule 6 − Find Break-away and Break-in points. 

• If there exists a real axis root locus branch between two open loop poles, then there will 

be a break-away point in between these two open loop poles. 

• If there exists a real axis root locus branch between two open loop zeros, then there will 

be a break-in point in between these two open loop zeros. 

Note − Break-away and break-in points exist only on the real axis root locus branches. 

Follow these steps to find break-away and break-in points. 

• Write K 

in terms of s from the characteristic equation 1+G(s)H(s)=0 

•  . 

• Differentiate K 

with respect to s and make it equal to zero. Substitute these values of s 

• in the above equation. 



 

 

• The values of s 

for which the K 

• value is positive are the break points. 

Rule 7 − Find the angle of departure and the angle of arrival. 

The Angle of departure and the angle of arrival can be calculated at complex conjugate open 

loop poles and complex conjugate open loop zeros respectively. 

The formula for the angle of departure ϕd is 

ϕd=1800−ϕ 

The formula for the angle of arrival ϕa is 

ϕa=1800+ϕ 

Where, 

ϕ=∑ϕP−∑ϕZ 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

MODULE <IV>: FREQUENCY DOMAIN ANALYSIS. 

In conventional control system analysis there are two basic methods for predicting and adjusting a 

system’s performance without resorting to the solution of the system’s differential equation. They are 

• Root-Locus Method 

• Frequency-Response Method 

 
For the comprehensive study of a system by conventional methods it is necessary to use both methods of 

analysis. Frequency response is the steady state response of a system to a sinusoidal input. In frequency 

response methods, we vary the frequency of the input signal over a certain range and study the resulting 

response. The design of feedback control systems in industry is probably accomplished using frequency 

response methods more often than any other, primarily because it provides good designs in the face of 

uncertainty in the plant model. By the term frequency response, we mean the steady-state response of a 

system to a sinusoidal input. Industrial control systems are often designed using frequency response 

methods. Many techniques are available in the frequency response methods for the analysis and design of 

control systems. 

Consider a system with sinusoidal input ( ) sinr t A t= . The steady-state output may be written 

as, ( ) sin( )c t B t = + . The magnitude and the phase relationship between the sinusoidal input and the 

steady-state output of a system is called frequency response. The frequency response test is performed by 

keeping the amplitude A fixed and determining B and  for a suitable range of frequencies. Whenever it 

is not possible to obtain the transfer function of a system through analytical techniques, frequency 

response test can be used to compute its transfer function. 

The design and adjustment of open-loop transfer function of a system for specified closed-loop 

performance is carried out more easily in frequency domain. Further, the effects of noise and parameter 

variations are relatively easy to visualize and assess through frequency response. The Nyquist criteria is 

used to extract information about the stability and the relative stability of a system in frequency domain. 

Correlation between time and frequency response  



 

 

 

 

The transfer function of a standard second-order system can be written as,  
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Substituting s by j we obtain, 
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Where, / nu  = is the normalized signal frequency. From the above equation we get, 
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The steady-state output of the system for a sinusoidal input of unit magnitude and variable frequency  is 

given by,
1
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It is seen from the above equation that when, 
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The magnitude and phase angle characteristics for normalized frequency u for certain values of  are 

shown in figure in the next page. 



 

 

 

 

The frequency where M has a peak value is called resonant frequency. At this point the slope of the 

magnitude curve is zero. Setting 0

ru u

dM

du =

=  we get,           

2 2
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Solving, 21 2ru = −     or,                resonant frequency
21 2r n  = − .  ………… …… (01) 

The resonant peak is given by,            resonant peak,        
2

1

2 1
rM

 
=

−
.   ……………… (02) 

• For, 
1

  ( 0.707)  
2

  = , the resonant frequency does not exist and M decreases 

monotonically with increasing u. 

• For 
1

0  
2

  , the resonant frequency is always less than n
 and the resonant peak has a 

value greater than 1. 

From equation (01) and (02) it is seen that The resonant peak 
 rM

of frequency response is indicative of 

damping factor and the resonant frequency r
is indicative of natural frequency for a given  and hence 

indicative of settling time. 



 

 

• For r 
, M decreases monotonically. The frequency at which M has a value of 

1

2  is called 

the cut-off frequency c
. The range of frequencies over which M is equal to or greater than 

1

2  

is defined as bandwidth, b . 

• The bandwidth of a second-order system is given by, 
1/ 2

2 2 41 2 2 4 4b n     = − + − +
 

………….(03) 

 

Figure below shows the plot of resonant peak of frequency response and the peak overshoot of step 

function of . response as a 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 



 

 

 

It is seen that the two performance indices are correlated as both are the functions of the system damping 

factor  only. For 
1

  ( 0.707)  
2

  = the resonant peak does not exist and the correlation breaks 

down. For this range of  , pM  is hardly perceptible. From equation (03) it is seen that the bandwidth is 

indicative of natural frequency and hence indicative of settling time, i.e., the speed of response for a given 

 . 

 

Polar Plot 

The polar plot of a sinusoidal transfer function ( )G j  is a plot of the magnitude of ( )G j  versus the 

phase angle of ( )G j  on polar coordinates as   is varied from zero to infinity. An advantage of using 

polar plot is that it depicts the frequency response characteristics of a system over the entire frequency 

range in a single plot. 

The polar plot of  1

2 2

1 1
( ) tan

1 1
G j T

j T T
 

 

−= = 
+ +

 is shown in figure below.  

 

 

 

 

 

 

 

The polar plot of the transfer function, 
1

( )
(1 )

G j
j j T


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=
+

 is shown in figure above. 

 

 

 

 



 

 

 

 

The plot is asymptotic to the vertical line passing through the point (-T, 0).  Polar plots are useful 

for the stability study of systems. The general shapes of the polar plots of some important 

transfer functions are given in figure below. 

From the plots above, following observations are made, 

1. Addition of a nonzero pole to the transfer function results in further rotation of the polar 

plot through an angle of -90 as .→  

2. Addition of a pole at the origin to the transfer function rotates the polar plot at zero and 

infinite frequencies by a further angle of -90. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Bode Plots 

The transfer function ( )G j  is represented by, 
( )( ) ( ) jG j G j e   = . 



 

 

Taking natural logarithm of both sides,  ln ( ) ln ( ) ( )G j G j j   = +    

………………………(04) 

The unit of real part is called neper. 

Similarly,                

log ( ) log ( ) 0.434 ( )G j G j j   = + ……………………………………..(05) 

The standard procedure is to plot 20log ( )G j  and phase angle ( )   vs. log  . The unit of 

magnitude 20log ( )G j  is decibel. These two plots are called Bode plots in honor of HW Bode. 

Example  1

2 2

1 1
( ) tan

1 1
G j T

j T T
 

 

−= = 
+ +

. 

The log-magnitude is,   ( )2 220log ( ) 10log 1G j T = − + .  

For low frequencies ( 1/T ), the log magnitude is approximated as,  

20log ( ) 10log1 0G j = − =  db.   (01) 

For high frequencies ( 1/T ), the log magnitude is approximated as,   

 20log ( ) 20log 20logG j T = − − .   (02) 

The logarithmic plot of equation (01) is a straight line coincident with the horizontal axis. The 

plot of equation (02) is also a straight line with a slope -20 db per unit change in log . A unit 

change of log means  

   2 1log( / ) 1  =    or, 2 110 = . 

This range of frequencies is called a decade. The slope of the equation (02) is -20 db/decade. 

• The range of frequencies 2 12 =  is called an octave. Since -20log 2 = - 6 db, the slope -

20 db/decade can also be expressed as -20 db/octave. 



 

 

Further at 1/T =  the plot has a value of  0 db. The plot is shown in figure below. 

 

 

 

 

 

 

 

 

 

 

The frequency 1/T = at which the two asymptotes meet is called the corner frequency. The 

corner frequency divides the plot in low and high frequency regions. 

 The actual log-magnitude plot can be obtained by applying corrections for the errors 

introduced by asymptotic approximation. The error at the corner frequency 1/T = is, 

2 210log(1 ) 10log1

10log(1 1) 10log1 3  db

T− + +

= − + + = −
 

 

The error at the corner frequency     

 1/ 2T = is,  

 
2 210log(1 ) 10log1

10log(1 1/ 4) 10log1 1  db

T− + +

= − + + = −
. 

For 1/T    , the error in log-magnitude is given by, 

  2 210log(1 ) 20logT T − + + . 

The error caused by the asymptotic plot is shown in figure above.  

 



 

 

Simple Rules for Plotting Bode Diagrams 

The open-loop transfer function for a linear system can be written in the form, 
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. 

Bode diagram can be sketched for any general system by simply adding the effects of each pole 

and each zero in order to determine the angles and intersection points of the asymptotes.  

 

1. Factors of the form /( )rK j  

The log magnitude of this factor is 
( )

20log 20 log 20log
r

K
r K

j



= − +  and the phase is, 

( ) 90 r  = − . With log as abscissa, the plot of above equation is a straight line having a 

slope of -20r db/decade and passing through 20log K at 1 = . This is shown in figure below 

for r = 0, 1, 2 and 3. 

 

2. Pole or zero on the real axis 

The pole factor 1/(1 )j T+ has explained in the previous example. The phase angle for this 

factor is 
1tan T −= − . At corner frequency, the phase angle of this factor is -45. At zero 

frequency it is 0 and at infinity it is -90. 

The bode plot for the zero factor (1 )j T+  has a slope of +20 db/decade and a phase angle of 

1tan T−+ . The db correction is added to the asymptotic plot.  



 

 

 

 

3. Complex conjugate poles 

The quadratic factor for a pair of complex conjugate poles may be written in normalized 

form as 

2 2

1 1
;    

1 2
1 2

n

n n

u
j u u

j j



  


 

= =
+ −   

+ +   
   

. 

The log-magnitude of this factor is, 

1/ 2
2 2 2

2

2 2 2

1
20log 20log (1 ) (2 )

1 2

                                 10log (1 ) (2 )

u u
j u u

u u






 = − − + + −

 = − − + 

. 

For 1u , 

 

2

1
20log 10log1 0

1 2j u u
 − =

+ −

. 

For 1u , 

 

4

2

1
20log 10log 40log

1 2
u u

j u u
 − = −

+ −

. 



 

 

The two asymptotes meet on 0-db line at u = 1. The asymptotic and the actual plots are 

shown in figure right. The error between the actual magnitude and the asymptotic 

approximation is as given below: 

 

 

For 0 1,u   the error is 

2 2 2 210log (1 ) 4 10log1u u − − + +  For  1 ,u   the error is 

2 2 2 210log (1 ) 4 40logu u u − − + +    

The error versus u  curves for different values of  are shown in figure below. 

  

 

The phase angle of the quadratic factor 

is given by,  

 

 1

2

2
tan

1

u

u


 −  
= −  

− 
. 

 

The phase angle plots are shown in figure above. The phase angle curve also depends on  . 

General Procedure for Constructing Bode Plots 

The following steps will be used in constructing the bode plot for a given ( )G j . 

1. Write the sinusoidal transfer function in time-constant form. 

2. Identify the corner frequencies associated with each factor of the transfer function.  

3. Knowing the corner frequencies, draw the asymptotic magnitude plot. 

4. From the error graphs, determine the corrections to be applied to the asymptotic plot. 

5. Draw a smooth curve through the corrected points such that it is asymptotic to the line 

segments. This gives the actual log-magnitude plot. 

6. Draw phase angle curve for each factor and add them algebraically to get the phase plot.  

 



 

 

Example 
2 2

64( 2) 4(1 / 2)
( )

( 0.5)( 3.2 64) (1 2 )(1 0.05 / 64)

s s
G s

s s s s s s s s

+ +
= =

+ + + + + +
. 

The sinusoidal transfer function in time-constant form is,   

  
2

4(1 / 2)
( )

(1 2 )(1 0.4
8 8

j
G j

j j j




 
 

+
=

   
+ + −   

   

. 

Factor 
cf  Log-magnitude characteristic Phase angle 

characteristic 

4 / j  - Straight line of slope -20 db/decade, 

passing through 20log4 12= db point 

at 1 = . 

Constant 

-90 

1/1 2 j+  
1 =

0.5 

Straight line of 0 db for 1  , 

straight line of slope -20 db/decade for 

1  . 

0 to -90 ,  

45− at 1 . 

1 0.5j +  
2 =

2 

Straight line of 0 db for 2  , 

straight line of slope +20 db/decade 

for 2  . 

0 to +90 ,  

45 at 2 . 

2

1 0.4
8 8

j
    

+ −   
   

; 8,  0.2n = =  
3 =

8 

 

Straight line of 0 db for 3  , 

straight line of slope -40 db/decade for 

3  . 

0  to 180−  

90−  at 3 . 



 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To the asymptotic plot, corrections are to be applied to get the actual plot. The following list 

shows the list of corrections obtained from the error versus log-magnitude curve (plots are given 

in the previous pages).  

1

1 1

2

2 2

3

3 3

Frequency Correction

0.5 -3 db

/ 2 0.25,  2 1 -1 db

2 +3 db

/ 2 1,  2 4 +1 db

8,  0.2 8 db

/ 2 4,  2 16 2 db



 



 

 

 

=

= =

=

= =

= = +

= = +

   

Frequency Net Correction

0.25 -1 db

0.5 -3 db

1 0 db

2 +3 db

4 3 db

8 8 db

        16                       +2 db 

+

+

 

 

The phase angle curve may be drawn using the following procedure. 

1. For the factor ( )/
r

K j , draw a straight line of -90r. 



 

 

2. The phase angles of the factor 1(1 )j T + are 

a. 45  at  =1/T  

b. 26.6  at  =1/2T  

c. 5.7  at  =1/10T  

d. 63.4  at  =2/T  

e. 84.3  at  =10/T  

3. The phase angles for the quadratic factor are 

a. n90  at  = −  

b. A few points of phase angles are read off from the normalized Bode plot for the 

particular .  

 

 

 

 

Bode Plot: Example 1 

 

Draw the Bode Diagram for the transfer function: 

 

 
 

Step 1: Rewrite the transfer function in proper form. 

 

Make both the lowest order term in the numerator and denominator unity.  The numerator is 

an order 0 polynomial, the denominator is order 1. 

 

 
 
 

Step 2: Separate the transfer function into its constituent parts. 

 

The transfer function has 2 components: 

 

A constant of 3.3 

A pole at s=-30 

 

Step 3: Draw the Bode diagram for each part. 

 

This is done in the diagram below. 

 



 

 

• The constant is the cyan line (A quantity of 3.3 is equal to 10.4 dB).  The 

phase is constant at 0 degrees. 

• The pole at 30 rad/sec is the blue line.  It is 0 dB up to the break frequency, then 

drops off with a slope of -20 dB/dec.  The phase is 0 degrees up to 1/10 the break 

frequency (3 rad/sec) then drops linearly down to -90 degrees at 10 times the break 

frequency (300 rad/sec). 

 

 

Step 4:  Draw the overall Bode diagram by adding up the results from step 3. 

 

The overall asymptotic plot is the translucent pink line, the exact response is the black line. 

 
 

 



 

 

 

MODULE <V>: STATE SPACE ANALYSIS OF CONTINUOUS 

TIME SYSTEMS. 

 
 

Introduction:      Another method for system description and analysis. 

     What we already have? 

 (Why introduced Laplace Transform? to avoid the complexity of solving high-order differential 

equations!) 

Is Laplace Transform method good enough or do we need more or other techniques? 

(1) How effective Laplace Transform is in solving high-order differential equations with non-

zero initial conditions? 

(2) How effective Laplace Transform is in handing multivariable (multi-input multi-output) 

system? 

(3) Classical control theory: Laplace Transform based  

      Modern control theory: state equation based  

Uniform structure (form) for all linear-systems: despite the order, the numbers of inputs and 

outputs, and forms of the input functions. 

 

Always:  BuAxx +=  state equation 

     DuCxy +=  output equation 

     x :  state vector, x = (x1, … xn)
T 

     xjs : state variable 

      u = (u1, …, um)T :  input vector 

     ujs : inputs 

     y = (y1,…yp)
T  :  output vector 



 

 

     yjs : outputs 

    A : nxn   B: nxm 

    C: pxn    D: pxm 

Difference: dimensions of the vectors and matrices.  

 

(1) Uniform method of solution: 

     Laplace: different equations, different input function➔ different solution!  

     State: Different solution method for different inputs? No difference !  

               Different solution method for different systems (with different orders)? 

                                                No! The same! 

 uniform form, uniform methods for analysis and design! 

 

Fundamental Characteristic 

 Laplace Transform, differential equation, …, convolution:  

                               external inputs → external outputs! 

 State equation (state-variable technique): 

   External inputs → internal state variables (as a bridge) 

          → external outputs 

         help to understand the system better because of use of “internal state”! 

  

                                                                             What’s the state of a system? 

 

Form of the state equations 

 

1. Form 

 



 

 

Example : 

BuAxx

ububxaxax

ububxaxax

+=





+++=

+++=







2221212221212

2121112121111

 

 

 

DuCxy

ududxcxcy

ududxcxcy

+=





+++=

+++=

2221212221212

2121112121111

 

 

                   







=

2

1

x

x
x ,   








=

2221

1211

aa

aa
A ,     








=

2221

1211

bb

bb
B  

 

                  







=

2

1

y

y
y ,   








=

2221

1211

cc

cc
C ,     








=

2221

1211

dd

dd
D  

 

                  







=

2

1

u

u
u  

 



 

 

         In general : 

                        

















=

nx

x

x 
1

,   

















=

mu

u

u 
1

,   
















=

py

y

y 
1

,  

 

 
equationoutputducxy

equationstateBuAxx

+=

+=
   

 

nnA :   mnB :  

npC :   mcD :  

       ( 1: nx ,          1: mu  ,          1: py ) 

 

(2) Simulation example  

 

22112211

2221212221212

2121112121111

ududxcxcy

ububxaxax

ububxaxax

+++=





+++=

+++=





 



 

 

                  

 

(1) Block Diagram of state equation 

 





+=

+=

ducxy

BuAxx

   

 

Homework 

1. Given )()()( tButAxtx +=  with initial condition 00)( xtx =  where x0 is the given 

initial state. Construct an algorithm (recursive equation) to calculate 

,...)1,0(),)1(( 0 =++ ktktx  based on )( 0 tktx +  and )( 0 tktu +  where 

0t  is a small time interval. 

 

2. Given the initial condition problem 



 

 





=

+=

00 )( xtx

BuAxx
 

     It is known that the solution of this problem is unique. Prove that the unique solution of this 

problem is  

                 
−−

+=
t

t

tAttA
dBuexetx

0

0 )()( )(
0

)( 
 

             (Note:  


+=

=

t

a

t

t

a

d
t

tf
tfdtf

dt

d







),(
),(),( ) 

3. Use Laplace transform to prove 

     )(])([)( 1 sUDBAsIcsY +−= −
 

 

         when 




+=

=+=

)()()(

0)0(),()()(

tDutCxty

xtButAxtx
 

 

Time-Domain solution of the state equations 

 Focus: Find x(t) (t  t0) which satisfies  





=

+=

givenxxtx

BuAxx

000 )(


 

1. Mathematical Preparation 

(1) Matrix Exponential eAt 

Scalar Exponential  

++++= 3
3

2
2

!3!2
1 t

a
t

a
ateat

 

 

      Introducing Notation 



 

 

++++= 3322

!3

1

!2

1
tAtAAtIeAt

 

 

where :        nnA :   matrix 

            nnI :   Identity matrix  n
























10

01

  

 

  








  








  








nnnnnn

AAA



























=

















































=:2
 

 

             nnA j :      j = 0,1,2,… 

              t: scalar 

              nneAt :   

 

Properties of eAt 

• 
At

At

Ae
dt

de
=  

++++= 3322

!3

1

!2

1
tAtAAtIeAt

 

 



 

 

At

At

Ae

tAAtIA

tAtAA
dt

de

=

+++=

++++=

)
!2

1
(

!3

3

!2

2
0

22

232





 

 

• IeA =0
 

IAAIeA =+++= 220 0
!2

1
0  

  * 
AtAt ee −− =1)(  (Inverse of nn  matrix  eAt is e-At) 

   







+−+−+−+=

+−+−=

+−+−+−+=

3322

3322

3322

)(
!3

1
)(

!2

1
)(

!3

1

!2

1

)(
!3

1
)(

!2

1
)(

tAtAtAI

tAtAAtI

tAtAtAI

 

(2)  



+=

=

t

a
t

t

a

d
t

tf
tfdtf

dt

d







),(
),(),( ) 

 

       If  )(),( )(   Buetf tA −=  

 

            Then  



+=

=

t

t
t

t

t

d
t

tf
tfdtf

dt

d

00

),(
),(),( 





 

 

                     But   )()()(),( )( tButIButBuetf ttA

t
=== −

=
 , 



 

 

 

                    )(
),( )( 

  BuAe
t

tf tA −=



 

 

             Therefore   
−− +=

t

t

tA

t

t

tA dBueAtBudBue
dt

d

00

)()()( )()(  

 

 

                Denote  
−=

t

t

tA dBuetZ

0

)()( )( 
 

           =>   

)()(

)()(

0

)(

tButAZ

dBue
dt

d
tZ

t

t

tA

+=

= 
− 

 

 

                        i. e.   )()()( tButAZtZ +=  

 

Analytic solution of homogeneous equation 





=

=

00 )( xtx

Axx
    zero-input response  

     question : what do we mean that x(t) = f(t) is a solution of a differential equation with a  

     given initial condition ? 

(1) 
dt

tdf
x

)(
= =Af(t) 

 

(2) 00
)( xtf

t
=

=
 

 



 

 

for example, if we assume x(t)=At 

then )()( tAxAtAAx ==  

 x(t)=At is not a solution of )()( tAxtx =  

 

    question : Is  0)( xetx At=   a solution of 




=

=

00 )( xtx

Axx
   ? 

)()()( 00 tAxxAexe
dt

d
tx AtAt ===  

 

         => Axx =  satisfies the first of  




=

=

00 )( xtx

Axx
   

 However,  

                        00
0)( xetx

At
=  

 

                                           If   00 t   and 0A , Ie
At

0  

                                                                  => 00)( xtx   

 

                     Therefore,  0)( xetx At=   is not a solution of  




=

=

00 )( xtx

Axx
 

   

 Question: If we find a solution for  




=

=

00 )( xtx

Axx
 

 Can we find a second different solution for it? 



 

 

 No!  The solution for  




=

=

00 )( xtx

Axx
 is unique  

               when A = constant matrix! 

 

Let’s find “any” solution for  




=

=

00 )( xtx

Axx
. It will be the unique solution! 

 

Suggested solution 

   0
)( 0)( xetx

ttA −
=  

 

verification:  

 (1)   AxxAe
dt

xde
x

ttA
ttA

===
−

−

0
)(0

)(

0

0

  

 (2)   000
)(

0
00)( xIxxetx

ttA
===

−
 

 

=>   0
)( 0)( xetx

ttA −
=   :   unique solution 

 

2. Analytic solution of     




=

+=

)(0)(

)(

0 btx

aBuAxx
. 

(zero-state response) 

Suggested solution : 
−=

t

t

tA dBuetx

0

)()( )( 
 

Verification: 



 

 

 From mathematical preparation: 

  = 
−

t

t

tA dBuetz

0

)()( )( 
  our suggested x(t) 

 =>    )()()( tButAztz +=  

 

Hence, suggested solution x(t) satisfies   )()()( tButAxtx +=    (a) 

 

    Further,  ==
−

0

0

0 0)()(
)(

0

t

t

tA
dBuetx 

   (b) 

 

Solution of   




=

+=

00 )( xtx

BuAxx
  (Given problem) 

 

   Solution: zero-input response + zero-state response 

  

 
−−

+=

t

t

tAttA
dBuexetx

0

0 )()( )(

0

)( 

 

 

State Transition Matrix 
Atet = )(  

    No input, x(t) is a transition of x0 at t0 to t>t0: 

  000
)(

)()( 0 xttxetx
ttA

−==
−

 

 



 

 

 Output 

  +−+−=
t

t

tDudButCxttCty

0

)()()()()( 00   

Frequency-Domain solution of the State Equation 

 

                   BuAxx += ,  0)0( xx =   )0( 0 =t  

 

1. Solution  

)]()[(])[()(

)()()()(

)()()(

)()()(

11

0

11

1

0

1

0

0

sBUAsILxAsILtx

sBUAsIxAsIsX

sBUxsXAsI

sBUsAXxssX

−−−−

−−

−+−=

−+−=

+=−

+=−

 

 

2. What is 
1)( −− AsI  ? 

)(])[( 11 teAsIL At ==− −−
 

 
1)( −− AsI : Laplace transform of the state transition matrix or of eAt.  

 

Denote: 
1)()( −−= AsIs  

   What is  )()( 1 sBUAsI −− ?  

   ))()(( sBUs ---- product of    )(s  and  )(sBU ! 

 )]()[( 11 sBUAsIL −− − : convolution of  

                                          )(])[( 11 tAsIL =− −−
 and )()]([1 tBusBUL =−

 ! 

 

     Hence   



 

 

                  −==− −−

t

dButtButsBUAsIL
0

11 )()()(*)()]()[(   

3. Output Laplace Transform and Transfer Function Matrix 

 

)()()()(

)()()(

1

0

1 sDUsBUAsIcxAsIC

sDUsCXsY

+−+−=

+=

−−  

 

 When 00 =x  

)(])([        

)()()()(

1

1

sUDBAsIC

sDUsBUAsICsY

+−=

+−=

−

−

 

 

 Denote )()( mpsH   

                            DBAsIC +−= −1)(  

                 => )()()( sUsHsY =  

            H(s): Transfer function matrix 

  

















=

)()()(

)()()(

)(

21

11211

sHsHsH

sHsHsH

sH

pmpp

m







 

                                Hij(s) : transfer function between the jth input and ith output.  

 

4. Impulse Response Matrix H(t) 
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                    )(t  is 1m  vector impulse 

5. Is that all for state equation technique? 

No!  We have not found effective way for eAt yet! 

 Finding the state Transition Matrix 

 

Based on   
1)()( −−= AsIs  
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Key : (1) Find  
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(2) For each element of 
1)( −− AsI , obtain partial-fraction expansion 
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             eAt = … 

      (sI-A)-1 :  Systematic way exists! But very complex operation! 

 

Example 7-7 

 

 
Step 1:  Label  vc as x1 

    iL as x2 



 

 

Step 2:  For vc , write KCL : 
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   For iL , write  KVL  
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Step 4 : Output equation   y = v0 
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State Equation from Transfer Functions 

 

State Equation => Tell how to realize and simulate (system  

realization) the systems  

   

 Problem in this section : 

Must be expressed in 

terms of state 

variables and sources! 
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 (u --- scalar,  y --- scalar) 

 

                  Such that  DBAsIC +− −1)(  equals the given transfer function. 
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        General Case 
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                                         Assumption: No repeated poles 



 

 

                                          No zero-pole cancellation  

              Partial-Fraction Expansion: 

)()()(        

)()()(
)(

)(

)(

2211

2

2

1

1

2

2

1

1

sXBsXBsXB

ps

sUB

ps

sUB

ps

sUB
sY

ps

B

ps

B

ps

B

sU

sY

nn

n

n

n

n

+++=

−
++

−
+

−
=

−
++

−
+

−
=







 

 

   



















=

n

n

x

x

x

BBBty


 2

1

21 ,,)( ---- output equation 

   

  )                 )(
)(

)(        ( tuxpx
ps

sU
sX jjj

j

j +=
−

=   

  )(

1

1

0

0 111

tu

x

x

p

p

x

x

nnn 















+

































=

























 ---- state equation 

 

 

   Drawback (not serious): Complex pole 

 Complex coefficients! 
  There are ways to fix it! 

 



 

 

2. Repeated pole : No zero-pole cancellation 
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          How to incorporate this method into system realization, see examples. 

 

Example 7-9 
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