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Module No Lect

ure 

No 

Topic Application Reference Book 

MODULE 

I: Fourier 

Series and 

Fourier 

Transform 

1 Introduction, Periodic 
functions: Properties, 
Even & Odd functions: 
Properties, 

1. In Electrical 
engineering , the 
fourier transform is 
used to analyze 
varying voltages 
and  currents 

 

2. Fourier transform 
is used in the 
spectrum analysis 
of signals. Some 
application of this 
are in 
communication 
systems, image and 
video processing, 
Biomedical 
engineering. Oil 
extraction and 
power quality 
analysis.  
 

 

 

1. Dutta: A Textbook of 
Engineering Mathematics 
Vol.1 & 2, New Age 
International. 
 
2. Lakshminarayan- 
Engineering Math 3. 
 
3. Grewal B S: Higher 
Engineering Mathematics 
(thirtyfifthedn) - Khanna 
Pub. 
 
4. Sarveswarao: 
Engineering Mathematics, 
Universities Press 
 
5. Jana- Undergradute 
Mathematics. 
 
 
6. Kreyzig E: Advanced 
Engineering Mathematics 
- John Wiley and Sons. 

2 Special wave forms: 
Square wave, Half wave 
Rectifier, Full wave 
Rectifier, Saw-toothed 
wave, Triangular wave. 
Euler’s Formulae for 
Fourier Series, 

3 Fourier Series for functions 
of period 2π, Fourier Series 
for functions of period , 
Dirichlet’s conditions, Sum 
of Fourier series. Examples.  
Theorem for the 
convergence of Fourier 
Series 

4 Fourier Series of a 
function with its periodic 
extension. Half Range 
Fourier Series: 
Construction of Half 
range Sine Series, 

5 Construction of Half range 
Cosine Series. Parseval’s 
identity (statement 
only).Examples 

6 Fourier Integral Theorem, 
Fourier Transform of a 
function, Fourier Sine and 
Cosine Integral Theorem 
with examples. Fourier 
Cosine & Sine 
Transforms. 

7 Transform of some 
standard function, Fourier, 
Fourier Cosine & Sine 
Transforms of elementary 

 



functions, Properties of 
Fourier Transform. : 
Linearity, Shifting, 
Change of scale, 
Modulation 

8 Fourier Transform of 
Derivatives, Examples. 
Convolution Theorem with 
examples. 

9 verse Fourier transform or 
Fourier Integral, Fourier 
Sine and Cosine Integral 
Theorem Inverse Property of 
Inverse Fourier Transform. 

10 Some examples with 
solution of Fourier 
Transform, Exercise. 

 

 

 

 

 

 

 

 

 

 

 

 

MODULE 

II:  

Probability 
Distributio

ns 

11 Definition of random 

variable. Continuous and 

discrete random variables. 

probability mass function 

for single variable only 

 1. Probability 
theory has huge 
application in 
everyday life in risk 
assessment and 
modeling.  
2. Governments 
apply probabilistic 
methods in 
environmental 
regulation, 
entitlement 
analysis.   
3. Probability 
theory also has 
huge application in 
Engineering. In 
Network Analysis 
(CSE, IT, ECE), 
network contains 
nodes which can be 
deterministic or 
Probabilistic . 
4.  In reliability 
(EIE), probability 
of failure and 
probability of 
availability are two 
of the most 
important aspects 

1. Gupta S. C and Kapoor 

V K: Fundamentals of 

Mathematical Statistics - 

Sultan Chand & Sons.  

2. Lipschutz S: Theory 

and Problems of 

Probability (Schaum's 

Outline Series) - McGraw 

Hill          Book. Co. 

3. Spiegel M R: Theory 

and Problems of 

Probability and Statistics 

(Schaum's Outline Series) 

- McGraw Hill Book Co.  

4. Goon A.M., Gupta M K 

and Dasgupta B: 

Fundamental of Statistics 

- The World Press Pvt. 

Ltd.  

5. Delampady, M: 

12 Distribution Function, 

Probability density 

function for single 

variable only.  

13 Determination of Mean, 

Variance and standard 

deviation of discrete and 

continuous distribution 

14 Some important discrete 

distributions: Binomial, 

Determination of Mean, 

Variance and standard 

deviation . 

15 Poisson distributions: 

Determination of Mean, 



Variance and standard 

deviation. 

of safely critical 
systems like 
aircraft, nuclear 
power plant etc. 
 In semi conductor 
physics (EIE,ECE), 
Fermi-Dirac 
function or  Fermi-
Dirac probability 
function is 
extremely 
important for 
understanding the 
operation of 
semiconductor 
devices like diodes, 
transistors etc. It is 
also important to 
understand the 
operations of LED 
and semi conductor 
laser 

Probability & Statistics, 

Universities Press  

6. Bhat: Modern 

Probability Theory, New 

Age International  

 

 

16 Continuous distributions: 

Normal. Determination of 

Mean, Variance and 

standard deviation. 

17 Problems related to 

Standard Normal 

distribution 

18 Correlation &Regression 

analysis 

19 Curve fitting 

20 Least Square method 

MODULE 
III: 
Calculus of 
Complex 
Variable 

21 Introduction to Functions 
of a Complex Variable, 
Concept of Limit, 
Continuity 

1.The treatment of 
resistors, 
capacitors, and 
inductors can then 
be unified by 
introducing 
imaginary, 

frequency 
dependent 
resistances for the 
latter two and 
combining all three 
in a single complex 
number called the 
impedance.  

2. Electrical 
engineers and some 
physicists use the 

1. Spiegel M R: Theory 
and Problems of Complex 
Variables (Schaum's 
Outline Series) - McGraw 
Hill Book Co. 

 
2. Chowdhury: Elements 
of Complex Analysis, 
New Age International 
  
3. Grewal B S: Higher 
Engineering Mathematics 
(thirtyfifthedn) - Khanna 
Pub. 
 
4. Sarveswarao: 
Engineering Mathematics, 
Universities Press 
 
5. Jana- Undergradute 
Mathematics. 

22  Concept of 

Differentiability.  Analytic 

functions Cauchy-

Riemann Equations 

(statement only). 

Sufficient condition for a 

function to be analytic 

23 Laplace Equation 

Harmonic function and 

Conjugate Harmonic 

function, related 

problems.  Construction of 



Analytic functions. Milne 

Thomson method, related 

problems 

letter j for 
imaginary unit 
since i is typically 
reserved for 
varying currents 
and may come into 
conflict with i. This 
approach is called 
phaser calculus. 
This use is also 
extended into 
digital signal 
processing and 
digital image 
processing which 
utilize digital 
version of fourier 
analysis (and 
wavelet analysis) to 
transmit ,compress, 
restore and 
otherwise process 
digital audio 
signals, still images 
and video signals.  

3. Complex 
numbers are used in 
signal analysis and 
other fields for a 
convenient 
description for 
periodically varying 
signals . For given 
real functions 
representing , actual 
physical quantities, 
often in terms of 
sines and cosines 
corresponding 

 
 
6. Kreyzig E: Advanced 
Engineering Mathematics 
- John Wiley and Sons. 

 

7. Dutta: A Textbook of 
Engineering Mathematics 
Vol.1 & 2, New Age 
International. 
 
8. Lakshminarayan- 
Engineering Math 3. 
  

24 Introduction to Complex 

Integration Concept of 

simple curve, closed 

curve, smooth curve & 

contour. Cauchy’s 

theorem (statement only). 

25 Cauchy-Goursat theorem 

(statement only). Line 

integrals along a 

piecewise smooth curve. 

Examples 

26 Cauchy’s integral formula 

27 Cauchy’s integral formula 

for the derivative of an 

analytic function, 

Cauchy’s integral formula 

for the successive 

derivatives of an analytic 

function. Examples 

28 Taylor’s series, Laurent’s 

series. Examples 

29 Zero of an Analytic 

function, order of zero, 

Singularities of an 

analytic function. Isolated 

and non-isolated 

singularity, essential 



singularities. Poles: 

simple pole, pole of order 

m 

complex functions 
are considered of 
which the real parts 
are the original 
quantities.  

4. Complex 
numbers are used a 
great deal in 
electronics. The 
main reason for this 
is they make the 
whole topic of 
analyzing and 
understanding 
alternating signals 
much easier.  

5. It helps us to 
understand the 
behavior of circuits 
which contains  
reactance when we 
apply a.c      signals 
. It gives us a new 
way to think about 
oscillations. This is 
useful when we 
want to apply the 
concepts like the 
conservation of 
energy to 
understand the 
behavior of systems 
which range from 
simple mechanical 
pendulum to a 
quartz crystal 
oscillator.  

6. In order to 

30 Examples on 

determination of 

singularities and their 

nature.  Residue, 

Cauchy’s Residue 

theorem (statement only), 

problems on finding the 

residue of a given function 

 

31 Introduction Conformal 

transformation 

32 Bilinear transformation, 

simple problems 



analyze A.C 
circuits it became 
necessary to 
represent multi -
dimensional 
quantities. In order 
to accomplish this 
task, scalar 
numbers were 
abandoned and 
complex numbers 
were used to 
express the two 
dimensions of 
frequency and 
phase shift at one 
time.  

 

MODULE 
IV: Partial 
Differential 
Equation 
(PDE) &  

Series 
Solution Of 
Ordinary 
Differential 
Equation 
(ODE) 

33 Basic Concepts of PDE 
1. Partial 
differential 
Equations  forms an 
essential part of 
engineering 
mathematics. The 
origin and 
application of such 
equations occur in a 
variety of different 
fields ranging from 
fluid dynamics , 
electromagnetism, 
heat conduction and 
diffusion to 
quantum mechanics 
, wave propagation 
and general 
relativity. 

2. The differential 

1. Bronson R: Differential 

Equations (Schaum's 

Outline Series) - McGraw 

Hill Book Co.  

2.  Ross S L: Differential 

Equations - John Willey & 

Sons.  

3. Sneddon I. N.: 

Elements of Partial 

Differential Equations 

4. Grewal B S: Higher 

Engineering Mathematics 

(thirtyfifthedn) - Khanna 

Pub.  

5.. Kreyzig E: Advanced 

Engineering Mathematics 

34 Solution PDEs 

35 
Solution by the method of  
Separation of Variables: 
One-dimensional Wave 
Equation 

36 One-dimensional Heat 

Equation 

37 Introduction to Series 
Solution 

38 Example on Power series 
and Legendre Function 

39 Rodrigue’s Formula 

40 Recurrence Relations on 
Legendre Polynomials 

41 Orthogonality of Legendre 
Polynomials 

42 Bessel’s  Function 



43 Recurrence relations on 
Bessel’s Function 

equation 
representing the 
signal helps in the 
calculation of 
different transforms 
like Fourier , Z-
Transform, etc. 
This transform is 
done by the 
spectrum analyzer. 
Also the differential 
equation used to 
find maxima and 
minima of the 
quantity.  

3. The differential 
equations often 
model real life 
problems.  They 
include but are not 
limited to the 
following: 
- The rate of water 
flowing out of a 
container 
- The position of an 
object as it 
oscillates to 
equilibrium 
- The state of a 
system over time 

4. Electrical 
engineering deals 
with the 
manipulation of 
electrons and 
photons to produce 
products that 
benefit humanity.  

- John Wiley and Sons.  

6. Prasad: Partial 

Differential Equations, 

New Age International 

44 Elementary Bessel’s 
Function 



5. The design of 
these products is 
based on scientific 
principles and 
theories that are 
best described 
mathematically. 
Mathematics is thus 
the universal 
language of 
electrical 
engineering 
science.  

6. Digital signal 
processing is an 
important area 
within electrical 
engineering. The 
digitization, 
modulation, 
transmission, 
demodulation, and 
reception of signals 
is vital to modern 
communications.  

7. Image pro-
cessing and pattern 
recognition 
techniques fall 
within the purview 
of digital signal 
processing. This is 
the area which 
requires pre notion 
or pre requisites of 
ordinary differential 
equation.  

 



 

 
 

MODULE I 

 Fourier Series and Fourier Transform 

Lecture 1: 

Introduction to Fourier Series 

There are many types of series expansions for functions. The Maclaurin series, 
Taylor series, Laurent series are some such expansions. But these expansions 
become valid under certain strong assumptions on the functions (those assump- 
tions ensure convergence of the series). Fourier series also express a function as 
a series and the conditions required are fairly good and suitable when we deal 
with signals. 
Suppose f is a real valued function from R to R. In this note, we deal with 
the following three questions: 

 When does fhas a Fourier seriesexpansion? 
 How we find the expansion? 
 What are the main properties of thisexpansion? 

 Existence of a Fourier series expansion: 

       There are three conditions which guarantees the existence of valid Fourier expansion for a 
given function. These conditions are collectively called  Dirichlet conditions: 

 

1. f is a periodic function on R.This means that there exists a period T≥0    
        such that 

f(x)=f(x+T)for all x ∈ R. 

2. f has only a finite number of maxima and minima in 
aperiod. 

3 f has atmost a finite number of discontinuous points 
inside aperiod. 

4 f is integrable over the period of the function. 

 



It should be noted that the second and third conditions are satisfied by 
many real valued functions that we deal with, inside any finite interval. 
But periodicity is a condition that is satisfied by very few functions,for 
example, constant function, sine, cos, tan and their combinations. But we 
can consider any function defined on a finite interval [a,b] (or(a,b)) as a 
periodic function on R by thinking that the function is extended to R by 
repeating the values in[a,b]to the remaining part of R. 

 
      Even & Odd functions and their Properties: 

A function f(x)is said to be even function if f(-x)=f(x) for all values 
of x; e.g. the functions cos(x), x2 all are even functions. 

 
A function f(x)is said to be an odd function if f(-x)=-f(x) for all 

values of x; e.g. the functions sin(x), x3 all are odd functions. 
 
 

Graph of an even function:One of the most important properties of even 
functions is  

a a

a 0

f (x )dx 2 f (x )dx


   

 
Graph of an odd function: One of the most important properties of even 
functions is  

a

a

f (x )dx 0


  

Lecture 2: 

 
 

Special wave forms: 
 
The graph of every periodic functions runs like a wave-this is 

wave-form. Below we show some typical wave-form which are 
usually met in communication engineering: 
(i) Square waveform:Consider the periodic function f(x) defined by 

f(x)=-k,   -a<x<0 
 =k,     0<x  a 

     And f(x+2a)=f(x) for all x 
This kind of graph is known as Square Waveform. 

(ii) Half wave Rectifier: Consider the periodic function f(x) defined 
by 

f(x)=-ksinx,   0 x   
           =0,       x  2  
              And f(x+2 )=f(x) for all x 



This kind of graph is known as Half wave Rectifier. 
 

(iii) Full wave Rectifier: Consider the periodic function f(x) 
defined by 

f(x)=-ksinx,   0 x   
 And f(x+ )=f(x) for all values of x 

            This kind of graph is known as Full wave Rectifier. 
 

(iv) Saw-toothed wave: Consider the periodic function f(x) 
defined by 

f(x)=x,   -a x a 
 And f(x+2a)=f(x) for all values of x 
 This kind of graph is known as Saw-toothed Waveform. 
 

(v) Triangular wave: Consider the periodic function f(x) defined by 
 

2x
f (x) 1

a
  , -a<x 0 

                                 = 2x
1

a
 , 0x a 

And f(x+2a)=f(x) for all values of x 
 This kind of graph is known as Triangular Waveform.   
Examples: 

1. Extend the function f(x)=0, -3<x<0 
                                       =x2 , 0<x<3 
 

to a periodic function. 

         Sol. This function is defined on the interval (-3, 3) only. To extend in periodic 
form just define the function on  ,  by the rule f(x+6)=f(x) for all values of x. 

 
Euler’s Formulae for Fourier Series: 

Let f(x) be defined and integrable in the interval (-T,T). 
Extend the function to a periodic function of period 2T by defining 

f(x+2T)=f(x) for all values  
of x of period 2T. The Fourier series of f(x) is given by  

0
n n

n 1

a n x n x
(a cos b sin )

2 T T





 
   

Where na , nb are called Fourier co-efficient and these are, according to 

Euler,  



T

0

T

T

n

T

T

n

T

1
a f ( x )dx

T

1 n x
a f ( x ) cos dx

T T

1 n x
b f (x ) sin dx

T T





















  

Where n=1,2,3,……. 

1. Examples:Consider the function f(x)=3, 0<x 5 
=-3, -5<x0 

We extend the function by defining f(x+10)=f(x) for all x. so this 
becomes a periodic function of period 10. This gives a square 
waveform. 

 
Sol. The Fourier co-efficient, according to Euler Formula, are  

5

0

5

1
a f ( x )dx

5 

   

0 5

5 0

1
3 d x 3 d x

5 

 
   

 
  =0 

 
5

n

5

1 n x
a f ( x ) cos dx

5 5


   

0 5

5 0

1 n x n x
3 cos dx f (x) cos dx

5 5 5

  
   

 
   

5 5

0 0

1 n x n x
3 cos d x f ( x ) cos dx

5 5 5

  
   

 
  =0 

 And
5

n

5

1 n x
b f ( x ) sin dx

5 5


   

5

0

5

0

5

0

2 n x
f ( x ) s in d x

5 5

6 n x
s in d x

5 5

n x
c o s6 6 6 (1 c o s n )5 (c o s n 1)

n5 n n
5







 
   

          
 





 



 

Therefore the Fourier series of f(x) is  

n 1

0 n x 6 (1 co s n ) n x
(0 . co s s in )

2 5 n T





   
 

  

n 1

6 (1 cos n ) n x
. s in

n 5

6 x (1 cos 2 ) 2 x (1 cos 3 ) 3 x
(1 cos ) s in sin sin ...........

5 2 5 3 5





  



               

  

We see f(0)=-3 but the values of the Fourier series at x=0 is  6
0 0 0 .... .. 0   

  

Lecture 3: 

 

Fourier Series for functions of period 2π: 
The above Fourier series for T= i.e. the Fourier series for the function f(x) 
defined and integrable on (- , ) and f(x+2 )=f(x) for all values of x is  

0
n n

n 1

a
(a cos nx b sin nx )

2





   

Where the Fourier co-efficients are  

0

n

1
a f ( x )d x

1
a f ( x ) c o s n x d x



 



 











  

n

1
b f (x) sin nxdx






 

,for n=1,2,3,…… 

 

Examples: Expand f(x)=x in Fourier Series on the interval x     . 

Sol. Observe that f(x)=x is bounded and integrable on x    ,since it is 
continuous there. Further  



f (x ) 1 0   indicates that f(x) is monotone increasing on the entire interval. We 

extend this by defining f(x+2 )=f(x) for all values of x. This is a periodic function 
of period 2 . Its Fourier  series corresponding to f(x) is  

0
n n

n 1

a
(a cos nx b sin nx)

2





   

Where the Fourier co-efficient are  

0

n

n

1
a x d x

1
a x c o s n x d x

1
b x s in n x d x



 



 



 
















 

Where
0

1
a xdx 0



 

 
 

 ,  
n

1
a x cos nxdx 0



 

 
 

 

Since x cosnx and x are odd functions ,and 

n

0

1 2
b x sin nxdx x sin nxdx

 



 
    

Since xsin nx is even. Thus  

n
0 0

2 cos nx 2 cos nx
b x dx

n n

          

2
, n even

2 ncos n
2n

, n odd
n

    



 

Hence f(x)=x  generates Fourier Series in the form  

0
n n

n 1

a
(a co s n x b sin n x )

2





  =
n

n 1

b sin nx





1 2 3b s in x b s in 2 x b s in 3 x .. . . . . . .     



s in x s in 2 x s in 3 x
2 .. . . . . .

1 2 3
     
   

 

Dirichlet’s conditions: 

A function f(x) will be said to satisfy Dirichlet’s condition on an interval 
x    in 

Which it is defined when it is subjected to one of the two two following 
conditions: 
(i)f(x) is bounded in [-T,T] and the interval [-T,T] can be decomposed in a 
finite number of sub-intervals such that f(x) is monotonic (increasing or 
decreasing) on each of the sub-intervals. 
(ii) f(x) has a finite number of points of infinite discontinuity in [-T,T]. 
     When arbitrary small neighbourhoodof  these points are excluded from [-
T,T] f(x) becomes bounded in the remaining part and this remaining part can 
be decomposed into a finite number of sub-intervals such that f(x) is 
monotonic in each of the sub-intervals. Moreover the improper integral 

f ( x )d x


 
 is absolutely convergent. 

 
1. Convergence: 

When f(x) satisfies Dirichlet’s condition on x    , the Fourier Series 
corresponding to f(x) converges to f(x) at any point x on x     when f(x) is 

continuous and converges to  1
f ( x 0 ) f ( x 0 )

2
   when there is an ordinary 

discontinuityat the point. In particular at x   and x   it converges to 

 1
f ( 0 ) f ( 0)

2
      when f ( 0 )   and f ( 0)  exist. 

 

Example: Let f(x)= x-3 , 3 x 0    

=3-x, 0 x 3  . 



f(x) is bounded in [-3,3]. The interval[-3,3] is decomposed as [-3,0] [0,3] such 
that f(x) is increasing in [-3,0] and decreasing in [0,3]. So we conclude this 
function f(x) satisfies Dirichlet’s condition. 

Lecture 4: 

 

Fourier Series of a function with its periodic extension: 

We introduce Fourier Series of a function f(x) which is primarily defined 
on the interval [-T,T] and then extending it to a periodic wave. But the 
function may appear as defined primarily on an interval [c,c+2T] where c 
may be any real number. In that case also we have no trouble of getting 
its Fourier Series. 

Theorem: If f(x) be defined and integrable in [c,c+2T] and f(x+2T)=f(x) for 
all values of x , then the Fourier Series of f(x) is also  

0
n n

n 1

a n x n x
(a cos b sin )

2 T T





 
   

Where the Fourier co-efficients are 

 
 
Where c may be anyreal  number. 

 

 

Half Range Fourier Series:  

A trigonometric series like the fourier Series is called a Half Range 
Fourier Series if only sine terms or only cosine terms are present. 
When only sine terms are present the series is called Half Range Sine  
Series; when only cosine terms are present the series is called Half Range 
Cosine Series. 



          When a half range series corresponding to a function is desired, the 
function is generally defined in the interval (0, T) which is half of the 
interval (-T, T). 
 
 
 

Construction of Half range Sine Series: 
 Let f(x)be a function defined and integrable on the interval (0, T). We 
extend the domain of definition to [-T,0] defining by f(-x)=-f(x). This 
extension is shown in the adjacent figure. Then this extended f(x) 
becomes odd in the interval [-T, T]. 

T

0

T

1
a f ( x )dx

T 

   

                                  = 0             [f(x) is odd.] 
T

n

T

1 n x
a f ( x ) cos dx

T T


   

                            = 0  [ n x
f ( x ) c o s

T

 is an odd function]     

T

n

T

1 n x
b f ( x ) sin dx

T T


   

T

0

2 n x
f ( x ) s in d x

T T


  [ n x

f ( x ) s in
T

 is an even function]. 

The Fourier Series of f(x) becomes 

n
n 1

0 n x n x
(0.cos b sin )

2 T T





 
   

i.e. n
n 1

n x
(b sin )

T





  

which is the required Half Range Sine Series. Obviously if f(x) satisfies 
Dirichlets condition in [0, T] then this series is convergent and the value is 
as for Fourier Series. 
Construction of Half range Cosine Series: 
Let f(x)be a function defined and integrable on the interval (0, T). We 
extend the domain of definition to [-T,0] defining by f(-x)=f(x). This 
extension is shown in the adjacent figure. Then this extended f(x) 
becomes odd in the interval [-T, T]. 



T T

0

T 0

1 2
a f (x )dx f (x )dx

T T

   [f(x) is even.] 

T

n

T

1 n x
a f (x ) cos dx

T T


   

T

0

2 n x
f ( x ) cos dx

T T


      [ n x

f (x ) cos
T

 is an even function] 

T

n

T

1 n x
b f ( x ) s in d x 0

T T


    [ n x

f (x ) sin
T

 is an odd function] 

Consequently the Fourier Series of f(x) becomes 

0
n

n 1

a n x n x
(a cos 0.sin )

2 T T





 
   

i.e. 0
n

n 1

a n x
a cos

2 T






 . 

Which is the required Half Range Cosine Series. 
Here also this series converges according as f(x) satisfies Dirichlet’s 
Condition. 
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 In particular if the interval of definition becomes  0, then 

(1) The half Range Sine series becomes 

n
n 1

(b sin nx)



 where n

0

2
b f (x) sin nxdx




   

(2) The half Range Cosine series becomes 0
n

n 1

a
a cos nx

2





  where 

0

0

2
a f (x)dx




  and n

0

2
a f (x) cos nxdx




  . 

Example: Consider the function f(x)=sinx , 0 x   . To get its Half Range 
Cosine series we extend the function to the interval (- ,0) defining by f(-
x)=f(x). With this extension f(x) becomes even on the interval (- ,). Then 

0

0

2 4
a sin dx



 
  . 



n

0

2
a sin x cosnxdx




                                     (1) 

0

1
{sin(x nx) sin(x nx)}dx



   
   

0

1 cos(n 1)x cos(n 1)x

n 1 n 1

        
for n 1  

2 2

2(1 cosn ) 2(1 cosn )

(n 1) (1 n )

    
 

   
for n 1  

Now 1a 0 (from (1)) and nb 0.  

Therefore, the Half Range Cosine series becomes 

2
n 2

1 4 2(1 cos n )
. cos nx 0.sin nx

2 (1 n )





  
    

  

2
n 2

2 2 2

2 2 2(1 cos n )
cos nx

(1 n )

2 4 cos 2x cos 4x cos 6x
............

2 1 4 1 6 1





  
       

           



 
 
Parseval’s Identity  
If the Fourier Series of a function f(x) converges uniformly to f(x) in the 

interval (-T,T) then  
T

2 2 20
n n

n 1T

a1
f (x) dx (a b )

T 2





    

Where na , nb are Fourier Co-efficients of f(x). 

 

Note: 1) Corresponding to Half Range sine series n
n 1

b sin nx



 the 

Persaval’sindentity would be  
T

2 2
n

n 10

2
f (x) dx b

T





 since here f(x) is extended 

to an even function. 



2) Corresponding to Half Range cosine  series 0
n

n 1

a
a cos nx

2





  the Persaval’s 

indentity would be  
T 2

2 20
n

n 10

a2
f (x) dx a

T 2





  since here f(x) is extended to an 

odd function i.e.  2
f (x) is extended to even. 

Example: Consider the function f(x)= -x, 2 x 0    
                                                         = x, 0 x 2  . 
Find the Fourier series of this function. 
Solution: We see f(x) is an even function. Extending this to a periodic 
function defined by f(x+4)=f(x). 

Here 
2 0 2

0

2 2 0

1 1 1
a f (x)dx xdx xdx 2

2 2 2 

        

2 2

n

2 0

1 n x 2 n x
a f (x)cos dx x cos dx

2 2 2 2

 
    [since n x

f (x) cos
2

 is an even function]. 

2

2 2
0

2 n x 4 n x
x sin 1 cos

n 2 2n

                 
 

 2 2

4
cos n 1

n
  


for n 0 . 

2

n

2

1 n x
b f (x)sin dx 0

2 2


   [since n x

f (x)sin
2

 is an odd function] 

Again the function f(x) satisfies Dirichet’s condition and it is continuous 
everywhere  
So its Parseval’s Identity is  
 

   
22 2

2 2
2 2

n 12

1 2 4
f (x) dx . cos n 1 0

2 2 n





         
   

  

Or,    
0 2

2 22
4 4

n 12 0

1 16
x dx x dx 2 . cos n 1

2 n





 
        

   

Or, 
23

2 4 4 4
2

1 x 64 1 1 1
2 ...............

2 3 1 3 5

             
 

Or, 
2 4 4 4

8 64 1 1 1
2 ...............

3 1 3 5
        

 



Or, 
4

4 4 4

1 1 1
...............

961 3 5


     
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Introduction to Fourier Transform 

 
In the previous chapter we have seen if a function f(x) satisfies dirichlel’s condition on 
the interval (-T, T) then it can be expanding in the Fourier Series 

0
n n

n 1

a n x n x
f (x) (a cos b sin )

2 T T





 
    

Where na , nb are Fourier coefficients. Using the Euler’s identity ie cos i sin     the 

Fourier Series of f(x) can be written as  
in x

T
n

n 1

f(x) c e




                                  (1) 

Where 
in xT

T
n

T

1
c f (x)e dx

2T






  are also known as fourier coefficients. If now this hold for 

all values of T as T  , the expansion  (1) takes the form f(x)=
isx1

F(s) e ds
2






      

Where F(s)=
istf(t)e dt





    which is known as Fourier Transform.  

Fourier Transforms of a function: 

It transforms an integrable function to an another function defined as follows  
 Let f(x) be integrable function on any interval (-T, T). Then the improper integral  

isx(f (x)) F(s) f (x)e dx




     

is called the Fourier Transform of the function f. This is a function of s. 

Fourier Sine and Cosine Integral Theorem: 

The Fourier sine transform of f(x) , 0 x   is defined as  



s(f (x)) F (s) f (x)sin(sx)dx




     

The Fourier Cosine transform of f(x) , 0 x    is defined as  

c(f (x)) F (s) f (x)cos(sx)dx




     

provided the improper integral are convergent. 
Illustration: 

(i) Let us consider the function  
f(x)=1 , 1 x 1    

                                                 =0 ,  otherwise 
 
It’s Fourier Transform,  

isxF(s) f (x)e dx




   

1 1 1
isx isx isx isx

1 1 1

0.e dx 1.e dx 0.e dx 1.e dx
 

  

        

1isx is is

1

e e e (coss i sin s) (coss i sin s)

is is is





     
   
 

 

2sin s

s
 for s 0 . 

For, s=0, 
1 1

0.x

1 1

F(0) 1.e dx dx 2
 

     

So, the Fourier Transform of f(x) is  

2sin s
F(s)

s
 ,        s 0  

            =2 ,                s=0 

Fourier Cosine & Sine Transforms: 
1. If f(x), x     is an even function then its Fourier Transform  

cF(s) 2F (s) where  cF (s) is the Fourier cosine transform of f(x). 

Proof: isxF(s) f (x)e dx




   

f (x)(cossx isin sx)dx




   

f (x)cossxdx i f (x)sin sxdx
 

 

    



0

2 f (x)cossxdx i.0


   

[ since f (x) cos sx is an odd function and f(x)sinsx is odd] 

2. If f(x), x     is an odd function then its Fourier Transform  

sF(s) 2iF (s) where  sF (s) is the Fourier sine transform of f(x). 

Illustration: 
Let us consider the function f(x)=1 , -1<x<1 
                                                               =0 , otherwise. 

is an even function. So its Fourier Transform, cF(s) 2F (s)  

or, c

1
F (s) F(s)

2
  

 
 So, its Fourier Cosine Transform,  

c

1 2sin s
F (s) .

2 s
 ,  s 0  

1
.2

2
  ,            s=0 

i.e. c

sin s
F (s)

s
  ,  s 0  

                 =1,              s=0. 
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Fourier Cosine & Sine Transforms of elementary functions: 
Transform of some standard function: 
The Fourier transform are  

(1) 

2s

2F(s) 2 e


  of 

2x

2f (x) e


  

(2) 
2 2

2a
F(s)

a s



 of a xf (x) e  

(3) 
2sin sa

F(s)
s

 , s 0 of  f(x)=1,  x a  

      =2a  ,          s=0     =0   , x a  

(4) s 2 2

s
F (s)

a s



 of axf (x) e (a 0)   

 
 



(5) c 2 2

a
F (s)

a s



of axf (x) e (a 0)   

Proofs. 
(1) The Fourier Transform corresponding to f(x) is  

isxF(s) f (x)e dx




   

2 2x x 2isx
isx2 2e e dx e dx

  


 

    

 

2 2 2 2x 2isx x 2isx (is) s

2 2e dx e dx
    

 

 

    

2 2 2 2(x is) s s (x is)

2 2 2e dx e e dx
   

  

 

    

[ putting t=x-i.s  i.e. dt=dx] 

2 2 2 2s t s t

2 2 2 2

0

e e dt 2e e dt
 

   



    

2

2
s

z2

0

2 2e e dz


   [ putting
t

z,
2
 i.e. 

1
dt dz,

2
 ]  

2 2s s

2 22 2e 2 e
2

 
    

 

Properties of Fourier Transform: 

(1) Linear Property: If f(x) and g(x) are two functions having Fourier Transforms then 
 ) 

where  and  are constants. 

Proof:  

                                  =  

                                   =  

(2) Change of Scale Property: If the Fourier Transforms of f(x) ,  then the Fourier 

Transforms of f(ax)  

Proof: Since  therefore F(s)=          …….(1) 



Now    [Putting t=ax i.e. dt=adx] 

                          =  

                          = =      by (1) 

(3) Shifting Property: If the Fourier Transforms of f(x),  then the Fourier 

Transforms of f(x-a), 
                           

Proof:  

                                 =        [put x-a=t  ] 

                                 =  

                                 = = . 

(4) Modulation Property: If the Fourier Transforms  of f(x) ,  then the Fourier 

Transforms of  

                      

            Proof:  

                                                =  

                                               =  

                                               = =  

       Illustration: Let we are to evaluate the Fourier Transforms of  the function  

                      f(x)=4  

      =4 ( )-5  ( )       ………(1) 

Now, by formula ,  ( )=  

By shifting property,  ( ) =  ( )        

                                                       =  ( ) 

                                                       =  ( )        

                                                       =   , by change of scale property 

Where F(s)= (  

     =  

 



      ( )=  

So , from (1) we get ,  

                                                                                 =   
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(5) Fourier Transform of Derivatives: If f(x),  all tend to 0 as 

 and dx converges for all j then  

On multiplication by x. 
      If   then -i  

         Proof:      

                Now  

                                   =  

                                   =i  

                                  =i  

                     

Example: Find the Fourier transform of     

Solution: Now =  

                 Therefore ,   

                ( by change of scale property) 

                                =  

                 …………..(1) 



         Or,  

         Or, (-8x )=-is  

         Or,  -8 (x )=-is.               by (1) 

        Or,   

(6) Convolution Theorem: If f(x) and g(x) are two functions defined on the interval (- ) 

then        f*g=     is called the convolution of the two functions f and g. 

     The Fourier Transform of the convolution of f(x) and g(x) is the product of their Fourier 
Transform 

 i.e.  ( f*g)=  

Example: Find the function f(x) from the following integral equation  

                    f(x)=g(x)+  

Solution:  Taking Fourier Transform on both side we get  
               

                   =    

                                   =   , by Convolution theorem 

Or, F(s)=G(s)+F(s)H(s) 

Or, F(s)=        

So by Fourier integral theorem  

 where f(x) is continuous. 

   at the point of continuity. 
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verse Fourier transform or Fourier Integral: 

In this article we discuss how a function can be found if its Fourier Transform is known. This is 
due to the following theorem. 
Theorem 1: (Fourier integral theorem) 
       If a function f(x)  

(i)satisfies Dirichlet’s condition in every finite interval [-T,T] 

(ii) exists finitely 

Then  where f(x) is continuous 

=  when f(x) is discontinuous at x 



Where F(s) is the Fourier Transform  of f(x). 

Definition: The integral   is called Inverse Fourier Transform  or 

Fourier Integral of the function f(x) , where F(s) is the Fourier Transform of f(x) 

So,  at the point of continuity. 

Fourier Sine and Cosine Integral Theorem: 

Theorem: If a function (i) satisfies Dirichlet’s condition in every finite interval [0, T] 

    (ii) (ii) exists finitely  

Then 

                             (a)       where f(x) is continuous 

       =   where f(x) is discontinuous 

Where  is the Fourier Sine Transform of f(x). 

(b)  where f(x) is continuous. 

                                =   where f(x) is discontinuous 

Where  is the Fourier Cosine Transform of f(x). 

Fourier Sine Integral: The integral  is called Inverse Fourier 

Transform or  Fourier Sine Inverse of f(x) , where   is Fourier Sine Transform of f(x). 

Fourier Cosine Integral: integral  is called Inverse Fourier Transform 

or  Fourier Cosine Inverse of f(x) , where   is Fourier Cosine Transform of f(x). 

Inverse Property of Inverse Fourier Transform:  If F(s) and G(s) are Fourier transform of th function 
f(x) and g(x) respectively then  

                                   

Where  are constants. 

Examples: 

1.  Find the Fourier transform of the function  



       f(x)=1-x2  ,   

             =0    ,        

Hence evaluate  

The Fourier Transform, 

F(s)=  

                                     =  

                                     =  

                                     =2     

[  

                                  =  2{[  

                                  =  

                                  = =  

Since f(s) is an even function therefore F(s)=2  

                                                       

By Fourier integral theorem, 

       

Or,    

Or, =1-x2  ,   

                                                               =0    ,        

Putting x=  we get  

  =1- =  



Or,  

i.e. , , . 
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2.    Find the Fourier Cosine transform of the function  

              f(x)=cosx   ,   0<x<a 

                     =0      ,x>a 

Solution: The required transform, 

 

          =  

         =  

        =  

3. Find the Fourier  Sine transform of the function f(x)=  

Solution: The required transform, 

=  

                                        =       putting sx=t    i.e. , dx=  

                                        =  

4. Find the function whose cosine transform is  

Solution: Let f(x) be the required function. Then   corresponding to f(x). 

By Fourier cosine integral theorem, 

  where f(x) is continuous 

       

Or,  =  



                                                 =   

       Or,  f(x)=   if x<a 

                     =     if x>a             since,    

 

 

EXERCISES 
 

1. Find the Fourier Transform of  
              f(x)=x2 ,   

                     =0  ,    

2. If the Fourier transform, F(s)=  evaluate f(x) 

3. Find Fourier Cosine transform of f(x)=  and hence derive fourier sine transform of 

the function  

4. Evaluate  

5. Evaluate the integral  

6. Prove that =  

                                     =0  ,         x>  

7. Find Fourier sine and Cosine transform of  and using the inversion formula recover the 

original function, in both the cases. 
8. Verify the Convolution theorem for the function  

        f(x)=1  ,  

            =0  ,    

And   g(x)= 1  ,  

                =0  ,    

 
 

9. Find the Fourier Integral of the function  
     f(t)=1    

          =0  ,    

10. Evaluate  

 



 

 

MODULE-II 
 

(Probability Distributions) 
Lecture 11: 

Introduction: In Statistics, something is random when it varies by chance. For example, when 
rolling a six sided die there are six equally possible outcomes, the observed outcome on any one 
roll is random. The variation of a random event such as rolling a die can be described by the 
probability distributions that we will see in this lesson. 

Random variable: a numerical characteristic that takes on different values due to chance 

Examples: 

Throwing Coins. 
The number of heads in four flips of a coin (a numerical property of each different sequence of 
flips) is a random variable because the results will vary between trials. 

Heights of population. 
Sample of 100 are repeatedly pulled from the population of all Penn State students and their 
heights are measured. The mean height of samples of 100 Penn State students is a random 
variable because the statistic will vary between samples. While most sample means will be 
similar to the population mean, they will not all equal the population mean due to random 
sampling variation. 

Random variables are classified into two broad types: discrete and continuous,  discrete random 
variable and continuous random variable. 

Discrete Random Variable : A random variable X is said to be discrete if the 
spectrum of X is finite or countably infinite i.e. an infinite sequence of distinct 
values. 

Continuous Random Variable: A random variable X is said to be continuous if it 
can assume every value in an interval. 

Illustrations.  

(i)  Let us consider the random experiment of tossing two (unbiased) coins. Then 
the sample space S contains 4 sample points. 

    i.e. , S= { HH , HT, TH, TT} 



Let the random variable X be such that X (an outcome) = “the number of heads”. 
Then X is a function over S defined by 

X(HH) = 2,      X(HT) = X(TH) = 1, X(TT) = 0. 

Thus the spectrum of X is { 0, 1, 2}  which is a finite set. Hence X is a discrete 
random variable here. Here the event (X=1) = { TH, HT} = ‘One Head’ , the event 
(-1 < X ≤ 0) = {TT} = ‘Two tails’. 

(ii).Let the random variable X denote the weights (in kg) of a group of individuals. 
Then X can assume every value in an interval say (30, 100), supposing there is no 
individual having weight less than 30 and greater than 100. Hence X is a 
continuous random variable. Here event (42 < X ≤ 50)  = the group of individual 
whose weight lie between 42 and 50, including 50; the event (X = 70) = The group 
of individuals whose weight is 70 kg. 

Probability Mass Function and Discrete Distribution: 

Let X be a discrete random variable which assumes the values  Let 

. So the value of depends on  i.e. . Thus the function  is 

called Probability Mass  Function (p.m.f) of the random variable X. a particular 
value of  is called probability mass. 

The set of ordered pairs ( ) is called discrete probability distribution of the 

random variable X. 

Discrete distribution is presented in the following way : 

X: 0 1 2 … … 

fi: f0 f1 f2 … … 

 

Illustration. For the random experiment of tossing two coins given in illustration 

(i), we see X assumes the values 0, 1 and 2. 

Moreover  . 

So, the distribution of the number of heads is given by 



X: 0 1 2 … … 

fi: 1/4 1/2 1/4 … … 

 

Fundamental Properties of pmf: 

          If  

X: 0 1 2 … … 

fi: f0 f1 f2 … … 

  

is a discrete distribution of X, then the pmf has the following two properties: 

(i)  

(ii)  

 

Lecture 12: 

Distribution Function or Cumulative Distribution Function: 

 The distribution function (d.f) of a random variable X (discrete or continuous) is               
   given by 

 

Thus, if  , then 

 . 

 

Illustration. In the discrete distribution  

X: 0 1 2 

fi: 1/4 1/2 1/4 

 



The distribution function is        
                        F(x) =0 ,      x <0 

                               = 1/4,    0 ≤ x < 1  

                               = (1/4) + (1/2) ,   0 ≤ x < 2 

                               = (1/4) + (1/2) + (1/4) ,   2 ≤ x 

 

Properties of Distribution Function: 

(i) The distribution function F(x) is a monotonic non-decreasing function. 
(ii)  and  and  . 

(iii)   is a continuous on the right of all points and has a jump 
discontinuity on the left at x=a , the height of jump being equal to  

 
 

(iv) Suppose a and  b are any real numbers such that a<b 
Then P (a < X ≤ b) = F(b) – F (a)   , 
P (a< X< b)= F( b) – F( a)– P( X=b) 
And P( a ≤ X < b)= F(b) – F(a) – P(X=b) + P(X=a) 

Illustration. (i) Let X be a random variable denoting the number of points 
appearing in a throwing of a die. The distribution of X is 

X: 1 2 3 4 5 6 

fi: 1/6 1/6 1/6 1/6 1/6 1/6 

 

Now, if x<1, F(x)= P( X≤ x) = 0 

If 1 ≤ x < 2 ,  F(x)= P( X ≤ x) =  =  

If 2 ≤ x < 3 ,  F(x)= P( X ≤ x)=  

and so on. 



Thus the distribution function F(x) is given by : 

F(x)= 0 ,     

       = 1/6  ,    1 ≤ x < 2 

        = 2/6  ,    2 ≤ x <3 

        = 3/6  ,     3 ≤ x < 4 

         = 4/6  ,    4 ≤ x < 5 

         = 5/6  ,     5 ≤ x < 6 

         = 1  ,   

 

Probability Density Function: 

For continuous random variables, as we shall soon see, the probability that X takes on any 
particular value x is 0. That is, finding P(X = x) for a continuous random variable X is not going 
to work. Instead, we'll need to find the probability that X falls in some interval (a, b), that is, 
we'll need to find P(a < X < b). We'll do that using a probability density function ("p.d.f."). We'll 
first motivate a p.d.f. with an example, and then we'll formally define it.  

 

 

Density Curve : The curve given by y=f(x), ( f(x) is pdf )  is the probability density curve which 
gives the graphical representation of the corresponding continuous distribution. 

Illustration : consider a function y=f(x) ( f(x) is pdf ) which is defined as                              
 



           = 0, elsewhere 

As  everywhere and  

 

So this f(x) is a probability density function of some random variable. 

Now,  

And  

 
So the distribution function of pdf is  

 

 

 

 

Lecture 13: 

Expectation of a Discrete Random Variable: 

Let X be a discrete random variable whose distribution is 

X: 0 1 2 …   … N   …  

fi: f0 f1 f2 …   … fn     …  

Then the mean or expectation or expected value of X , denoted by E(X) or m(X) or 
simply m is defined as 

 , provided the series is absolutely convergent 

if the above sum is an infinite series. 

 



Expectation of Continuous Random Variable : 

For a continuous random variable X with probability density function f(x) , the 
mean or expectation of X is defined as 

 , 

Provided the infinite integral converges absolutely. 

Similarly, the mean of a function  on the random variable X denoted by 

 is defined as 

 ,      for a discrete distribution. 

,     for a continuous distribution 

 

Illustration. (i) Suppose a die is rolled. Let X be the number of points on the die. 
Then its values are 1, 2, 3, 4, 5, 6. 

So, P(X=i) = 1/6 for  i = 1 ,2 , 3 ,4 ,5 ,6. 

So the distribution X is 

X: 1 2 3 4 5 6 

fi: 1/6 1/6 1/6 1/6 1/6 1/6 

Therefore its expectation  

 

And 

 

(iii) Let the pdf of a continuous random variable X is  

 



                                                   =  0,      elsewhere 

 

The mean or expectation of X is 

 

And also,  

Properties of Expectation 

(i) E(a) = a ,  where a is being a constant 
(ii) E(aX) = a E(X) where a being a constant 
(iii) E(X ) = E(X)  E(Y)  , X , Y  are two r.v. 
(iv) E(XY) = E(X) E(Y) if the two r.v  X and Y are independent. 

Variance and S.D : 

The variance of a r.v. X , denoted by  is defined as , 

where  

The positive squre root of  is called the standard deviationof X and is 

denoted by  or   or simply  . Thus  . 

Remarks: 

(i) The variance describes how widely the probability masses are spread about 
the mean i.e. it gives an inverse measure of concentration of the 
probability masses about the mean which is called the measure of 
dispersion. 

(ii) As  only when  i.e  , so in that case whole mass is 

concentrated at the mean. 

 

Theorem: 

(i)  



(ii)  

(iii) where k is constant. 

(iv)  where m is mean of X 

Illustration: Consider the following distribution of a random variable X: 

 

                                                                         = 0 ,   elsewhere 

The expectation of X is  

 
Now,  

 

Therefore ,  

So,  

 

Ex. 1. Find the probability distribution of the number of heads when a fair coin is 
tossed repeatedly until the first tail appears. 

The sample space corresponding to the random experiment of the tossing of the 
fair coin is  S= { T, HT, HHT, HHHT, …} 

Let the random variable X denotes “the number of heads in the experiment until 
the first tail appears”. 

Then the spectrum of X is {0, 1, 2, 3, …} 

Now  



  [since trails are independent] 

 

   and so on 

Hence the probability distribution of X is 

 

:          

 

Ex. 2. A random variable X has the following probability mass function  

 

 

 

(i)determine the constant k. 

(ii)evaluate P(X<6), P(X≥6), P(3<X≤6), and P(3< X/X ≤ 6) 

(iii)find the minimum value of x so that P(X≤x)>1/2 

(iv)obtain the distribution function F(x) 

 

(i) Since f(x) is a p.m.f,  

 
 

 

 



 

(ii)  

 

 

 

 
 

(iii)  

 

 

 

 

 

Thus minimum value of x so that  is 4. 

Lecture 14: 

Binomial Distribution. 

Definition. The probability mass function of a binomial random variable X is: 

                                          f(x)=nCxp
x(1−p)n−x  

We denote the binomial distribution as b(n, p). That is, we say: X ~ b(n, p) 

where the tilde (~) is read "as distributed as," and n and p are called parameters of the 
distribution. 



 If X is a binomial random variable with probability mass function, 

                f(x)=nCxp
x(1−p)n−x 

                then the mean of X is:  μ = np 
Proof: 

 

 

 If X is a binomial random variable, then the variance of X is: 

σ2=np(1−p) 

 

and the standard deviation of X is: σ=  

Proof. Hintz. 

The definition of the expected value of a function gives us: 

E[X(X−1)]= =  f(x)=nCxp
x(1−p)n−x 

Left as an exercise. 



Lecture 15: 

Poisson Distribution. 

Definition. The probability mass function of a Poisson random variable X is: 

                                 

We denote the Poisson distribution as b(n, p). That is, we say: 

X ~ P0() 

where the tilde (~) is read "as distributed as," and  is  called parameter of the distribution. 

Example:  
Births in a hospital occur randomly at an average rate of 1.8 births per hour. 
What is the probability of observing 4 births in a given hour at the hospital? 

Let 
X= No. of births in a given hour=4 
(i) Events occur randomly 
(ii) Mean rate λ= 1.8⇒X∼Po(1.8) 
We can now use the formula to calculate the probability of observing exactly 4 
births in a given hour 
P(X= 4) =e-

1.8 =0.072

 
 



 

 If X is a Poisson random variable with probability mass function, 

              t 
                  Then the mean ( μ ) of X and variance (2) of X are respectively  . 

 
Proof. Left as an exercise. 
 
 
 
Some Problems: 
1.  



 
Lecture 16: 

Normal Distribution. 

The normal distribution is informally called the bell curve.  

The probability density function of the normal distribution is: 

                 
where, μ and  are respectively the expectation and the standard deviation of the distribution. 
A random variable with a Gaussian distribution is said to be normally distributed and is called 
a normal deviate. 

If a random variable X follows the normal distribution, then we write: 

 

In particular, the normal distribution with μ = 0 and σ = 1 is called the standard normal 
distribution, and is denoted as N(0,1). It can be graphically represented as follows; 
 



 
This is a special case when μ = 0 and σ = 1, and it is described by this probability density function: 

                                                      

 

The distribution function  of the standard normal distribution, usually denoted with the capital Greek letter , 
is the integral 

                                          

Lecture-17 

Some Problems on Normal distribution. 

1. If X follows a normal distribution with mean 12 and variance 16, find . 

 Solution: Var(X)= 16 

Therefore, standard deviation = 4 

Let   

Therefore,  

When   



Hence,  

                               

                         = 1-  

 

2. If the weekly wage of 10,000 workers in factory follows normal distribution with mean wage 
Rs.70 and standard deviation Rs.5 respectively, find the number of workers whose weekly wage 
is between Rs. 66 and Rs.72.  

Given:  and   

Solution: let X be the random variable that corresponds to the weekly wage of a worker 

Let,  , therefore  

When   ,  

And when  ,  

Therefore,  

                                               

                                                

3.  The mean weight of 1000 students in an engineering college is 65 kg and standard deviation 
is 5 kg. Find the number of students having weight between 55 kg and 70 kg. Assume the weight 
of the students follow normal distribution. Given  

  

Lecture-18 

Combination of two independent random variables 

If X1 and X2 are two independent standard normal random variables with mean 0 and variance 1, 
then their sum and difference is distributed normally with mean zero and variance 
two: X1 ± X2 ∼ N(0, 2). 

 



Correlation Coefficient and Regression Lines: 

A correlation coefficient is a number that quantifies a type of  dependence and correlation, 
meaning statistical relationships between two or more values in fundamental statistics. 

Correlation Coefficient: 

__ __

1

1
cov( , )

( )

n

i i
i

x y x y

x y x y
x ynr or 

   



 


 

Regression line Y on X is 
__ __

( )y

x

Y y r X x



    

Regression line X on Y is 
__ __

( )x

y

X x r Y y



    

Example : If ,0.4, cov( , ) 10, 5 .y xfindr x y      

Ans.            

              

cov( , )

10
0.4

5

5

x y

x

x

x y
r

X

 










 

Example: Calculate the correlation coefficient and determine the regression lines 
of Y on X and X on Y for the sample 

X 8 10 5 8 9 

Y 1 3 1 2 3 

 

Ans:           

__

__

8 10 5 8 9
8

5
1 3 1 2 3

2
5

x

y

   
 

   
 

 

2 2 2 2 2
2 28 10 5 8 9

8 2.8
5x    

    



2 2 2 2 2
2 21 3 1 2 3

2 0.8
5y    

    

5

1

5 __ __

1

1 1
(8 1 10 3 5 1 8 2 9 3) 17.2

5 5

1
17.2 8 25

0.802
2.8 0.8

i i
i

i i
i

x y

x y X X X X X

x y x y
X

r
 





     




  




 

Therefore correlation coefficient =0.802 

Regression line Y on X is 

 

 

 

 

Regression line X on Y is  

__ __

( )

2.8
, 8 0.802 ( 2)

0.8
, 1.5 5

x

y

X x r Y y

or X x Y

or X Y




  

  

 

 

Lecture 19. 

Curve Fitting 

Least Squares Method: 

The least squares method is a form of mathematical regression analysis that finds the line of 
best fit for a dataset, providing a visual demonstration of the relationship between the data 
points. The linear fit that matches the pattern of a set of paired data as closely as possible. Out of 
all possible linear fits, the least-squares regression line is the one that has the smallest possible 
value for the sum of the squares of the residuals. 
 

__ __

( )

0.8
2 0.802 ( 8)

2.8
0.429 1.432

y

x

Y y r X x

Y x X

Y X




  

  

 



Linear Curve Fitting 

Example: Fit a linear equation to the following data 

X 2 4 6 8 10 

Y 2.3 2.6 2.9 2.10 2.12 

  

Ans:  

ix  iy  i ix X y  2
ix  

2 2.3 4.6 4 

4 2.6 10.6 16 

6 2.9 17.4 36 

8 2.10 16.80 64 

10 2.12 21.20 100 

30ix   12.02iy   70.4i ix X y   2 220ix   

 

Let the linear equation be y a bx  where a, b are constants. 

We get the normal equations as  

2

i i

i i i i

y na b x

x X y a x b x

 

 

 
  

 

Where n is the number of elements. 

Here n=5 

From the table we get 

12.02 5 30

70.4 30 220

a b

a b

 
 

 



Solving these two equations we get 

10.73

0.043

a

b




 

Therefore the fitted linear curve is 10.73 0.043y x  . 

Lecture 20. 

Example: Fit a parabola 2y a bx cx   using least square method for the following 

data 

X 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Y 1.1 1.3 1.6 2.0 2.7 3.3 4.1 

 

Ans:  

ix  iy  2
ix  i ix X y  3

ix  2
i ix y  4

ix  

1.0 1.1 1.0 1.1 1.0 1.1 1.0 

1.5 1.3 2.25 1.95 3.375 2.925 5.0625 

2.0 1.6 4.0 3.2 8 6.4 16.0 

2.5 2.0 6.25 5.0 15.625 12.5 39.0625 

3.0 2.7 9.0 8.1 27 24.3 81 

3.5 3.3 12.25 11.55 42.875 40.425 150.0625 

4.0 4.1 16.0 16.4 64 65.6 256 

17.5ix 
 

16.1iy 
 

2 50.75ix 
 

47.3i ix X y 
 

3 161.875ix 
 

2 153.25i ix y 
 

4 548.1875ix 
 

 

Using least square method, we get the normal equations as  



2

2 3

2 2 3 4

i i i

i i i i i

i i i i i

y na b x c x

x X y a x b x c x

x y a x b x c x

  

  

  

  
   
   

 

Where n is the number of observations. 

Here n=7 

From the above table we get, 

16.1 7 17.5 50.75

47.3 17.5 50.75 161.875

153.25 50.75 161.875 548.1875

a b c

a b c

a b c

  
  
  

 

Solving the above equations, using Gauss Elimination method, we get 

1.0571

0.20714

0.24286

a

b

c


 


 

Therefore the fitted parabola is 21.0571 0.20714 0.24286y x x    
 

Some Problems (MCQ) 
 

1. Four coins are tossed. Expectation of number of heads is 
             (a) 1                                                   (b)2 
             (c) 3                                                   (d)4 
2. A card is drawn at random from a well shuffled pack of 52 cards. The probability of getting a 
    heart or a diamond is  
             (a) 1                                                    (b)1/2 
             (c) 1/26                                               (d)3/13 

3. Let A, B be two events and P(A ) = 0.3, P(B) =0.4, P(AB ) = 0.5, then P(A+B ) =      
             (a) 0.5                                                   (b)0.8 
             (c) 1                                                      (d) None of these 

4. The probability that a leap year, selected at random, will contain 53 Sunday is  
             (a) 1/7                                                    (b)2/365 
             (c) 2/7                                                    (d) None of these 



5.  If A and B are two mutually exclusive events, then P(A+B) = 
           (a) P(A)+P(B)                                         (b) P(A) P(B)                                           
           (c) P(A) –P(B)                                        (d) None of these 

6. If P(A) = 1/2, P(B) = 1/3, P(AB) = ¼, then the value of  P(AB) is 
              (a) 6/7                                                    (b) 3/7 
              (c) 1                                                       (d) 7/12 

7. “ Two mutually exclusive events are always independent ”. This statement is  
               (a) true                                               (b) false 

8. If A is the complementary event of A, then   

            (a) P(A )=1-P(A)                                  (b) P(A )=P(A) 

            (c) P(A )=1+P(A)                                  (d) None of these 

9. An unbiased die is thrown. The probability that either an even number or a number greater  
    than 2 will turn up is   
              (a) 1/6                                                    (b) 2/3 
              (c) 5/6                                                    (d) None of these 

10. A man draw at random three balls from a bag containing 6 red and 5 green balls. The  
      probability of getting the balls all red is  
               (a) 6/11                                                    (b) 3/22 
               (c) 4/33                                                    (d) 1/6 

 

 

MODULE III 

Calculus of Complex Variable 

Lecture 21. 
 
 
COMPLEX POINT  

A collection of points in the complex plane (Argand plane)  is called a point set . So the  

complex point set is nothing but the set of some complex numbers. For example the set  

{ 1+2i , -1+6i , 0+3i } is a complex point set. 

 



Neighbourhood of a point. 

Let zo be a point of the complex plane. The set of all points z satisfying the inequality  

oz z <is called the neighbourhood of zo and is denoted by  oN z , . For example 

 N 1 2i,0.3 is a neighbourhood of the region inside the circle with centre  (1,2) and 

Radius 0.3 excluding the points on the circumference. 

If from the neighbourhood of a point zowe exclude the point zoitself then such a neighbourh 

hood is called the deleted neighbourhood of zo. and is represented by o0 z z   

and is denoted by No(zo,). 

Limit Point. 

A point zo is called a limit point of a set S if every neighbourhoodN(zo) contain at least one  

point of S other than zo.  

FuntionOf A Complex Variable 

When a symbol z takes any one of the values of a set of complex numbers then z is called a 

complex variable. 

Let D and R be any two non empty point sets in the complex plane. A complex variable w 

R is said to be the function of a complex variable z D ,if to every value of z corresponds  

oneor valus of w. Thus if w is a function of z , it is written as w = f(z). 

If z = x+iy and w = u + iv then u and v are both functions of real variable  and we may  

Write    w = f(z) = u(x,y) + i v(x,y) . Here D is called Domain and R is called range of f. 

Illustration  1. Consider the function f : S → C, given by f(z) = z2 and where 

 S = {z ∼C : |z| < 2} is the open disc with radius 2 and centre 0.  

Using polar coordinates, it is easy to see that the range of the function is the  

open disc f(S) = {w ∼ C : |w| < 4} with radius 4 and centre 0. 

Limits and Continuity. 



The concept of a limit in complex analysis is exactly the same as in real analysis.  

So, for example, we say that f(z) → L as z → zo, or  

oz z
lim f (z) L


  

if, given any > 0, there exists δ > 0 such that |f(z) − L| <  whenever 0 < |z – zo| < δ. 

Similarly, we say that a function f(z) is continuous at zo if f(z) → f(zo) as z → zo. A similar  

qualification on z applies if zo is a boundary point of the region S of definition of the  

function. We also say that a function is continuous in a region if it is continuous at every  

point of the region. 

Note that for a function to be continuous in a region, it is enough to have continuity at every  

point of the region. Hence the choice of δ may depend on a point zo in question. If δ can be  

chosen independently of zo, then we have some uniformity as well. 

Theorems on Continuity. 

Theorem 1. A necessary and sufficient condition of a function f(z) = u + iv to be continuous  

                    At z0 = x0 + iy0 is that u(x,y) and v(x,y) be continuous at (x0 , y0). 

Theorem 2. If the function f(z) and g(z) are defined in D and continuous at z = z0, then  

(i) pf(z) +qg(z)     (p , q are constants) 
(ii) f(z)g(z)  
(iii) f(z)/g(z)    if  g(z)  0  

are also continuous  at z = z0.  

Example 1.Prove that 
z 0

z
lim

z
 does not exist. 

Solution.Let  z = x+iy   then z  = x-iy  therefore  
z

z
= 

x iy

x iy




. 

Let  z0 along x axis . Then y=0 thus 
z 0

z
lim

z
= 

x 0
lim


x

x
= 1. 

Next  let z 0 along y axis then x=0  

                   Therefore 
z 0

z
lim

z
= 

y 0
lim


iy

y


= -1. 



                   Thus 
z 0

z
lim

z
has different values along different path.  

                   Hence   
z 0

z
lim

z
 does not exist.  

Example 2.   Test the continuity at origin of the following function 

f(z) = 
3

2 6

xy

x y
     for  z 0  

                            =   0                    for z 0  
Solution.    Let    f(z) = u(x,y) + iv(x,y) , Then 

u(x,y) = 
3

2 6

xy

x y
   ,  (x,y)  (0,0) 

                               =   0                       (x,y) = (0,0)  
v(x,y) =  0                  (x,y)  
                   Let (x,y) (0,0) along the curve  x=my3.  

                  Therefore, 
3 3

2 6 6 2(x,y) (0,0) y 0

my y m
lim u(x, y) lim

m y y 1 m 
 

 
 

                  Thus, 
(x ,y) (0,0)

lim u(x, y)


has different values for different values of m  

Hence ,
(x ,y) (0,0)

lim u(x, y)


does not exist .  Therefore u(x,y) is not continuous at  

                   (0,0). Consequently f(z) is not continuous at z= 0. 
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Differentiability 

A function w = f(z) defined in a certain domain D is said to be differentiable at z = zo if the 

Limit 
o

o

z z
o

f (z) f (z )
lim

z z




exists 

Theorem 1. If f(z) = u(x,y) + iv(x,y) is differentiable then u and v are also differentiable . 

                   Moreover, /f (z)= ux+ivx  and /f ( z )  = -iux + vy.  

Proof. /f ( z ) = 
Z 0

lim
 

f ( z z ) f (z )

z

  


. 

            Here z  0  along any path .  Let z h 0  along real axis . Then  

/f (z)= 
Z 0

f (z h) f (z)
lim

h 

 
 



         = 
   

h 0

u(x h, y) iv(x h, y) u(x, y) iv(x, y)
lim

h

    
 

         = 
 

h 0

u(x h, y) u(x, y) v(x h, y) v(x, y)
lim i

h

   
 

 
 = ux + ivx 

     Next let z 0  along imaginary axis  i.e, z = ik  and k 0  

         Then, /f (z)= 
k 0

f (z ik) f (z)
lim

ik

 
 

        = 
k 0
lim


   u(x, y k) iv(x, y k) u(x, y) iv(x, y)

ik

    
 

        = 
k 0
lim


 u(x, y k) u(x, y)

ik

 
+ i

k 0
lim


v(x,y k) v(x, y)

ik

 
 

        = -I 
k 0
lim


 u(x, y k) u(x, y)

k

 
 + 

k 0
lim


v(x,y k) v(x, y)

k

 
= -iuy+vy 

Theorem 2. If a function is differentiable at a point , then it is continuous at that point.  
Proof.          Left as an exercise 
 
 

Analytic Functions 

If a function f(z) be such that /f (z)  exists at every point of the domain D then f(z) is said 

to be analytic in D  

Cauchy Riemann  conditions 

The necessary  conditions for w = f(z) = u(x,y) + iv(x,y) is analytic at any point z = x+iy 

Of its domain D is that the four partial derivatives 
u

x




, 
v

x




, 
u

y




, 
v

y




should exist and 

u

x




= 
v

y




 and 
u

y




= -
v

x




 

Example3.  For the function defined by f(z) = xy  show that the Cauchy Riemann  

Equation are satisfied at (0,0) but the function is not differentiable and analytic at that  
Point. 
Solution. Let f(z) = u(x,y) + iv(x,y). 

                  Then u(x,y) = xy  and  v(x,y) = 0  

                  Now at the origin,  
u

x




= 
x 0

u(x,0) u(0,0)
lim

x


= 

x 0

0 0
lim

x


= 0 



u

y




=
y 0

u(0, y) u(0,0)
lim

y


= 

x 0

0 0
lim

y


 = 0 

Similarly 
v

x




= 0     ,    
v

y




= 0    

Hence Cauchy Riemann equation is satisfied at origin. 

Again /f (0) = 
z 0

f (z) f (0)
lim

z


= 

(x,y) 0

xy
lim

x iy 
. 

Let z 0 along the straight line y=mx. Then  

/f (0) = 
2

x 0

mx
lim

x imx 
=

m

1 im
 which have different values for different m. Hence  

/f (0) does not exist. Thus the function is not differentiable at the origin. 
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Laplace’s Equation  

A partial differential equation of the form 
2

2

f

x




+ 
2

2

f

y




=0 is called Laplace’s Equation 

Harmonic Function   
A function f(x,y) which possesses continuous partial derivatives of first and second orders  
And satisfies Laplace Equation is called Harmonic function.  
Conjugate Harmonic Function  
If the two harmonic functions u(x,y) and v(x,y) satisfy the Cauchy Riemann equations then  
they are called Conjugate harmonic functions 
 
Construction of analytic functions 
 
Milne Thomson Method: 
Letf(z) = u+iv be an analytic function where u, v are conjugate harmonic . If one these  
Say u is given then determination of f(z) directly without finding v is due to milne Thomson  
Example 4.  Prove that u = x3-3xy+3x2-3y2+1 is a harmonic function and determine the 
corresponding analytic function u+iv. 

Solution. Here u = x3-3xy+3x2-3y2+1 then 
u

x




= 3x2-3y2+6x  and
2

2

u

x




= 6x+6 

u

y




= -6xy-6y,   
2

2

u

y




= -6x-6 

Thus 
2

2

u

y




+
2

2

u

x




= 0  and hence u is a harmonic function.  

Let 
u

x




= 1 (x, y)  ,  
u

y




= 2 (x, y)  

1 (x, y) = 3x2-3y2+6x    and   2 (x, y)  = -6xy-6y   



Therefore By milne’s method we have  
/f (z) = 1 (z,0) -i 2 (z,0)  = (3z2+6z)-i.0,       

Integrating we get       f(z) = z3+3z2+c  where c is an arbitrary constant. 
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COMPLEX INTEGRATION  
Curve represented by a complex variable  
Let z = x+iy be a complex variable. Since a fixed z represents a point (x,y) in Argand 
Plane, so as z varies the point (x,y) moves on the plane and makes a locus or a curve. 
We say this curve, say C is represented by the complex variable z.  
Parametric Representation  
 Let z = x+iy be a complex variable. If x (t)  and y (t)   

Where t is a real variable then there is a relation between x and y . This relation gives a  
Curve , C (say)  
Then we say z (t) i (t)    gives the curve C , t is a parameter.  

Simple Curve. 
A curve C is called simple if it does not intersect itself. So a curve C : z (t) i (t)     

Is simple if 1 2t t implies 1 2z(t ) z(t ) .  

Closed Curve. 
A simple curve is called closed if the two end points of the curve coincide   
Smooth Curve. 
A curve C is called smooth if it possess unique tangent at every point. 
Contour or Piecewise smooth curve. 
A curve is called contour or piecewise smooth if it is comprised of a finite  
number of smooth curves. 
 
Cauchy’s Theorem. 

Let f(z) be an analytic function and /f (z) is continuous at each point within the domain  

D bounded by a closed contour C. Then, 

c

f (z)dz 0
 

Proof. Let f(z) = u(x,y) + iv(x,y). 

As  f(z) is an analytic function , so by Cauchy Riemann condition, 

      We have      
u v

x y

 


 
 , 

u v

y x

 
 

 
 

Also  f/(z) is continuous and as  / u v v u
f (z) i i

x x y y

   
   
   

. 



So u, v and their partial derivatives 
u

x




,
u

y




, 
v

x




, 
v

y




 are all continuous within and on C. 

So Greens theorem can be applied. 
c c

f (z)dz (u iv)(dx idy)      

            = 
c

(udx vdy) i(vdx udy)    = 
c c

(udx vdy) i (vdx udy)      

            = 
D

v u
dxdy

x y

  
    

  +  
D

u v
i dxdy

x y

  
   

      , by Greens Theorem 

           = 
D

u u
dxdy

y y

  
   

  +  
D

u u
i dxdy

x x

       

=  0 +i.0 
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Cauchy Goursat Theorem. 
Let f(z) be analytic function within and on a  simple closed contour C. Then  

C

f (z)dz 0  

Formula 1.
C

dz
0

z


  if C is any simple closed curve and z   is an exterior point of C 

 As  z    is an exterior point of C so 
1

f (z)
z


 

 is an analytic function        

Everywhere within and on C. Hence by Cauchy’s theorem 
C

f (z)dz 0  

i.e, 
C

dz
0

z


  . 

Formula 2.
C

dz
2 i

z
 

   , if C is any simple closed curve and z    is an interior point of C 

Formula 3.
n

C

dz
0

(z )


   ,          n = 2,3,4,…….. 

                           Where   is an interior point of any simple closed curve C. 
                          As in formula 1 we can write  

n
C

dz

(z )


 
1

n
C

dz

(z )  where C1 is a circle lying within C and the equation  

Of the circle C1 is z      

On the circle   z     , 



We have, iz (cos isin ) e           

i.e,  iz e      where   varies from 0 to 2  

Therefore   idz ie d   . 

Thus 

1

n
C

dz

(z )  = 

2i (1 n)i2

n in n 10
0

i e i e

e (1 n)

  

 

 
     

 = 0. 

Hence, 
n

C

dz

(z )  =0       n = 2,3,…….. 
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Cauchy Integral Formula  
 
Theorem 1. If f(z) is analytic within and on a simple closed curve C and   is any point  

within C. Then
C

1 f (z)
f ( ) dz

2 1 z
 

   . 

Proof.  As 
f (z)

z  
is analytic everywhere within C except at  z   , we draw a circle C1 

With centre at z    and radius r so that C1 lies wholly within C. Then 
f (z)

z  
 is analytic  

Within the annular region bounded by C and C1 .Hence , 

C

f (z)
dz

z


 
1C

f (z)
dz

z   .  Now the equation of the circle C1 is z r    thus 

iz re    where  varies from 0 to 2  

            Therefore idz rie d   

            Thus   

1C

f (z)
dz

z   =  
2 i

i
i

0

f ( re )
rie d

re

 




 
  

Now taking limit as r 0  on both sides of above equation we have, 

1C

f (z)
dz

z    = 
2

i

r 0
0

i lim f ( re )d





   = if ( )

2

0

d 2 if ( )


     

Hence f ( ) = 
C

1 f (z)
dz

2 i z   . 

NOTE : When   is an exterior point of C then 
f (z)

z  
is analytic within and on C.   



So by Cauchy’s theorem  
C

f (z)
dz

z   = 0  
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Cauchy Integral Formula  
 
Theorem 2. If f(z) is analytic within and on a closed curve C , then the derivative of f(z) at an  

                          Interior point   of C is given by /f ( ) 
2

C

1 f (z)

2 i (z )   dz . 

Theorem 3. If f(z) is analytic within and on a closed curve C , then the  nth order derivative of  
f(z) at any interior point   of C is given by  

nf ( ) 
n 1

C

n! f (z)
dz

2 i (z )    . 

  ILLUSTRATIVE EXAMPLES  

Example 1.  Evaluate 
z

C

e
dz

(z 1)(z 2)   Where C is the circle z 1 4  . 

Solution.  Here f(z) = ez is analytic within and on the circle z 1 4   and z = -1, -2 are the 

interior  

                  Points of C. Now 
1

(z 1)(z 2) 
= 

1 1

z 1 z 2


 
.  

                  Therefore 
z

C

e
dz

(z 1)(z 2)  = 
z

C

e
dz

(z 1)
z

C

e
dz

(z 2)


  

= 1 22 i e 2 i e      , by Cauchy’s integral formula 

                                                                            = 2 i ( 1e - 2e ). 
 

Example2. Evaluate 
C

sin3z 2cosz
dz

(z )
2





  if C is the circle z 5  

Solution.  Here f(z) = sin3z +2cosz is analytic within and on the circle z 5  and z
2


 lies  

                Inside the circle C. Hence by Cauchy integral formula  

C

sin3z 2cosz
dz

(z )
2





  = 2 i(sin3( ) 2cos( ))

2 2

 
  = 2 i(1 2.0)  = 2 i . 



Example 3. Evaluate 
3

3C

cos z
dz

(z )
4




 where C is the circle z 1 . 

Solution. Let f(z) = 3cos z  which is analytic within and on C . Also z
4


 lies inside the circle 

C . 

                Hence by Cauchy’s integral formula ''f ( ) 
3

C

2! f (z)
dz

2 i (z )   . 

               We get ''f ( )
4


 1

i

3

3C

cos z
dz

(z )
4




 .  

               Now 
3

3C

cos z
dz

(z )
4




 = 2 3i(6cos sin 3cos )
4 4 4

  
   

                                                      = 
3 2 i

4


. 
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Taylor’s Theorem  

Let f(z) be analytic at all points within a circle C0 with centre z0 and radius r0. Then for every point z  

within C0 , we have     

      
/ /

/ 20 0
0 0 0 0 0

( ) ( )
( ) ( ) ( )( ) ( ) ..... ( ) ...

2! !

n
nf z f z

f z f z f z z z z z z z
n

          

               =  0
0 0

1

( )
( ) ( )

!

n
n

n

z z
f z f z

n






 . 

If we put z0 = 0 in the above series  we get , 

1

( )
( ) (0) (0)

!

n
n

n

z
f z f f

n





  , which is known as Maclaurin’s series  

Example 1. Find the Taylor’s expansion of    
2

1
( )

( 1)
f z

z



 about the point  z = -i    

Solution. To expand  f(z)  about  z  =  -i  in powers  of  z+i      put  z+i = t . Then      



                
2 3

2 2
2 2 3

1 2 3 4
( ) (1 ) [1 ] 1 ...

( 1) 1 2 1 (1 ) (1 )

t i t t t
f z i

t i i i i i
   

               
 

                          = 
1

( 1)( )
1 ( 1)

2 (1 )

n
n

n
n

i n z i

i





  
   
  

 
Laurent’s Series. 
If a function f(z) is analytic in the annulus (ring shaped) region D bounded by two concentric circles  
C1 and C2 with the centre at the point z    and radius r1 and r2. (r1>r2), then for all z In D , 

f(z) = 
n n

n n
n 0 n 1

a (z ) b (z )
 



 

      .  

Where na = 

1

n 1
C

1 f (z)
dz

2 i (z )    , n= 0,1,2… 

And    nb = 

2

n 1
C

1 f (z)
dz

2 i (z )     , n= 1,2,…  

Example 1. Expand the function f(z) = 
2z 1

(z 2)(z 3)


 

 when (i) z 2  (ii) 2 z 3   and (iii) 

z 3  

Solution.  Let f(z) = 1+ 
A

z 2
+

B

z 3
. 

Then  z2-1 = (z+2)(z+3)+A(z+3)+ B(z+2). 

Putting  z = -2 , -3 we get A = 3, B =-8.    Therefore  f(z) = 1 + 
3

z 2
8

z 3



. 

When z 2 , 

f(z) = 1+ 
3

z 2
8

z 3



= 1+

1
3 z

1
2 2


  
 

1
8 z

1
3 3


   
 

 

= 1+ 
3

2

2

2

z z
1 ...

2 2

 
   

 

2

2

8 z z
1 ...

3 3 3

 
    

 
 

= 1 + 
3

2
n n

n 0

z
( 1) ( )

2





 8

3
 n n

n 0

z
( 1) ( )

3





 .  

Example 2.Find the Laurent’s series of the function 
 

z

3

e

z 2
about the point z=2. 

Solution. Let  z-2 = u then  z = u +2. 



                   Therefore, 
 

z

3

e

z 2
= 
 

u 2

3

e

u



= 
 

2 2 3

3

e u u
1 u ...

2! 3!u

 
    

 
 

                                                        = 2
3 2

1 1 1 1 1 1
e . u .....

2! u 3! 4!u u
      
 

 

                                                        = 
2 2

3 2

e e 1 1 1 1
(z 2) ...

2! z 2 3! 4!(z 2) (z 2)
     

   
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Zero and Singularities of an Analytic Function. 
Definition. A point z = a is said to be a zero of an analytic function f(z) if  f(a) = 0. 
Order of zero. If f(z) is analytic in domain D and aD then a is called zero of  f(z) of  
                    Order m if  f(a) = /f (a) = / /f (a) =………= m 1f (a) = 0 but mf (a)   0.  

       Thus from Taylors theorem f(z) = 
n

n
n m

a (z a)




 if a is mth order 0 of f(z) . 

 
Singularities of an Analytic function  
If a function f(z) is not analytic at the point z = a, then a is called the singularity or singular  
Point of f(z) .  
Isolated and Non isolated singularity. 
A singularity z = a of a function f(z) is said to be an isolated singularity if there is no other  
Singularity within a small neighbourhood of z = a.  
If a singularity z = a of a function f(z) is not isolated then it is called non isolated singularity. 
 ILLUSTRATION 

1. The function f(z) = 
1

z 1
 is analytic everywhere except at z = 1. So z = 1 is the only  

Singularity of f(z). As the function f(z) has no other singularity, so z=1 is an isolated singularity.  

2. The function f(z) = cot
z


= 

cos
z

sin
z




 is not analytic at z = 0 and at the points where sin

z


= 0  

i.e.
z


= n ,  n = 0,1,-1,2,-2,3,-3,….   I.e.  z = 

1

n
 , n = 1,2,3,…. 

 

Essential Singularity and Pole  
 
Principal Part of an Analytic Function. 



Let   be an isolated singularity of an analytic function f(z) in a domain D. Now we draw a  
circle C1 with center at z =   and radius as small as we please and another large concentric  
circle C2 if any radius lying wholly within D. Then f(z) is analytic within the annular region 
between these two circles. Hence by Laurent’s theorem, we have , 

f(z) = 
n n

n n
n 0 n 1

a (z ) b (z )
 



 

      .  

The second term in  RHS  is called the principal part of f(z) at the point  z =  .  
 
Essential Singularities. 
If the principal part of f(z)  (at the isolated singularity  ) contains an infinite no of terms, then 
The singularity z =   is called an essential singularity. 
Pole 
If the principal part of f(z) contains a finite number of terms say m, then the singularity z =   
Is called  a pole of order m. In this case the Laurent’s series of f(z) is of the form  

       
n 1 2 m

n 2 m
n 0

b b b
f (z) a z .....

z z z





      
    

  , mb 0  

When m = 1 pole is said to be a simple pole. 
ILLUSTRATION. 

1. As f(z) = 
1

ze = 
2 3

1 1 1 1 1
1 ...

z 2! 3!z z
     contains an infinite number terms in negative 

power of z,  

              So z = 0 is an essential singularity.  

2. The function f(z) =   3 5
4 4

sin(z a) 1 1 1
z a (z a) (z a) .....

3! 5!(z a) (z a)

            
 

                                      = 
3

1

(z a)
1 1

(z a) (z a)
3! 5!

     31
(z a)

7!
 +……contains only two  

terms in negative power of z-a,  so z = a is a pole of order 2. 
 
Theorem 1. If an analytic function f(z) has a pole of order m at z = a then 1/f(z) has a 
 Zero of order m at z = a. 
Theorem 2. The limit point of the set of all poles of a function f(z) is a non isolated 
Essential singularity. 
Theorem 3. The limit point of zeroes of a function f(z) is an isolated essential  
singularity. 
ILLUSTRATION 
Example 1. Find out the zeroes and discuss the nature of the singularities of  

F(z) = 
2

z 2 1
sin

z 1z




 

Solution. Poles of f(z) are given by putting the denominator equal to zero i.e. z2 = 0  
So z = 0 is a pole of order 2. 



Again the zeroes of  f(z) are given by equating to zero the numerator of  f(z)  

i.e. (z-2)
1

sin
z 1

= 0   or  z - 2 = 0 and 
1

sin
z 1

= 0  

Now z = 2 and 
1

sin
z 1

= 0 gives 
1

z 1
= n       i.e. z = 1+ 

1

n
 

Thus all zeroes of f(z) are given by z = 2, 1 + 
1

n
  where n = 1,-1,2,-2,3,-3….. 

Also the limit point of zeroes given by  z = 1 + 
1

n
(n = 1,2,3,….) is z =1 . Hence z =1 is an isolated  

essential singularity.  
 
Example 2. Find the Laurent series about the indicated singularity for the function  

F(z) = 

2z

3

e

z
, z = 0  

Solution  f(z) = 

2z

3

e

z
= 

2 2 2 3
2

3

1 (z ) (z )
1 z .....

2! 3!(z)

 
   

 
 

                                    = 
3

1

z
+

1

z
+ 

z

2!
+

3z
.

3!
……. 

   As the highest power of 
1

z
 in the Laurent series is 3 , so z= 0 is a pole of order 3.  
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Residue Theorem  

Let   be an isolated singularity of an analytic function f(z). Then by Laurents Theorem , 

We have f(z) = 
n n

n n
n 0 n 1

a (z ) b (z )
 



 

      .  

Where na = 

1

n 1
C

1 f (z)
dz

2 i (z )    , n= 0,1,2… 

And    nb = 

2

n 1
C

1 f (z)
dz

2 i (z )     , n= 1,2,…  

The coefficient b1 of 
 

1

z  
in the above infinite series is called the residue of f(z) at the  

Singularity z =    and is denoted by  Res( ) . 
 
ILLUSTRATION  

Consider the function f(z) = 
 2

1

z 1 (z 2) 
.    Here  z = -1 , 2  are the singularities of f(z)  

Now f(z) = 
2

1

t (t 1 2) 
 by putting  z + 1 = t . 



                 = 
2

1

3t


1
t

1
3


  
 

 

                 = 
2

1

3t


2t t
1 ...

3 9

 
   

 
 

                = 
2

1

3t


1 1

9 t


1

27
 -….. 

               = 
2

1

3(z 1)



1 1

9 (z 1)



1

27
 -…. 

So the coefficient of  
1

(z 1)
 is 

1

9
  

Hence the residue at z = -1 is  
1

9


 
Theorem. Let   be a pole of f(z) of order m . Then the residue of f(z) at z =  is given by 

m 1
m

m 1z

1 d
lim (z ) f (z)

(m 1)! dz




   

 

 
Cauchy Residue Theorem  
 
Let f(z) be analytic within and on a closed contour C except at a finite number of  
Singularities a1 , a2,…an and let R1 , R2,…Rn be respectively the residues of f(z)  

at these poles. Then , 1 2 n

c

f (z)dz 2 i(R R .....R )    . 

Illustration  
Ex 1. Use Cauchy Residue theorem to prove that  

3
C

z cos z
dz 2 i

z
2

  
  

 

 where C is the circle z 1 1   

Sol. Let f(z) = 
3

z cos z

z
2

  
 

 

       The Poles of f(z) is given by 
3

z
2

  
 

= 0  i.e.  z = 
2


 which is a pole of order 3 and lies within  

the circle z 1 1  . Hence by Cauchy’s residue theorem we have  
C

f (z)dz 2 i Res
2

    
   

     Now Res
2

 
 
 

= 
2

3
2

z
2

1 d
lim (z ) f (z)

(3 1)! 2dz


    
 

                                = 
z

2

1
lim( 2sin z z cos z)

2 


  = -1 



   Therefore 
C

f (z)dz 2 i( 1)    

Hence 
3

C

z cos z
dz 2 i

z
2

  
  

 

 . 

Ex 2. Evaluate  
2

C

z 1
dz

z 2z


  where C is the circle z 5  

Sol.  Left as an exercise. 
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CONFORMAL  MAPPING 

 
Transformation or Mapping  
 
Consider the complex valued function  w = f(z). Then corresponding to each point z0, we  
have a point w0 in the complex plane such that f(z0) = w0. Let z = x + iy and w = f(z) = 
u + iv. Then u = u(x,y) , v = v(x,y) represent a mapping which establish a correspondence  
between the points (x,y) in the x-y plane i.e. z plane and the points (u,v) in the uv-plane  
i.e.w plane. Here using the above mapping, a curve or a region of z plane transformed  
into another curve or a region of w plane.  
IsogonalMapping: A mapping is said to be isogonal if two curves in the z plane 
intersecting at the point z0 at an angle  are transformed into two corresponding curves in  
the w-plane intersecting at the point w0 which corresponds to z0 at the same angle under  
the mapping.  

Conformal Mapping : An isogonal mapping w = f(z) = u + iv is said to be conformal if 
The sense of rotation as well as the magnitude of the angle is preserved  
Theorem 1. If a function f(z) is analytic and /f (z) 0 in a region D of the z plane then the  
mapping w = f(z) is conformal at all points of D. 
Illustration. Consider the function f(z) = ez. Here ez is analytic everywhere in the finite z  
plane and /f (z) 0 for all z, so the mapping w = ez is conformal everywhere in the finite z  
plane.  
Some special Transformation  
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The Bilinear Transformation or Mobius Transformation  

A transformation of the form 
az b

w
cz d





where a, b, c, d are constants and ad-bc  0. Is  

Called bilinear transformation. The transformation  can also be written as  cwz – az + wd –b = 0 



Which is linear both in w and z and hence the name bilinear. Now 
2

dw ad bc
0

dz (cz d)


 


 

Everywhere except at z =   and f(z) = 
az b

cz d




 is analytic except when cz + d = 0 i.e. z = -
d

c
.  

So the transformation is conformal everywhere in the finite z plane except at z = -
d

c
. 

Illustration. 

The transformation w = 
2z 5

z 4




 is bilinear as  2x4-1x(-5) = 13 0  Now 
dw

dz
= 

2

13

(z 4)
0  

Everwhere except at z =   and f(z) = 
2z 5

z 4




 is analytic everywhere except at z = -4. So the 

transformation is conformal everywhere in finite z plane except at z = -4. 
Fixed Point of a Bilinear Transformation  
When a point coincides with its image under a bilinear transformation, the point is called  
A fixed point or an invariant point. 
Theorem1: A bilinear transformation having exactly one fixed point is of the form  

1 1
k

w p z p
 

 
where k 0  and p is the fixed point.  

This transformation is also known as parabola transformation.  
Theorem 2 : A bilinear transformation having exactly two fixed points is of the form  
w p z p

k
w q z q

 


 
where k 0  1, p and q are fixed points  

This transformation is also called elliptic if k = 1  and hyperbolic if k is real. 

The above two form are known as normal or canonical form of bilinear transformation.  
Illustaration 

Ex 1. Consider the transformation w = 
3z 4

z 1




 

For a fixed point we have w = z .Therefore  z = 
3z 4

z 1




 

Z2 – z  = 3z – 4  implies (z-2)2 = 0  thus z = 2.  
So z = 2 is the only fixed point.  

Now  w – 2 = 
3z 4

z 1




 - 2 = 
z 2

z 1




  Thus ,  

Thus 
1

w 2
= 

z 1

z 2




= 
1

z 2
 + 1   which is the normal form of the transformation and is called  

parabolic. 
 
Theorem 3. The bilinear transformation which maps the points z1, z2 ,z3 of the z plane into  
the points w1 , w2. w3 of the w plane respectively is 

1 2 3 1 2 3

3 2 1 3 2 1

(w w )(w w ) (z z )(z z )

(w w )(w w ) (z z )(z z )

   


   
. 

Illustration : 
The bilinear transformation which maps the points z = 2, I, -2. Into the points  w =1, I , -1. Is given by  



(w 1)(i 1) (z 2)(i 2)

(w 1)(i 1) (z 2)(i 2)

   


   
 

2 2

2 2

(w 1)(i 1) (z 2)(i 2)

(w 1)(i 1) (z 2)(i 4)

   


   
 

(w 1) (z 2) 3i 4
( i) x

(w 1) (z 2) 5

  
 

  
 Using componendo and dividendo we get  

w = 
3z 2i

iz 6




.     

Theorem 4: The bilinear transformation 
az b

w
cz d





where a, b, c, d are  realconstants and ad-bc> 

0 maps the upper half of the z plane into the upper half of w plane  and conversely.  
 

Ex. 1 Show that the line 
x

y
3

 is mapped onto the circle under the bilinear transformation  

W = 
(iz 2)

(4z i)




. Find the centre and the radius of the image circle.  

Soln.  The transformation W = 
(iz 2)

(4z i)




. Can be written as  z = 
2 iw

4w i




.  

Putting z = x +iy , w = u +iv  we get  

x +iy = 
2 2

2 iu v (v 2 iu){4u i(4v 1)}

4u 4iv i (4u) (4v 1)

     


   
 

                                       = 
2 2

2 2

9u i(4u 4v 7v 2)

16u (4v 1)

   
 

 

Therefore      x = 
2 2

9u

16u (4v 1) 
      ,       y = 

2 2

2 2

(4u 4v 7v 2)

16u (4v 1)

   
 

 

So the line 
x

y
3

 i   corresponds to 
2 2

2 2

(4u 4v 7v 2)

16u (4v 1)

   
 

 = 
2 2

1 9u

3 16u (4v 1) 
 

i.e. 2 2 3 7 1
u v u v

4 4 2
    = 0    which is the equation of the circle with  centre

3 7
,

8 8

  
 
 

 

and radius  
10

3
8

 in uv plane .  

Ex 2.  Find the bilinear transformation which maps z = i, 1, -1 onto w = 1, 0,   respectively. Also  

Show that the unit circle z 1 in z plane maps into the real axis of w plane. 

Soln. Let the bilinear transformation be 1 2 3 1 2 3

3 2 1 3 2 1

(w w )(w w ) (z z )(z z )

(w w )(w w ) (z z )(z z )

   


   
. 

Where z1 = I ,  z2 = 1 ,  z3 = -1, w1 = 1, w2 = 0, w3 =   



 As w3 =   so formula can be written as 

2
1

3

2 1
3

w
(w w ) 1

w

w
1 (w w )

w

 
  

 
 

  
 

= 1 2 3

3 2 1

(z z )(z z )

(z z )(z z )

 
 

 

i.e.
 

 
(w 1) 0 1 (z i)(1 1)

0 1 (0 1) (z 1)(1 i)

   


   
 

or,  
1 z

w i
1 z

    
      which is the required transformation.  

Now let     w = u +iv   ,      z = x +iy , 

Therefore       u +iv  =
1 x iy

i
1 x iy

  
   

= 
2 2

2y

(1 x) y 

2 2

2 2

x y 1
i
(1 x) y

 


 
 

Thus  v = 
2 2

2 2

x y 1
i
(1 x) y

 


 
  therefore when 2 2x y 1   i.e. z 1 ithen v = 0.  

 
Module IV 

(Partial Differential Equation (PDE) &  
Series Solution Of Ordinary Differential Equation (ODE)) 
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Basic Concepts of PDE 
 
Origin of PDE: 
 
 With the knowledge of functions of several variables and the concept of a partial derivative, one can 
generalize the concept of a differential equation to include equations that involve partial derivatives, not 
just ordinary ones.  Solutions to such equations will involve functions not just of one variable, but of 
several variables.  Such equations arise naturally, for example, when one is working with situations that 
involve positions in space that vary over time.  To model such a situation, one needs to use functions that 
have several variables to keep track of the spatial dimensions and an additional variable for time. 
Partial differential equations are ubiquitous in science, as they describe phenomena such as fluid flow, 
gravitational fields, and electromagnetic fields. They are important in fields such as aircraft simulation, 
computer graphics, and weather prediction. The central equations of general relativity and quantum 
mechanics are also partial differential equations. 
 
Examples of some important PDEs: 

(1) 
2

2
2

2

2

x

u
c

t

u








   One-dimensional wave equation 

(2) 
2

2
2

x

u
c

t

u








   One-dimensional heat equation 



(3) 0
2

2

2

2









y

u

x

u
  Two-dimensional Laplace equation 

(4) ),(
2

2

2

2

yxf
y

u

x

u









  Two-dimensional Poisson equation 

Note that for PDEs one typically uses some other function letter such as u instead of y, which now quite 
often shows up as one of the variables involved in the multivariable function.  
 
Order and Degree: 
 
In general we can use the same terminology to describe PDEs as in the case of ODEs.  For starters, we 
will call any equation involving one or more partial derivatives of a multivariable function a partial 
differential equation.  The order of such an equation is the highest order partial derivative that shows up 
in the equation.  In addition, the equation is called linear if it is of the first degree in the unknown function 
u, and its partial derivatives, ux, uxx, uy, etc. (this means that the highest power of the function, u, and its 
derivatives is just equal to one in each term in the equation, and that only one of them appears in each 
term).  If each term in the equation involves either u, or one of its partial derivatives, then the function is 
classified as homogeneous.   
Take a look at the list of PDEs above.  Try to classify each one using the terminology given above.  Note 
that the f(x,y) function in the Poisson equation is just a function of the variables x and y, it has nothing to 
do with u(x,y). 
Answers:  All of these PDEs are second order, and are linear.  All are also homogeneous except for the 
fourth one, the Poisson equation, as the f(x,y) term on the right hand side doesn’t involve u or any of its 
derivatives.  
The reason for defining the classifications linear and homogeneous for PDEs is to bring up the principle 
of superposition.  This excellent principle (which also shows up in the study of linear homogeneous 
ODEs) is useful exactly whenever one considers solutions to linear homogeneous PDEs.  The idea is that 
if one has two functions, 1u and 2u  that satisfy a linear homogeneous differential equation, then since 
taking the derivative of a sum of functions is the same as taking the sum of their derivatives, then as long 
as the highest powers of derivatives involved in the equation are one (i.e., that it’s linear), and that each 
term has a derivative in it (i.e. that it’s homogeneous), then it’s a straightforward exercise to see that the 
sum of 1u and 2u  will also be a solution to the differential equation.  In fact, so will any linear 

combination, 21 buau  , where a and b are constants.   

For instance, the two functions )cos(xy  and )sin(xy  are both solutions for the first-order linear 
homogeneous PDE:  

(5) 0







y

u
y

x

u
x  

It’s a simple exercise to check that )sin()cos( xyxy   and )sin(2)cos(3 xyxy   are also solutions to the 

same PDE (as will be any linear combination of )cos(xy  and )sin(xy ) 
This principle is extremely important, as it enables us to build up particular solutions out of infinite 
families of solutions through the use of Fourier series. 
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Solution PDEs: 



 
Solving PDEs is considerably more difficult in general than solving ODEs, as the level of complexity 
involved can be great.  For instance the following seemingly completely unrelated functions are all 
solutions to the two-dimensional Laplace equation: 

 (1) 22 yx  ,    )cos(ye x  and   )ln( 22 yx   
You should check to see that these are all in fact solutions to the Laplace equation by doing the same 

thing you would do for an ODE solution, namely, calculate 
2

2

x

u




and 
2

2

y

u




, substitute them into the PDE 

equation and see if the two sides of the equation are identical. 
 

Now, there are certain types of PDEs for which finding the solutions is not too hard.  For instance, 
consider the first-order PDE 

 (2) 223 xyx
x

u





 

where u is assumed to be a two-variable function depending on x and y.  How could you solve this PDE?  
Think about it, is there any reason that we couldn’t just undo the partial derivative of u with respect to x 
by integrating with respect to x?  No, so try it out!  Here, note that we are given information about just 
one of the partial derivatives, so when we find a solution, there will be an unknown factor that’s not 
necessarily just an arbitrary constant, but in fact is a completely arbitrary function depending on y.   
To solve (2), then, integrate both sides of the equation with respect to x, as mentioned.  Thus 

(3)  



dxxyxdx
x

u
)3( 22  

so that Fyxxyxu  223

2

1
),( .  What is F?  Note that it could be any function such that when one 

takes its partial derivative with respect to x, the result is 0.  This means that in the case of PDEs, the 
arbitrary constants that we ran into during the course of solving ODEs are now taking the form of whole 
functions.  Here F, is in fact any function, F(y),of y alone.  To check that this is indeed a solution to the 
original PDE, it is easy enough to take the partial derivative of this ),( yxu  function and see that it indeed 
satisfies the PDE in (2).   
Now consider a second-order PDE such as  

(4) 2
2

5 yx
yx

u





 

where u is again a two-variable function depending on x and y.  We can solve this PDE by integrating first 
with respect to x, to get to an intermediate PDE, 

(5) )(
2

5 22 yFxyx
y

u



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where F(y) is a function of y alone.  Now, integrating both sides with respect to y yields  

(6) )()(
3

1

2

5
),( 32 xGyFxyyxyxu   

where now G(x) is a function of x alone (Note that we could have integrated with respect to y  first, then x 
and we would have ended up with the same result).  Thus, whereas in the ODE world, general solutions 
typically end up with as many arbitrary constants as the order of the original ODE, here in the PDE 
world, one typically ends up with as many arbitrary functions in the general solutions. 
To end up with a specific solution, then, we will need to be given extra conditions that indicate what these 
arbitrary functions are.  Thus the initial conditions for PDEs will typically involve knowing whole 



functions, not just constant values.  We will also see that the initial conditions that appeared in specific 
ODE situations have slightly more involved analogs in the PDE world, namely there are often so-called 
boundary conditions as well as initial conditions to take into consideration. 
 

Introduction to different methods of solution of PDEs: 
 
Linear PDEs are generally solved, when possible, by decomposing the equation according to a set of basis 
functions, solving those individually and using superposition to find the solution corresponding to the 
boundary conditions. The method of separation of variables has many important particular applications. 
There are no generally applicable methods to solve non-linear PDEs. Still, existence and uniqueness 
results (such as the Cauchy-Kovalevskaya theorem) are often possible, as are proofs of important 
qualitative and quantitative properties of solutions (getting these results is a major part of analysis). 
Nevertheless, some techniques can be used for several types of equations. The h-principle is the most 
powerful method to solve underdetermined equations. The Riquier-Janet theory is an effective method for 
obtaining information about many analytic overdetermined systems. 
The method of characteristics can be used in some very special cases to solve partial differential 
equations. 
In some cases, a PDE can be solved via perturbation analysis in which the solution is considered to be a 
correction to an equation with a known solution. Alternatives are numerical analysis techniques ranging 
from finite difference schemes to multigrid, finite element  and finite volume methods. Many interesting 
problems in science and engineering are solved in this way using computers, sometimes high 
performance supercomputers. However, most problems in science and engineering are tackled using 
scientific computing rather than numerical analysis, as usually it is not known whether the numerical 
methods used produce solutions close to the true ones. 
Classification 
Second-order partial differential equations, and systems of second-order PDEs, can usually be classified 
as parabolic, hyperbolic or elliptic. This classification gives an intuitive insight into the behaviour of the 
system itself. The general second-order PDE is of the form 

 
which looks remarkably similar to the equation for a conic section: 

 
The reason B has a coefficient of 2 is due to the assumed commutativity of partial derivatives in the first 
case (recall that mixed derivatives which are continuous do not depend on the order of taking the partial 
derivatives in the different variables!) , and the commutativity of multiplication in the second. Just as one 
classifies conic sections into parabolic, hyperbolic, and elliptic based on the discriminant B2 − AC, the 
same can be done for a second-order PDE. 
B2 − AC < 0 : elliptic equations tend to smooth out any disturbances. A typical example is Laplace's 
equation. The motion of a fluid at sub-sonic speeds can be approximated with elliptic PDEs. 
B2 − AC = 0 : parabolic equations tend to smooth out any pre-existing disturbances in the data. A typical 
example is the heat equation. 
B2 − AC > 0 : hyperbolic equations tend to amplify any disturbances in the data. A typical example is the 
wave equation. The motion of a fluid at super-sonic speeds can be approximated with hyperbolic PDEs. 
This method of classification can easily be extended to systems of partial differential equations by 
examining the eigenvalues of the coefficient matrix. In this situation, the classification scheme becomes: 
Elliptic: The eigenvalues are all positive or all negative. 
Parabolic : The eigenvalues are all positive or all negative, save one which is zero. 
Hyperbolic : There is at least one negative and at least one positive eigenvalue, and none of the 
eigenvalues are zero. 



This matches with positive-definite and negative-definite matrix analysis, of the sort that comes up during 
a discussion of maxima and minima. Moreover, using the concepts of positive-definiteness and negative-
definiteness, it is possible to extend this classification to PDEs and systems of PDEs which are of order 
higher than 2 (as well as for systems of PDEs of 1st order).  
 

Lecture-35 

Solution by the method of  Separation of Variables 
One-dimensional Wave Equation: 

There are several approaches to solving the wave equation.  The first one we will work with, using a 
technique called separation of variables, again, demonstrates one of the most widely used solution 
techniques for PDEs.  The idea behind it is to split up the original PDE into a series of simpler ODEs, 
each of which we should be able to solve readily using tricks already learned.  The second technique, 
which we will see in the next section, uses a transformation trick that also reduces the complexity of the 
original PDE, but in a very different manner.  This second solution is due to Jean Le Rond D’Alembert 
(an 18th century French mathematician), and is called D’Alembert’s solution, as a result. 
First, note that for a specific wave equation situation, in addition to the actual PDE, we will also have 
boundary conditions arising from the fact that the endpoints of the string are attached solidly, at the left 
end of the string, when x = 0 and at the other end of the string, which we suppose has overall length l.  
Let’s start the process of solving the PDE by first figuring out what these boundary conditions imply for 
the solution function, ),( txu .   
Answer: for all values of t, the time variable, it must be the case that the vertical displacement at the 
endpoints is 0, since they don’t move up and down at all, so that  
(1) 0),0( tu   and   0),( tlu   for all values of t 
are the boundary conditions for our wave equation.  These will be key when we later on need to sort 
through possible solution functions for functions that satisfy our particular vibrating string set-up.   
You might also note that we probably need to specify what the shape of the string is right when time t = 0, 
and you’re right - to come up with a particular solution function, we would need to know )0,(xu .  In fact 

we would also need to know the initial velocity of the string, which is just )0,(xu t .  These two 

requirements are called the initial conditions for the wave equation, and are also necessary to specify a 
particular vibrating string solution.  For instance, as the simplest example of initial conditions, if no one is 
plucking the string, and it’s perfectly flat to start with, then the initial conditions would just be 

0)0,( xu  (a perfectly flat string) with initial velocity, 0)0,( xu t .  Here, then, the solution function is 

pretty unenlightening – it’s just 0),( txu , i.e. no movement of the string through time.   
To start the separation of variables technique we make the key assumption that whatever the solution 
function is, that it can be written as the product of two independent functions, each one of which depends 
on just one of the two variables, x or t.  Thus, imagine that the solution function, ),( txu  can be written as  

(2) )()(),( tGxFtxu   
where F, and G, are single variable functions of x and t respectively.  Differentiating this equation for 

),( txu twice with respect to each variable yields  

(3) )()(
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Thus when we substitute these two equations back into the original wave equation, which is 

(4) 
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then we get 

(5) )()()()( 2
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u
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Here’s where our separation of variables assumption pays off, because now if we separate the equation 
above so that the terms involving F and its second derivative are on one side, and likewise the terms 
involving G and its derivative are on the other, then we get 

(6) 
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Now we have an equality where the left-hand side just depends on the variable t, and the right-hand side 
just depends on x.  Here comes the critical observation - how can two functions, one just depending on t, 
and one just on x, be equal for all possible values of t and x?  The answer is that they must each be 
constant, for otherwise the equality could not possibly hold for all possible combinations of t and x.  Aha!  
Thus we have  

(7) k
xF

xF

tGc

tG
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where k is a constant.  First let’s examine the possible cases for k.   
Case One:  k = 0 
Suppose k equals 0.  Then the equations in (7) can be rewritten as   

(8) 0)(0)( 2  tGctG     and    0)(0)(  xFxF  
yielding with very little effort two solution functions for F and G: 
(9) battG )(     and    rpxxF )(  
where a,b, p and r, are constants (note how easy it is to solve such simple ODEs versus trying to deal with 
two variables at once, hence the power of the separation of variables approach). 
Putting these back together to form )()(),( tGxFtxu  , then the next thing we need to do is to note what 
the boundary conditions from equation (1) force upon us, namely that  
(10) 0)()0(),0(  tGFtu   and   0)()(),(  tGlFtlu   for all values of t 

Unless 0)( tG  (which would then mean that 0),( txu , giving us the very dull solution equivalent to 
a flat, unplucked string) then this implies that  
(11) 0)()0(  lFF .   
But how can a linear function have two roots?  Only by being identically equal to 0, thus it must be the 
case that 0)( xF .  Sigh, then we still get that 0),( txu , and we end up with the dull solution again, 
the only possible solution if we start with k = 0. 
So, let’s see what happens if… 
Case Two:  k > 0  
So now if k is positive, then from equation (7) we again start with 

 (12) )()( 2 tGkctG       
and      
(13) )()( xkFxF   
Try to solve these two ordinary differential equations.  You are looking for functions whose second 
derivatives give back the original function, multiplied by a positive constant.  Possible candidate solutions 
to consider include the exponential and sine and cosine functions.  Of course, the sine and cosine 
functions don’t work here, as their second derivatives are negative the original function, so we are left 
with the exponential functions.   



Let’s take a look at (13) more closely first, as we already know that the boundary conditions imply 
conditions specifically for )(xF , i.e. the conditions in (11).  Solutions for )(xF  include anything of the 
form 

(14) xAexF )(  

where k2  and A is a constant.  Since  could be positive or negative, and since solutions to (13) can 
be added together to form more solutions (note (13) is an example of a second order linear homogeneous 
ODE, so that the superposition principle holds), then the general solution for (13) is 

(14) xx BeAexF  )(  

where now A and  B are constants and k .  Knowing that 0)()0(  lFF , then unfortunately the 

only possible values of A  and  B  that work are 0 BA , i.e. that 0)( xF .  Thus, once again we end 

up with 0)(0)()(),(  tGtGxFtxu , i.e. the dull solution once more.  Now we place all of our 
hope on the third and final possibility for k, namely… 
Case Three:  k < 0 
So now we go back to equations (12) and (13) again, but now working with k as a negative constant. So, 
again we have 

(12) )()( 2 tGkctG       
and      
(13) )()( xkFxF   
Exponential functions won’t satisfy these two ODEs, but now the sine and cosine functions will.  The 
general solution function for (13) is now 
(15) )sin()cos()( xBxAxF    

where again A and B are constants and now we have k2 .  Again, we consider the boundary 
conditions that specified that 0)()0(  lFF .  Substituting in 0 for x in (15) leads to 

(16) 0)0sin()0cos()0(  ABAF  

so that )sin()( xBxF  .  Next, consider 0)sin()(  lBlF  .  We can assume that B isn’t equal to 0, 

otherwise 0)( xF  which would mean that 0)(0)()(),(  tGtGxFtxu , again, the trivial 

unplucked string solution.  With 0B , then it must be the case that 0)sin( l  in order to have 

0)sin( lB  .  The only way that this can happen is for l to be a multiple of  .  This means that  

(17)  nl      or    
l

n    (where n is an integer) 

This means that there is an infinite set of solutions to consider (letting the constant B be equal to 1 for 
now), one for each possible integer n.  

(18) 


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 x

l

n
xF


sin)(  

Well, we would be done at this point, except that the solution function )()(),( tGxFtxu  and we’ve 

neglected to figure out what the other function, )(tG , equals.  So, we return to the ODE in (12): 

 (12) )()( 2 tGkctG       

where, again, we are working with k, a negative number.  From the solution for )(xF  we have 
determined that the only possible values that end up leading to non-trivial solutions are with 

2
2 








l

n
k

  for n some integer.  Again, we get an infinite set of solutions for (12) that can be 

written in the form  



(19) )sin()cos()( tDtCtG nn     

where C and D are constants and 
l

cn
ckcn

  , where n is the same integer that showed up 

in the solution for )(xF  in (18) (we’re labeling   with a subscript “n” to identify which value of n is 
used). 
Now we really are done, for all we have to do is to drop our solutions for )(xF and )(tG into 

)()(),( tGxFtxu  , and the result is 

 (20)    





 x

l

n
tDtCtGxFtxu nnn

 sin)sin()cos()()(),(  

where the integer n that was used is identified by the subscript in ),( txun  and n , and C and D are 

arbitrary constants. 
At this point you should be in the habit of immediately checking solutions to differential equations.  Is 
(20) really a solution for the original wave equation 
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and does it actually satisfy the boundary conditions 0),0( tu  and 0),( tlu for all values of t?  Check 
this now – really, don’t read any more until you’re completely sure that this general solution works! 
 
 

 
 
Lecture-36 
One-dimensional Heat Equation: 
We simplify our heat diffusion modeling by considering the specific case of heat flowing in a long thin 
bar or wire, where the cross-section is very small, and constant, and insulated in such a way that the heat 
flow is just along the length of the bar or wire.  In this slightly contrived situation, we can model the heat 
flow by keeping track of the temperature at any point along the bar using just one spatial dimension, 
measuring the position along the bar.   
 
This means that the function, u, that keeps track of the temperature, just depends on x, the position along 
the bar, and t, time, and so the heat equation from the previous section becomes the so-called one-
dimensional heat equation: 

(1) 
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One of the interesting things to note at this point is how similar this PDE appears to the wave equation 
PDE.  However, the resulting solution functions are remarkably different in nature.  Remember that the 
solutions to the wave equation had to do with oscillations, dealing with vibrating strings and all that.  
Here the solutions to the heat equation deal with temperature flow, not oscillation, so that means the 
solution functions will likely look quite different.  If you’re familiar with the solution to Newton’s heating 
and cooling differential equations, then you might expect to see some type of exponential decay function 
as part of the solution function. 
Before we start to solve this equation, let’s mention a few more conditions that we will need to know to 
nail down a specific solution.  If the metal bar that we’re studying has a specific length, l, then we need to 
know the temperatures at the ends of the bars.  These temperatures will give us boundary conditions 



similar to the ones we worked with for the wave equation.  To make life a bit simpler for us as we solve 
the heat equation, let’s start with the case when the ends of the bar, at 0x  and lx   both have 
temperature equal to 0 for all time (you can picture this situation as a metal bar with the ends stuck 
against blocks of ice, or some other cooling apparatus keeping the ends exactly at 0 degrees).  Thus we 
will be working with the same boundary conditions as before, namely 
(2) 0),0( tu   and   0),( tlu   for all values of t 
Finally, to pick out a particular solution, we also need to know the initial starting temperature of the entire 
bar, namely we need to know the function )0,(xu .  Interestingly, that’s all we would need for an initial 
condition this time around (recall that to specify a particular solution in the wave equation we needed to 
know two initial conditions, )0,(xu  and )0,(xu t ).   

The nice thing now is that since we have already solved a PDE, then we can try following the same basic 
approach as the one we used to solve the last PDE, namely separation of variables.  With any luck, we 
will end up solving this new PDE.  So, remembering back to what we did in that case, let’s start by 
writing  
(3) )()(),( tGxFtxu   

where F, and G, are single variable functions.  Differentiating this equation for ),( txu  with respect to 
each variable yields  
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When we substitute these two equations back into the original heat equation 
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we get 
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If we now separate the two functions F and G by dividing through both sides, then we get 
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Just as before, the left-hand side only depends on the variable t, and the right-hand side just depends on x.  
As a result, to have these two be equal can only mean one thing, that they are both equal to the same 
constant, k:  
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As before, let’s first take a look at the implications for )(xF  as the boundary conditions will again limit 

the possible solution functions.  From (8) we get that )(xF  has to satisfy 

(9) 0)()(  xkFxF    
Just as before, one can consider the various cases with k being positive, zero, or negative.  Just as before, 
to meet the boundary conditions, it turns out that  k must in fact be negative (otherwise )(xF  ends up 

being identically equal to 0, and we end up with the trivial solution 0),( txu ).  So skipping ahead a bit, 
let’s assume we have figured out that k must be negative (you should check the other two cases just as 

before to see that what we’ve just written is true!).  To indicate this, we write, as before, that 2k , so 
that we now need to look for solutions to  

(10) 0)()( 2  xFxF     



These solutions are just the same as before, namely the general solution is: 
(11) )sin()cos()( xBxAxF    

where again A and B are constants and now we have k .  Next, let’s consider the boundary 

conditions 0),0( tu  and  0),( tlu .  These are equivalent to stating that 0)()0(  lFF . 
Substituting in 0 for x in (11) leads to 
(12) 0)0sin()0cos()0(  ABAF  

so that )sin()( xBxF  .  Next, consider 0)sin()(  lBlF  .  As before, we check that B can’t 

equal 0, otherwise 0)( xF  which would then mean that 0)(0)()(),(  tGtGxFtxu , the trivial 

solution, again.  With 0B , then it must be the case that 0)sin( l  in order to have 0)sin( lB  .  

Again, the only way that this can happen is for l to be a multiple of  .  This means that once again 

(13)  nl     or   
l

n    (where n is an integer) 

and so  
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where n is an integer.  Next we solve for )(tG , using equation (8) again.  So, rewriting (8), we see that 
this time 

(15) 0)()( 2  tGtG n      

where 
l

cn
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  , since we had originally written 2k , and  we just determined that 
l

n   

during the solution for )(xF .  The general solution to this first order differential equation is just  

(16) tnCetG
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So, now we can put it all together to find out that  

(17) tnex
l

n
CtGxFtxu

2

sin)()(),(  





  

where n is an integer, C is an arbitrary constant, and 
l

cn
n

  . As is always the case, given a supposed 

solution to a differential equation, you should check to see that this indeed is a solution to the original 
heat equation, and that it satisfies the two boundary conditions we started with.  
 

PDE Problems: 

 

(1) Determine which of the following functions are solutions to the two-dimensional Laplace equation 
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 (a) 23 3),( xyxyxu     (b) 126),( 4224  yyxxyxu  
 

 (c) yxeyxyxu  )cos(),(   (d)  xyyxu arctan),(   



 

 (e) yxxyyxu 22 19992002),(   (f) ))cos(2)(sin(),( yyeyxu x   
 
 
(2) Determine which of the following functions are solutions to the one-dimensional wave equation (for a 
suitable value of the constant c).  Also determine what c must equal in each case. 
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 (a) )2cos()2sin(),( txtxtxu   (b) )ln(),( xttxu   
 

 (c) 24124),( 23  xtxtxu   (d) )100sin()100sin(),( txtxu   
 

 (e) txxttxu 22 10012002),(    (f) 22 4),( txtxu   
 
 
(3) Find solutions ),( yxu to each of the following PDEs by using the separation of variables technique. 
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Lecture-37 

Series Solution 

Introduction 
 
A power series is the sum of the infinite number of terms of the form 

     2

1 2
0

+– –   –  o o o m o
m

m
S a a x x a x x a x x





      

where 1 2,  ,  ,  oa a a are constants, called the coefficients of the series. ox is a constant, called the center 

of the series. A power series does not include terms with negative powers. 
* The linear differential equations with constant coefficients always possess series solutions. 
The homogeneous solution of the linear differential equation with constant coefficients 

 '' 'y ay by r x    

will have one of the type: 



 

1 2
1 2     

       

    ( ) .   

x x

x

x

e ey C C

y A Bx

y A c

e

eosax B sinax

 





 

 

   
 
All of these solutions can be expanded in power series of x 

  ex = 1 + x + 
!2

x2
+ … = 



0m

m

!m

x
 

  sin x = x - 
!3

x3
+ 

!5

x5
+ … = 










0m

1m2m

)!1m2(

x)1(
 

  cos x = 1 - 
!2

x2
+ 

!4

x4
+ … = 







0m

m2m

)!m2(

x)1(
 

 
The power series form of y can be accepted as a solution provided that the differential equation is 
satisfied by it and the series is convergent. Some differential equations with variable coefficients possess 
series solutions. 
 
Some properties of power series 
 
The n-th partial sum of the series is 
 
Sn(x) = ao + a1(x – xo) + a2(x – xo)

2 + … + an(x – xo)
n 

 
and the remainder is 
   
Rn(x) = an+1(x – xo)

n+1 + an+2(x – xo)
n+2 + … 

 
A power series converges if Rn  0 as n  ; otherwise, it diverges 
There is usually an interval over which the power series converges with the center at x = xo; that is, the 
series converges if 
  |x – xo| < R 
where R is called the radius of convergence. The radius of convergence can be obtained from 

  R = lim (m  )
1m

m

a

a


 

EX:  ex = 1 + x + 
!2

x2
+ … + 

!m

xm
 + 

)!1m(

x 1m




+ … 

Radius of convergence 

R = lim (m  )
1m

m

a

a


 = lim (m  )

)!1m(

1
!m

1



 = lim (m  )
!m

)!1m( 
 

  = lim (m  ) 1m   =  

 



A function y(x) is analytic at the point x = xo if it can be expressed as a power series 







0m

m
om )xx(a with R > 0. 

If the functions p(x), q(x), and r(x) in the differential equation 
 

     ''  'y p x y q x y r x    

 
are analytic at the point x = xo, the solution can be represented by a power series with a finite radius of 
convergence, that is, 
 

y(x) = 





0m

m
om )xx(a with R > 0 

The point x = xo is called an ordinary (or regular) point. 
 
EX:  y" = exy, every point x   is a regular point 
 x5y" = y, every point x except for x = 0 and x =  is a regular point 
 
If p(x), q(x), or r(x) is not analytic at x = xo, the point x = xo is said to be a singular point. 
 
Regular singular point and irregular singular point 
 
Consider a second order homogeneous linear equation 
 

     ''  'y p x y q x y r x                                                              (s1) 

 
The point x = xo is called a regular singular point of (s1) if not both of p(x), q(x) are analytic but both (x – 
xo)p(x) and (x – xo)

2q(x) are analytic in the neighborhood of xo. The point x = xo is called an irregular 
singular point of (s1) if it is neither a regular point nor a regular singular point. 
 
Ex: (a) (x - 1)y" = y has a regular singular point at 1  
(b) x2y" + xy' = y has a regular singular point at 0  
(c) x3y" = (x + 1)y has an irregular singular point at 0 
 
If x = xo is a regular point of the differential equation (4.1-1) then the power series method can be applied. 
The general solution of Eq. (4.1-1) is y = Ay1(x) + By2(x) where y1 and y2 are linearly independent series 

solutions 





0m

m
om )xx(a  which are analytic at x = xo. The radius of convergence for each of the 

series solutions y1 and y2 is at least as large as the minimum of the radii of convergence of the series for 
p(x) and q(x). 
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Example: Find a power series solution of   

   1 ' 2 1 0x x y x    . 



 

Solution: The given equation is      1 ' 2 1 0..........x x y x i     

Let  0
0

n

n
n

y c x x




  be a solution of the equation  i . Thus   1

0
1

'
n

n
n

y nc x x






  .  

Putting these in equation  i  we get,  

    1 0
1

3 1 0.n
n n

n

n c n c x c x





      

Equating the coefficients of  0,1, 2,........nx n  to zero we get  

0 0c  , 1c is arbitrary and 1

3

1n n

n
c c

n 


 


for 2,3,4,.......n   

Thus 2 1, 0nc c c  for 3n  . 

 
LEGENDRE FUNCTION 
 
The Legendre differential  equation is given by  
 

 
2

2

2

d y dy
1 x 2x n(n 1) 0

dxdx
     ……………….(1) 

 
The parameter n which is a given integer (although it could be a real number) is called the order of the 
Legendre equation (1). The solution of the Legendre equation is known as the Legendre function of order 
n. 
Assume that the power series solution of (1) as 
 

y(x)= m
m

m 0

a x



 ………….(2) 

 

We get , k 2 k

(n k)(n k 1)
a a

(k 2)(k 1)
  

 
 

,               k=0,1,2,…. 

 

0 1a ,a are arbitrary constants. 

Substituting the coefficients in (1) we get the solution, 
 
Y= 0 1 1 2a y (x) a y (x) ……….(3) 

 

Where, 2 4
1

n(n 1) (n 2)n(n 1)(n 3)
y (x) 1 x x

2! 4!

   
   ………..(4) 

 

3 5
2

(n 1)(n 2) (n 3)(n 1)(n 2)(n 4)
y (x) x x x

3! 5!

     
   ……………(5) 

 



Both the series (4) and (5) converge for  1x  . 1y (x)  and 2y (x)  are linearly independent. Thus y(x) is 

a general solution of (1) and is valid for 1x   i.e. 1 1x   . 

By the above  method we can desire that the Legendre polynomial as,  
 

mM

n n
m 0

( 1) (2n 2m)!
P (x)

2 m!(n m)!(n 2m)!

 


  (n 2m)x  ………………(6) 

Where, M=
n

2
or 

(n 1)

2


 according as n is even or odd whichever is an integer. 

In particular,  
 

2
3 4 2

0 1 2 3 4

(3x 1) 1 1
P (X) 1, P (x) x, P (x) ,P (x) (5x 3x), P (x) (35x 30x 3)

2 2 8


         

Note : nP (1) 1 . 
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Rodrigue’s Formula: 

n
2 n

n n n

1 d
P (X) (x 1)

n!2 dx
   

Proof:  Let 2( 1)nxv   . 
 
Therefore, 

2 ndv
n(x 1) .2x

dx
   

2 2 ndv
(x 1) 2nx(x 1)

dx
     

2 dv
(1 x ) 2nxv 0

dx
    ……….(1) 

 
Differentiating (1) ,(n+1) times by Leibnitz’s rule, 
 

 
n 2 n 1 n n 1 n

2 n 1 n 1 n 1
1 2 1n 2 n 1 n n 1 n

d v d v d v d v d v
1 x c ( 2x) c ( 2) 2n x c .1. 0

dx dx dx dx dx

  
  

  

   
          

   
 

 
n 2 n 1 n

2
n 2 n 1 n

d v d v d v
1 x 2x n(n 1) 0

dx dx dx

 

        

Putting u=
n

n

d v

dx
, we get 

 

 
2

2
2

d u du
1 x 2x n(n 1)u 0

dxdx
    

 
 



Which is Legendre differential equation of order n and has a finite series solution np (x) . Thus   

U=c np (x) …………(2) 

 
Here c is an arbitrary constant which is determined by equating the coefficients of xn from (2) i.e. 
 

n 2 n

n n

d (x 1)
cP (x) u

dx


 

 
 

Hence,
n 2

(2n)!
c 2n(2n 1)(2n 2)(2n n 1)

2 (n!)
     =

(2n)!

n!
, nc 2 .n!   

 

Therefore, we get, nP (x) =
1

u
c

=
1

(2n)n!

n 2 n

n

d (x 1)

dx



 
 

Generating Function: The generating function for Legendre polynomial is 
1

2 2(1 2xt t )


   i.e. 
1

2 n2
n

n 0

(1 2xt t ) t P (x)




   ……….(1) 

Result 1: nP (1) =1 for any n. 

 
Proof:  Putting x=1 , in (1) we get 

1
2 2(1 2t t )


  = n

n
n 0

t P (1)



  

  
1

2 n2
n

n 0

1 t t P (1)




    

1 n
n

n 0

(1 t) t P (1)






    

2 n n
n

n 0

1 t t ..... t ... t P (1)




      = 2 n
0 1 2 nP (1) tP (1) t P (1) ... t P (1)    +… 

Equating the coefficient of nt , we get  

nP (1) =1. 

 

Result 2: n
nP ( 1) ( 1)    for any n. 

 
Proof:    Putting x=-1 in (1) we get, 

1 n
n

n 0

(1 t) t P ( 1)






    

Equating the coefficient of nt , we get  
n

nP ( 1) ( 1)    



Result 3:

  

n
n

2

o, n odd

P (0) 1.3.5.....(n 1)
( 1) , n even

2.4.6....n


  
 

 

Proof:       n
n

n 0

P (0)t



 =

1
2 2(1 t )


  

                                     = 2 2n

1 1 1
( )( 1).......( n 1)

1 2 2 21 t t .....
2 1.2.3.4.5....n

     
    

 
 

                            =
n

2 4 2n1 1.3 ( 1) 1.3.5.....(2n 1)
1 t t ........... t

2 2.4 2.4.6....2n

 
     

From both sides equating the coefficient of equal power of 2nt and 2n 1t   we get, 
 

2n 1

n
n

2n

P (0) 0

( 1) 1.3.5.....(2n 1)
P (0) ( 1)

2.4.6....2n

 

 
 

 

Hence we get the result by replacing 2n by n. 
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Recurrence Relations: 
 
1. n n 1 n 1P ' (x) xP ' (x) nP (x)    
 
Proof:   From Rodrigue’s formula 

n
2 n

n n n

1 d
P (x) (x 1)

2 n! dx
   

             Differentiating with respect to x, 

nP ' (x) =
n

n n

1 d

2 n! dx
 2 n 1n(x 1) .2x  

             =  
n

2 n 1
n n

1 d
x(x 1)

2 (n 1)! dx



 

By Leibnitz’s rule we get, 
n n 1

2 n 1 n 2 n 1
n 1.n 1 n n 1

1 d d
P ' (x) x x 1) c 1. (x 1)

2 (n 1)! dx dx


 

 

 
      

 

              =
n 1

2 n 1
n 1 n 1

d 1 d
x (x 1)

dx 2 (n 1)! dx




 

 
 

 
+

n 1
2 n 1

n 1 n 1

1 d
n (x 1)

2 (n 1)! dx




  


 

             = n 1 n 1xP ' (x) nP (x)  . 

 



2. n 1 n 1 nP ' (x) P ' (x) (2n 1)P (x)     

Proof:  n 1P ' (x) =
n 1

2 n 1
n 1 n 1

d 1 d
(x 1)

dx 2 (n 1)! dx




 

 
 

 
 

                                 =  
n 1

2 n
n 1 n 1

1 d
(n 1)(x 1) .2x

2 (n 1)! dx



   


 

                                =  
n 1

2 n
n n 1

1 d
x(x 1)

2 (n)! dx



   

                               =  
n

2 n 1 2 n
n n

1 d
x.n(x 1) .2x (x 1)

2 (n)! dx
    

                             =  
n

2 2 n 1
nn 1 n

1 d
x (x 1) P (x)

2 (n 1)! dx


  


 

                            =  
n

2 2 n 1
nn 1 n

1 d
((x 1) 1)(x 1) P (x)

2 (n 1)! dx


    


 

                              =2n nP (x) + n 1P ' (x) + nP (x)  

n 1 n 1 nP ' (x) P ' (x) (2n 1)P (x)      

 

3. ' '
n n n 1xP (x) nP (x) P (x)   

 
Proof:  From (1) we get, 
 

' '
n n 1 n 1P (x) xP (x) nP (x)    

 
Replacing n by (n+1) we get, 
 

' '
n 1 n nP (x) xP (x) (n 1)P (x)     

 
 From (2) we get, 
 

' '
n 1 n 1 nP (x) P (x) (2n 1)P (x)     

 
Therefore,  
 

' '
n n n 1 nxP (x) (n 1)P (x) P (x) (2n 1)P (x)      

 
' '
n n n 1xP (x) nP (x) P (x)    

 

4. 2 '
n 1 n 1 n(1 x )P (x) n(xP (x) P (x))     

 
Proof:  (1) ' '

n n 1 n 1P (x) xP (x) nP (x)    …….(1) 
 



             (3) ' '
n n n 1xP (x) nP (x) P (x)   ……..(2) 

By (1) x - (2) we get, 
 

   2 '
n 1 n 1 n0 x 1 P (x) n xP (x) P (x)    

 
 

 2 '
n 1 n 1 n(1 x )P (x) n xP (x) P (x)      

 

5.  2 '
n n n 1x 1 P (x) n(xP (x) P (x))  

 
 

Proof:  (1) ' '
n n 1 n 1P (x) xP (x) nP (x)    ……(i) 

 

             (3) ' '
n n 1 nxP (x) P (x) nP (x)   ……..(ii) 

By (ii) x  -(i) we get, 
 

 2 '
n n n 1x 1 P (x) n(xP (x) P (x))  

 
 
6. n 1 n n 1(n 1)P (x) (2n 1)xP (x) nP (x)      
 

Proof: (4)  2 '
n 1 n 1 n(1 x )P (x) n xP (x) P (x)    

 
 
Replacing n by (n+1) we get, 
 

2 '
n 1 n n(n 1)P (x) (n 1)xP (x) (1 x )P (x)      

 

n 1 n n n 1(n 1)P (x) (n 1)xP (x) n(xP (x) P (x))       (from (5)) 

 

n 1 n n 1(n 1)P (x) (2n 1)xP (x) nP (x)       
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Orthogonality of Legendre Polynomials 
 
If nP (x)  is the Legendre polynomial of order n, then 

1

n m

1

0, m n
P (x)P (x)dx 2

,m n
2n 1


 

 
  

Proof:   From Legendre differential equation, we get  
2

2

2

d y dy
(1 x ) 2x n(n 1)y 0

dxdx
      

2
2

2

d y dy
(1 x ) 2x n(n 1)y

dxdx
       



2d dy
(1 x ) n(n 1)y

dx dx
      
 

……………(1) 

           Since nP (x)  is the solution of equation (1), we get 

2 ndPd
(1 x ) n(n 1)y

dx dx
     
 

………………..(2) 

         And also, 2 mdPd
(1 x ) m(m 1)y

dx dx
     
 

………(3) 

        By (2)X mP -(3)X nP , we get 

     2 ' 2 '
m n n m m n

d d
P (1 x )P P (1 x )P n(n 1) m(m 1) P P

dx dx
       

 

         2 ' 2 ' 2 ' 2 ' 2 2
m n n m n m m n m n

d d d d
P 1 x P (1 x )P P P 1 x P 1 x P P n n m m P P

dx dx dx dx
            

       2 ' 2 '
n m m n m n

d d
1 x P P 1 x P P (m n)(n m) (n m) P P

dx dx
           

  2 ' '
n m m n m n

d
1 x (P P P P (n m)(n m 1)P P

dx
         

  2 ' '
n m m n m nd 1 x (P P P P (n m)(n m 1)P P        dx 

Integrating between the limits -1 to 1 we get, 

 
1

1
2 ' '

n m m n m n
1

1

1 x (P P P P (n m)(n m 1) P P




           

1

m n

1

0 (n m)(n m 1) P (x)P (x)dx


        

1

m n

1

P (x)P (x)dx 0, if


  m n 

 
Again, 

1
2 n2

n
n 0

(1 2xt t ) t P (x)




    

Squaring both sides we get, 

 
2

2 1 2n m n
n m n

n 0 m,n 0
m n

(1 2xt t ) t P (x) 2 t P (x)P (x)
 

 

 


      

Integrating between the limits -1 to 1 we get, 

 
21 1

2n m n
n m n

n 0 m,n 01 1
m n

t P (x) dx 2 t P (x)P (x)dx
 



  


   =
1

2
1

dx

1 2xt t    



 
21

12n 2
n 1

n 0 1

2 2

2 2

1
t P (x) dx log(1 2xt t )

2t

1
log(1 2t t ) log(1 2t t )

2t
1

log(1 t) log(1 t)
2t




 

      

        

      

 
                                                                                                                                          

= 21 1 t
log( )

2t 1 t





 

=
1 1 t

log( )
t 1 t




 

=
3 51 t t

2 t .......
t 3 5

 
   

 
 

=
2 4t t

2 1 .......
3 5

 
   

 
 

 
2n21

2n 2n
n

n 0 n 0 n 01

t 2
t P (x) dx 2 t

2n 1 2n 1

  

  

  
     

Equating the co-efficient of 2nt  we get 

 
1

2

n

1

2
P (x) dx

2n 1


  

i.e.
1

m n

1

2
P (x)P (x)dx

2n 1


 , if m=n 

 

Lecture-42 
 
Bessel’s  Function 
 
TheBessel’s  D.E is given by  

 
2

2 2 2
2

d y dy
x x x p y

dxdx
   =0    …………………..(1) 

Here ,p,which is a given constant (may not be integer)is known as the order of the Bessel’s  equation. 
Using Frobeniusmethod , assuming p is real and non- negative, let the solution be 

   y= r m m r
m m 0

m 0 m 0

x a x a x [a 0]
 



 

    

The initial equation becomes   r2-p2=0. Whose roots are r= p. 
The two solutions of equation (1) becomes  

     
 

m 2m
p

1 p 2m p
m o

1 x
y x J x x

2 m m p 1







 

   and 

     
 

m 2m
p

2 p 2m p
m o

1 x
y x J x x

2 m m p 1




 



 

    

The general solution of (1)will be  



   1 p 2 py C J x C J x  , provided p is not an integer. 

 
Linear dependence of Bessel’s Function: 
 
 Let p=n be an integer. Then 

2

2
0

( 1)
( )

2 ( 1)

m m
n

n m n
m

x
J x x

m m n









   ………………..(1) 

      =
2

2
0

( 1)

2 ( )

m m n

m n
m

x

m m n







                   ………………….(2) 

Replacing n by –n we get, 
2

2
0

( 1)
( )

2 ( 1)

m m
n

n m n
m

x
J x x

m m n




 





    …………….(3) 

When (m-n+1)0 i.e. m (n-1), the gamma function of zero or negative integers become infinite. Thus  
For m=0 to (n-1), the coefficient in (3) becomes zero. So m starts at n. 

Hence,   
2

2
0

( 1)
( )

2 ( )

m m n

n m n
m

x
J x

m m n



 





     [put s=m-n] 

                          =
2

2
0

( 1)

2 ( )

s n s n

s n
s

x

s s n

 





  

                         = ( 1) ( )n
nJ x  

i.e. ( ) ( 1) ( )n
n nJ x J x    

 

Lecture-43  
 
Recurrence relations: 
 

1. 1{ ( )} ( )p p
p p

d
x J x x J x

dx   

 

Proof:   
2

2
0

( 1)
( )

2 ( 1)

m m p

p m p
m

x
J x

m m p









    

2 2

2
0

( 1)
( )

2 ( )

m m p
p

p m p
m

x
x J x

m m p









  

2 2 1

2
0

( 1) (2 2 )
{ ( )}

2 ( ) ( )

m m p
p

p m p
m

d m p x
x J x

dx m m p m p

 




 


    

                          =
2 1

2
0

( 1) 2( )

2 ( ) ( ( 1) 1)

m m p
p

m p
m

m p x
x

m m p m p

 




 
      

               =
2 1

2 ( 1)
0

( 1)

2 ( ( 1) 1)

m m p
p

m p
m

x
x

m m p

 

 



     

                        = 1( )p
px J x  



2. 1{ ( )} ( )p p
p p

d
x J x x J x

dx
 

   

 Proof:    
2

2
0

( 1)
{ ( )} {

2 ( 1)

m m
p

p m p
m

d d x
x J x

dx dx m m p










    

                                             =
2 1

2
0

( 1) 2

2 ( 1)

m m

m p
m

mx

m m p







    

                                   = 
2 1

2 1
0

( 1)

2 1 ( 1)

m m

m p
m

x

m m p



 



     

                                   =
1 2( 1) 1

2( 1) 1
0

( 1)

2 ( 1 1)

s s

s p
s

x

s s p

  

  



          [put m-1=s] 

                                 =
2 1

2 ( 1)
0

( 1)

2 ( ( 1) 1)

s s p
p

s p
s

x
x

s s p

 

 





     

                                 = 1( )p
px J x
  

3. 1{ ( )} ( ) ( )p p p

d p
J x J x J x

dx x    

Or  '
1( ) ( ) ( )p p pxJ x xJ x pJ x  . 

 
Proof:   We know that  

    1{ ( )} ( )p p
p p

d
x J x x J x

dx   

1
1{ ( )} ( ) ( )p p p

p p p

d
x J x px J x x J x

dx


   

1{ ( )} ( ) ( )p p p

d p
J x J x J x

dx x 
 

 

4. '
1( ) ( ) ( )p p p

p
J x J x J x

x    

Proof:    1{ ( )} ( )p p
p p

d
x J x x J x

dx
 

   

1
1{ ( )} ( ) ( )p p p

p p p

d
x J x px J x x J x

dx
  

    

'
1( ) ( ) ( )p p p

p
J x J x J x

x    

5. '
1 1

1
( ) { ( ) ( )}

2p p pJ x J x J x  
 

 
Proof:   Adding (3)& (4) we get. 
 

6. 1 1

2
( ) ( ) ( )p p p

p
J x J x J x

x  
 



 
Proof:  Subtracting (4) from (3) we get. 
 

Lecture-44 
 
Elementary Bessel’s Function 
 

Result 1:  1
2

2
( ) sinJ x x

x


 
 

Proof:   
2

2
0

( 1)
( )

2 ( 1)

m m
p

p m p
m

x
J x x

m m p









  
 

 
Putting p=1/2 we get, 

  
1 2
2

1 1
202 2

( 1)
( )

3
2 ( )

2

m m

mm

x
J x x

m m








 
 ………………………….(1) 

Now,  
3 1 1 3 3 1 1

( ) ( )( )( )........ . . ( )
2 2 2 2 2 2 2

m m m m        

                               =
1

(2 1)(2 1)(2 3)......3.1

2m

m m m 

  
 

Also, 2 1 12 . 2 .2 .m m mm m   

                          = 12 .2 . .( 1)......2.1m m m m   

                         = 12 .2 .2( 1)......4.2m m m   
 

Thus,  2 1 1
1

3 (2 1)(2 1)(2 3)......3.1
2 . ( ) {2 .2 .2( 1)...4.2}

2 2
m m

m

m m m
m m m m  



  
     

                    {2 .(2 2).(2 4)....4.2}{(2 1)(2 1)(2 3)........3.1}m m m m m m        

                   = (2 1)m 
 

 
Then from (1) we get, 

 
1 2
2

1 1
0 2 12 2

( 1)
( ) .

3
2 .2 ( )

2

m m

m m

x
J x x x

m m



 




 
  

             
1 2 1
2

2 10

2 ( 1)
( )

3
2 ( )

2

m m

mm

x

x m m








 
  

             
1 2 1
2

0

2 ( 1)
( )

(2 1)

m m

m

x

x m 









  



             
2

sin x
x


 

 

Result 2:  1
2

2
( ) cosJ x x

x


 
 
Proof:  We have from the previous result, 

 1
2

2
( ) sinJ x x

x
  

Again,      1{ ( )} ( )p p
p p

d
x J x x J x

dx      

1 1

2 2
1 1

2 2

{ ( )} ( )
d

x J x x J x
dx 

  

1 1

2 2
1

2

2
{ sin } ( )

d
x x x J x

dx x 
  

1

2
1

2

2
( ) { sin }

d
J x x x

dx 



  

              =
2

cos x
x

 

 
 
 
 
 
 
 

 

 

 
 


