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An Overview of Artificial Intelligence

Since the invention of computers or machines,  their  capability  to perform various tasks went on growing
exponentially.  Humans have developed the power  of  computer  systems in terms of  their  diverse  working
domains, their increasing speed, and reducing size with respect to time.
A branch of Computer Science named Artificial Intelligence pursues creating the computers or machines as
intelligent as human beings.

What is Artificial Intelligence?

According to the father of Artificial Intelligence, John McCarthy, it is “The science and engineering of making
intelligent machines, especially intelligent computer programs”.
Artificial  Intelligence  is  a  way  of making  a  computer,  a  computer-controlled  robot,  or  a  software  think
intelligently, in the similar manner the intelligent humans think.
AI is accomplished by studying how human brain thinks, and how humans learn, decide, and work while trying
to solve a problem, and then using the outcomes of this study as a basis of developing intelligent software and
systems.
Philosophy of AI
While exploiting the power of the computer systems, the curiosity of human, lead him to wonder,  “Can a
machine think and behave like humans do?”
Thus, the development of AI started with the intention of creating similar intelligence in machines that we find
and regard high in humans.
Goals of AI

 To Create  Expert  Systems − The systems which exhibit  intelligent behavior,  learn,  demonstrate,
explain, and advice its users.

 To Implement Human Intelligence in Machines − Creating systems that understand, think, learn,
and behave like humans.

What Contributes to AI?
Artificial intelligence is a science and technology based on disciplines such as Computer Science, Biology,
Psychology,  Linguistics,  Mathematics,  and  Engineering.  A  major  thrust  of  AI  is  in  the  development  of
computer functions associated with human intelligence, such as reasoning, learning, and problem solving.
Out of the following areas, one or multiple areas can contribute to build an intelligent system.



Programming Without and With AI

The programming without and with AI is different in following ways −

Programming Without AI Programming With AI

A computer program without AI can 
answer the specific questions it is 
meant to solve.

A computer program with AI can answer the generic questions it is 
meant to solve.

Modification in the program leads to 
change in its structure.

AI programs can absorb new modifications by putting highly 
independent pieces of information together. Hence you can modify 
even a minute piece of information of program without affecting its 
structure.

Modification is not quick and easy. It 
may lead to affecting the program 
adversely.

Quick and Easy program modification.

What is AI Technique?

In the real world, the knowledge has some unwelcomed properties −
 Its volume is huge, next to unimaginable.
 It is not well-organized or well-formatted.
 It keeps changing constantly.

AI Technique is a manner to organize and use the knowledge efficiently in such a way that −
 It should be perceivable by the people who provide it.
 It should be easily modifiable to correct errors.
 It should be useful in many situations though it is incomplete or inaccurate.

AI techniques elevate the speed of execution of the complex program it is equipped with.

Applications of AI

AI has been dominant in various fields such as −
 Gaming −  AI  plays  crucial  role  in  strategic  games  such  as  chess,  poker,  tic-tac-toe,  etc.,  where

machine can think of large number of possible positions based on heuristic knowledge.
 Natural Language Processing − It is possible to interact with the computer that understands natural

language spoken by humans.
 Expert  Systems −  There  are  some  applications  which  integrate  machine,  software,  and  special

information to impart reasoning and advising. They provide explanation and advice to the users.
 Vision Systems − These systems understand, interpret, and comprehend visual input on the computer.

For example,
o A spying aeroplane takes photographs, which are used to figure out spatial information or

map of the areas.
o Doctors use clinical expert system to diagnose the patient.
o Police use computer software that can recognize the face of criminal with the stored portrait

made by forensic artist.
 Speech  Recognition −  Some  intelligent  systems  are  capable  of  hearing  and  comprehending  the

language in terms of sentences and their meanings while a human talks to it. It can handle different
accents, slang words, noise in the background, change in human’s noise due to cold, etc.

 Handwriting Recognition − The handwriting recognition software reads the text written on paper by
a pen or on screen by a stylus. It can recognize the shapes of the letters and convert it into editable
text.

 Intelligent Robots − Robots are able to perform the tasks given by a human. They have sensors to
detect physical data from the real world such as light, heat, temperature, movement, sound, bump, and



pressure. They have efficient processors, multiple sensors and huge memory, to exhibit intelligence.
In  addition,  they  are  capable  of  learning  from  their  mistakes  and  they  can  adapt  to  the  new
environment.

History of AI
Here is the history of AI during 20th century −

Yea
r

Milestone / Innovation

1923
Karel Čapek play named “Rossum's Universal Robots” (RUR) opens in London, first use of the
word "robot" in English.

1943 Foundations for neural networks laid.

1945 Isaac Asimov, a Columbia University alumni, coined the term Robotics.

1950
Alan  Turing  introduced  Turing  Test  for  evaluation  of  intelligence  and  published Computing
Machinery  and Intelligence. Claude  Shannon published Detailed  Analysis  of  Chess  Playing as  a
search.

1956
John  McCarthy  coined  the  term Artificial  Intelligence.  Demonstration  of  the  first  running  AI
program at Carnegie Mellon University.

1958 John McCarthy invents LISP programming language for AI.

1964
Danny Bobrow's dissertation at MIT showed that computers can understand natural language well
enough to solve algebra word problems correctly.

1965
Joseph  Weizenbaum  at  MIT  built ELIZA,  an  interactive  problem that  carries  on  a  dialogue  in
English.

1969
Scientists  at  Stanford  Research  Institute  Developed Shakey,  a  robot,  equipped with locomotion,
perception, and problem solving.

1973
The Assembly Robotics group at Edinburgh University built Freddy, the Famous Scottish Robot,
capable of using vision to locate and assemble models.

1979 The first computer-controlled autonomous vehicle, Stanford Cart, was built.

1985 Harold Cohen created and demonstrated the drawing program, Aaron.

1990

Major advances in all areas of AI −
 Significant demonstrations in machine learning
 Case-based reasoning
 Multi-agent planning
 Scheduling
 Data mining, Web Crawler
 natural language understanding and translation
 Vision, Virtual Reality
 Games

1997 The Deep Blue Chess Program beats the then world chess champion, Garry Kasparov.

2000
Interactive robot pets become commercially available. MIT displays Kismet, a robot with a face that
expresses emotions. The robot Nomad explores remote regions of Antarctica and locates meteorite



.Soft Computing: Introduction of soft computing,

In computer science, soft computing (sometimes referred to as computational intelligence, though CI does not
have an agreed definition) is the use of inexact solutions to computationally hard tasks such as the solution of
NP-complete problems, for which there is no known algorithm that can compute an exact solution in polynomial
time. Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of
imprecision, uncertainty, partial truth, and approximation. In effect  the role model for soft computing is the
human mind.

The principal  constituents of Soft  Computing (SC) are Fuzzy Logic (FL),  Evolutionary Computation (EC),
Machine Learning (ML) and Probabilistic Reasoning (PR), with the latter subsuming belief networks and parts
of  learning  theory. Soft  Computing  became  a  formal  area  of  study  in  Computer  Science  in  the  early
1990s.Earlier  computational  approaches  could  model  and  precisely  analyze  only relatively  simple  systems.
More complex systems arising in biology, medicine, the humanities, management sciences, and similar fields
often remained intractable to conventional mathematical and analytical methods. However, it should be pointed
out that complexity of systems is relative and that many conventional mathematical models have been very
productive in spite of their complexity.

Soft computing deals with imprecision, uncertainty, partial truth, and approximation to achieve computability,
robustness and low solution cost. As such it forms the basis of a considerable amount of machine learning
techniques.  Recent  trends  tend  to  involve  evolutionary  and  swarm intelligence  based  algorithms  and  bio-
inspired computation.

Unlike hard computing schemes, which strive for exactness and full truth, soft computing techniques exploit the
given tolerance of imprecision, partial truth, and uncertainty for a particular problem. Another common contrast
comes  from  the  observation  that  inductive  reasoning  plays  a  larger  role  in  soft  computing  than  in  hard
computing.

Soft computing vs. hard computing,

Definition of Hard computing
Hard  computing is  the  traditional  approach  used  in  computing which needs  an  accurately  stated  analytical
model. It was also proposed by Dr Lotfi Zadeh before soft computing. Hard computing approach produces a
guaranteed, deterministic, accurate result and defines definite control actions using a mathematical model or
algorithm. It deals with binary and crisp logic which require the exact input data sequentially. However, hard
computing is not capable of solving the real world problems whose behaviour is extremely imprecise and where
the information changes consistently.

Let’s take an example if we need to find whether it will rain today or not? The answer could be yes or no, which
means in two possible deterministic way we can answer the question or in other words, the answer contains a
crisp or binary solution.

Key Differences Between Soft computing and Hard computing
The  soft  computing  model  is  imprecision  tolerant,  partial  truth,  approximation.  On  the  other  hand,  hard
computing does not work on the above-given principles; it is very accurate and certain.
Soft computing employs fuzzy logic and probabilistic reasoning while hard computing is based on binary or
crisp systems.
Hard computing has features such as precision and categoricity. As against, approximation and dispositionality
are the characteristics of soft computing.
Soft computing approach is probabilistic in nature whereas hard computing is deterministic.
Soft computing can be easily operated on the noisy and ambiguous data. In contrast, hard computing can work
only on exact input data.
Parallel  computations  can  be  performed  in  soft  computing.  On the  contrary,  in  hard  computing sequential
computation is performed on the data.
Soft  computing  can  produce  approximate  results  while  hard  computing
generates precise results.



BASIS FOR
COMPARISON

SOFT COMPUTING HARD COMPUTING

Basic Tolerant to imprecision, uncertainty, partial truth 
and approximation.

Uses precisely stated 
analytical model.

Based on Fuzzy logic and probabilistic reasoning Binary logic and crisp system

Features Approximation and dispositionality Precision and categoricity

Nature Stochastic Deterministic

Works on Ambiguous and noisy data Exact input data

Computation Can perform parallel computations Sequential

Result Approximate Produces precise outcome.

Various types of soft computing techniques

Components
Components of soft computing include:

Machine learning, including:
Neural networks (NN)
Perceptron
Support Vector Machines (SVM)
Fuzzy logic (FL)
Evolutionary computation (EC), including:
Evolutionary algorithms
Genetic algorithms
Differential evolution
Metaheuristic and Swarm Intelligence
Ant colony optimization
Particle swarm optimization
Ideas about probability including:
Bayesian network
Generally  speaking,  soft  computing  techniques  resemble  biological  processes  more  closely  than  traditional
techniques, which are largely based on formal logical systems, such as sentential logic and predicate logic, or
rely heavily on computer-aided numerical analysis (as in finite element analysis). Soft computing techniques are
intended to complement each other.

Applications of soft computing

.

Computational  techniques  in  computer  science  and  some engineering  disciplines,  which  attempt  to  study,
model, and analyze very complex phenomena: those for which more conventional methods have not yielded low
cost, analytic, and complete solutions. Earlier computational approaches could model and precisely analyze only
relatively simple systems. More complex systems arising in biology, medicine, the humanities, management
sciences, artificial intelligence, machine learning, and similar fields often remained intractable to conventional
mathematical and analytical methods. Soft computing techniques include: fuzzy systems (FS), neural networks
(NN), evolutionary computation (EC), probabilistic reasoning (PR), and other ideas (chaos theory, etc.). Soft



computing techniques often complement each other. Learn more in: Introduction and Trends to Fuzzy Logic and
Fuzzy Databases
2.
Soft Computing refers to a partnership of computational techniques in computer science, artificial intelligence,
machine  learning  and  some engineering  disciplines,  which  attempt  to  study,  model,  and  analyze  complex
phenomena. The principle partners at this juncture are fuzzy logic, neuron-computing, probabilistic reasoning,
and  genetic  algorithms.  Thus  the  principle  of  soft  computing  is  to  exploit  the  tolerance  for  imprecision,
uncertainty, and partial truth to achieve tractability, robustness, low cost solution, and better rapport with reality.
Learn more in: Adaptive Neuro-Fuzzy Systems
3.
This is a term applied for defining approaches when the problem is not clear and its solution is unpredictable.
Learn more in: Watermarking Using Intelligent Methods: Survey
4.
Collection of computational techniques in computer science, especially in artificial intelligence, such as fuzzy
logic, neural networks, chaos theory, and evolutionary algorithms Learn more in: Harmony Search for Multiple
Dam Scheduling
5.
In contrast to hard computing, soft computing is a collection of methods (fuzzy sets, rough sets, neutral nets,
etc.) for dealing with ambiguous situations like imprecision and uncertainty, for example, human expressions
like “high profit at reasonable risks”. The objective of applying soft computing is to obtain robust solutions at
reasonable costs. Learn more in: Uncertainty and Vagueness Concepts in Decision Making
6.

In contrast to “hard computing” soft computing is collection of methods (fuzzy sets, rough sets neutral nets etc.)
for dealing with ambiguous situations like imprecision, uncertainty, e.g. human expressions like “high profit at
reasonable risks”. The objective of applying soft computing is to obtain robust solutions at reasonable costs.
Learn more in: Granular Computing
7.
An older term for Computational Intelligence (see above). Learn more in: Intelligent Information Systems
8.
Collection of new computational techniques in computer science, artificial intelligence, machine learning, and
many applied and engineering areas whose role model is the human mind and his guiding principle is exploit the
tolerance for imprecision, uncertainty, partial truth, and approximation to achieve tractability, robustness, and
low solution cost (Li, 1998; Verdegay, 2005; Zadeh, 1994)Learn more in: A Fuzzy Multi-Agent System for
Combinatorial Optimization
9.
Soft  computing  encompasses  a  set  of  computational  techniques  and  algorithms that  are  used  to  deal  with
complex systems. Soft computing exploits the given tolerance for imprecision, partial truth, and uncertainty for
a particular problem. Learn more in: Soft Methods for Automatic Drug Infusion in Medical Care Environment
10.
Soft  computing  encompasses  a  set  of  computational  techniques  and  algorithms that  are  used  to  deal  with
complex systems. Soft computing exploits the given tolerance for imprecision, partial truth, and uncertainty for
a particular problem. Learn more in: Soft Methods for Automatic Drug Infusion in Medical Care Environment
11.
Is a field of computer science which is characterized by the use of inexact solutions to computationally hard
tasks such as the NP-complete problems. Learn more in: Distributed Learning Algorithm Applications to the
Scheduling of Wireless Sensor Networks
12.
Problem solving strategies that tolerate imprecision/uncertainty/approximation in the data, and also can handle
partial information/non-exact solutions for optimization problems. Learn more in: Using Metaheuristics as Soft
Computing Techniques for Efficient Optimization
13.
A  set  of  artificial  intelligence  techniques  provides  efficient  and  feasible  solutions  in  comparison  with
conventional computing. These techniques are also known as computational intelligence. They are basically
integrated techniques to find solutions for the problems which are highly complex, ill- defined and difficult to
model. Real world problems deal with imprecision and uncertainty can be easily handled using such techniques.
Soft computing provides set of techniques which are hybridized and finally useful  for designing intelligent
systems. Learn more in: An Intelligent Process Development Using Fusion of Genetic Algorithm with Fuzzy
Logic



14.
It is a term applied to a field within computer science which is characterized by the use of inexact solutions to
computationally  hard  tasks  such  as  the  solution  of  NP-complete  problems,  for  which  there  is  no  known
algorithm that can compute an exact solution in polynomial time. Learn more in: Application of Soft Computing
Techniques for Renewable Energy Network Design and Optimization
15.
It  is  the hybrid combination of algorithms that  were designed to model  and enable solutions to real  world
problems without using complex mathematical  solutions.  Learn more in:  Churn Management  of E-Banking
Customers by Fuzzy AHP
16.
A partnership of techniques which in combination are tolerant of imprecision, uncertainty,  partial truth, and
approximation,  and whose role model is  the human mind.  Its  principal  constituents  are  Fuzzy  Logic (FL),
Neural Computing (NC), Evolutionary Computation (EC) Machine Learning (ML) and Probabilistic Reasoning
(PR) Learn more in: A Hybrid System for Automatic Infant Cry Recognition II
17.
A term applied to a field within computer science which is characterized by the use of inexact solutions to
computationally-hard tasks. Learn more in: The Use of Soft Computing in Management

3. Artificial Intelligence : Introduction
What is Artificial Intelligence?
According to the father of Artificial Intelligence, John McCarthy, it is “The science and engineering of making
intelligent machines, especially intelligent computer programs”.
Artificial Intelligence is a way of making a computer, a computer-controlled robot, or a software think
intelligently, in the similar manner the intelligent humans think.
AI is accomplished by studying how human brain thinks, and how humans learn, decide, and work while trying
to solve a problem, and then using the outcomes of this study as a basis of developing intelligent software and
systems.

Various types of production systems

Production System. Types of Production Systems.

A Knowledge representation formalism consists of collections of condition-action rules(Production Rules or
Operators),  a database which is modified in accordance with the rules, and a Production System Interpreter
which controls the operation of the rules i.e The 'control mechanism' of a Production System, determining the
order  in  which  Production  Rules  are  fired.
A  system  that  uses  this  form  of  knowledge  representation  is  called  a  production  system.
A production system consists of rules and factors. Knowledge is encoded in a declarative from which comprises
of a set of rules of the formSituation ------------ ActionSITUATION that implies ACTION.

Example:-

IF the initial state is a goal state THEN quit.
The major components of an AI production system are

i. A global database

ii. A set of production rules and

iii. A control system

The goal database is the central data structure used by an AI production system. The production system. The
production rules operate on the global database. Each rule has a precondition that is either satisfied or not by the
database. If the precondition is satisfied, the rule can be applied. Application of the rule changes the database.
The control system chooses which applicable rule should be applied and ceases computation when a termination



condition on the database is satisfied. If several rules are to fire at the same time, the control system resolves the
conflicts.

Four classes of production systems:-

1. A monotonic production system

2. A non monotonic production system

3.  A  partially  commutative  production  system

4. A commutative production system.

Advantages of production systems:-

1. Production systems provide an excellent tool for structuring AI programs.

2. Production Systems are highly modular because the individual rules can be added, removed or modified
independently.

3. The production rules are expressed in a natural form, so the statements contained in the knowledge base
should the a recording of an expert thinking out loud.

Disadvantages of Production Systems:-

One  important  disadvantage  is  the  fact  that  it  may be  very  difficult  analyse  the  flow of  control  within  a
production system because the individual rules don’t call each other.

Production systems describe the operations that can be performed in a search for a solution to the problem. They
can be classified as follows. 

Monotonic production system :- A system in which the application of a rule never prevents the later application
of another rule, that could have also been applied at the time the first rule was selected.

Partially commutative production system:-

A production system in which the application of a particular sequence of rules transforms state X into state Y,
then any permutation of those rules that is allowable also transforms state x into state Y.

Theorem proving falls under monotonic partially communicative system. Blocks world and 8 puzzle problems
like chemical  analysis and synthesis come under monotonic, not partially commutative systems. Playing the
game of bridge comes under non monotonic , not partially commutative system.

For any problem, several production systems exist. Some will be efficient than others. Though it may seem that
there is  no relationship between kinds of problems and kinds of  production systems, in practice  there is  a
definite relationship.

Partially commutative , monotonic production systems are useful for solving ignorable problems. These systems
are  important  for  man  implementation  standpoint  because  they  can  be  implemented  without  the  ability  to
backtrack to previous states, when it is discovered that an incorrect path was followed. Such systems increase
the efficiency since it is not necessary to keep track of the changes made in the search process.

Monotonic partially commutative systems are useful for problems in which changes occur but can be reversed
and in which the order of operation is not critical (ex: 8 puzzle problem).

Production  systems that  are  not  partially  commutative  are  useful  for  many problems in  which  irreversible
changes occur, such as chemical analysis. When dealing with such systems, the order in which operations are
performed is very important and hence correct decisions have to be made at the first time itself.

 



Characteristics of production systems,

PRODUCTION SYSTEM AND ITS CHARACTERISTICS
 The production system is a model of computation that can be applied to implement search algorithms and
model human problem solving. Such problem solving knowledge can be packed up in the form of little quanta
called  productions.  A production is  a  rule consisting of  a  situation recognition  part  and  an  action part.  A
production is a situation-action pair in which the left side is a list of things to watch for and the right side is a list
of things to do so. When productions are used in deductive systems, the situation that trigger productions are
specified combination of facts. The actions are restricted to being assertion of new facts deduced directly from
the triggering combination. Production systems may be called premise conclusion pairs rather than situation
action pair.
 
A production system consists of following components.
 
(a ) A set of production rules, which are of the form AB. Each rule consists of left hand side constituent that
represent the current problem state and a right hand side that represent an output state. A rule is applicable if its
left hand side matches with the current problem state.
 

(b) A database,  which contains all the appropriate  information for the particular  task. Some part  of the
database may be permanent while some part of this may pertain only to the solution of the current
problem.

 
(c)  A control strategy that specifies order in which the rules will be compared to the database of rules and a

way of resolving the conflicts that arise when several rules match simultaneously.
 

(d) A rule applier, which checks the capability of rule by matching the content state with the left hand
 

side of the rule and finds the appropriate rule from database of rules.
 
The important  roles played by production systems include a powerful  knowledge representation scheme. A
production system not only represents knowledge but also action. It acts as a bridge between AI and expert
systems.  Production  system provides  a  language  in  which  the  representation  of  expert  knowledge  is  very
natural. We can represent knowledge in a production system as a set of rules of the form
 

If (condition) THEN (condition)
 
along with a control system and a database. The control system serves as a rule interpreter and sequencer. The
database acts as a context buffer, which records the conditions evaluated by the rules and information on which
the rules act. The production rules are also known as condition – action, antecedent – consequent, pattern –
action, situation – response, feedback – result pairs.
For example,
 If (you have an exam tomorrow)
 THEN (study the whole night)
 
The production system can be classified as monotonic, non-monotonic, partially commutative and commutative.



 

 Figure Architecture of Production System
 
Features of Production System

Some of the main features of production system are:
Expressiveness and intuitiveness: In real world, many times situation comes like “i f this happen-you
 
will do that”, “if this is so-then this should happ en” and many more. The production rules essentially tell
 
us what to do in a given situation.
 
1.     Simplicity: The structure of each sentence in a production system is unique and uniform as they use  “IF-

THEN”  structure.  This  structure  provides  simpli  city  in  knowledge  representation.  This  feature  of
production system improves the readability of production rules.

 
2.     Modularity: This means production rule code the knowledge available in discrete pieces. Information can

be treated  as  a  collection  of  independent  facts  which  may be  added or  deleted  from the  system with
essentially no deletetious side effects.

 
3.     Modifiability: This means the facility of modifying rules. It allows the development of production rules in

a skeletal form first and then it is accurate to suit a specific application.
4.     Knowledge intensive: The knowledge base of production system stores pure knowledge. This part does

not contain any type of control or programming information. Each production rule is normally written as an
English sentence; the problem of semantics is solved by the very structure of the representation.

 
Disadvantages of production system
 
1.     Opacity: This  problem  is  generated  by  the  combination  ofproduction  rules.  The  opacity  is

generatedbecause of less prioritization of rules. More priority to a rule has the less opacity.
2.     Inefficiency: During  execution  of  a  program  several  rules  may  active.  A  well  devised  control

strategyreduces this problem. As the rules of the production system are large in number and they are hardly
written in hierarchical manner, it requires some forms of complex search through all the production rules
for each cycle of control program.

 
3.     Absence of learning: Rule based production systems do not store the result of the problem for future  use.

Hence, it does not exhibit any type of learning capabilities. So for each time for a particular problem, some
new solutions may come.

 
4.     Conflict resolution: The rules in a production system should not have any type of conflict  operations.

When a new rule is added to a database, it should ensure that it does not have any conflicts with the existing
rules.

Breadth first search and Depth First Search

Searching is the universal technique of problem solving in AI. There are some single-player games such as tile
games, Sudoku, crossword, etc. The search algorithms help you to search for a particular position in such
games.
Single Agent Pathfinding Problems



The games such as 3X3 eight-tile, 4X4 fifteen-tile, and 5X5 twenty four tile puzzles are single-agent-path-
finding challenges. They consist of a matrix of tiles with a blank tile. The player is required to arrange the tiles
by sliding a  tile  either  vertically  or  horizontally  into a  blank space  with the aim of accomplishing some
objective.
The other examples of single agent pathfinding problems are Travelling Salesman Problem, Rubik’s Cube, and
Theorem Proving.
Search Terminology

 Problem Space − It is the environment in which the search takes place. (A set of states and set of
operators to change those states)

 Problem Instance − It is Initial state + Goal state.
 Problem Space Graph − It represents problem state. States are shown by nodes and operators are

shown by edges.
 Depth of a problem − Length of a shortest path or shortest sequence of operators from Initial State to

goal state.
 Space Complexity − The maximum number of nodes that are stored in memory.
 Time Complexity − The maximum number of nodes that are created.
 Admissibility − A property of an algorithm to always find an optimal solution.
 Branching Factor − The average number of child nodes in the problem space graph.
 Depth − Length of the shortest path from initial state to goal state.

Brute-Force Search Strategies
They are most simple, as they do not need any domain-specific knowledge. They work fine with small number
of possible states.
Requirements −

 State description
 A set of valid operators
 Initial state
 Goal state description


Breadth-First Search

It starts from the root node, explores the neighboring nodes first and moves towards the next level neighbors. It
generates one tree at a time until the solution is found. It can be implemented using FIFO queue data structure.
This method provides shortest path to the solution.
If branching factor (average number of child nodes for a given node) = b and depth = d, then number of nodes
at level d = bd.
The total no of nodes created in worst case is b + b2 + b3 + … + bd.
Disadvantage − Since each level of nodes is saved for creating next one, it consumes a lot of memory space.
Space requirement to store nodes is exponential.
Its complexity depends on the number of nodes. It can check duplicate nodes.



Depth-First Search
It is implemented in recursion with LIFO stack data structure. It creates the same set of nodes as Breadth-First
method, only in the different order.
As the nodes on the single path are stored in each iteration from root to leaf node, the space requirement to
store nodes is linear. With branching factor band depth as m, the storage space is bm.
Disadvantage − This algorithm may not terminate and go on infinitely on one path. The solution to this issue
is to choose a cut-off depth. If the ideal cut-off is d, and if chosen cut-off is lesser than d, then this algorithm
may fail. If chosen cut-off is more than d, then execution time increases.
Its complexity depends on the number of paths. It cannot check duplicate nodes.

Bidirectional Search
It searches forward from initial state and backward from goal state till both meet to identify a common state.
The path from initial state is concatenated with the inverse path from the goal state. Each search is done only
up to half of the total path.
Uniform Cost Search
Sorting is done in increasing cost of the path to a node. It always expands the least cost node. It is identical to
Breadth First search if each transition has the same cost.
It explores paths in the increasing order of cost.
Disadvantage − There can be multiple long paths with the cost ≤ C*. Uniform Cost search must explore them
all.
Iterative Deepening Depth-First Search
It performs depth-first search to level 1, starts over, executes a complete depth-first search to level 2, and
continues in such way till the solution is found.
It never creates a node until all lower nodes are generated. It only saves a stack of nodes. The algorithm ends
when it finds a solution at depth d. The number of nodes created at depth d is bd and at depth d-1 is bd-1.



Comparison of Various Algorithms Complexities
Let us see the performance of algorithms based on various criteria −

Criterion
Breadth 
First

Depth 
First

Bidirectional
Uniform 
Cost

Interactive
Deepening

Time bd bm bd/2 bd bd

Space bd bm bd/2 bd bd

Optimality Yes No Yes Yes Yes

Completeness Yes No Yes Yes Yes

, Best first Search, A* algorithm, AO* Algorithms and various types of control

Hill-Climbing Search
It is an iterative algorithm that starts with an arbitrary solution to a problem and attempts to find a better
solution by changing a single element of the solution incrementally. If the change produces a better solution, an
incremental change is taken as a new solution. This process is repeated until there are no further improvements.
function Hill-Climbing (problem), returns a state that is a local maximum.

inputs: problem, a problem
local variables: current, a node
                 neighbor, a node
current <-Make_Node(Initial-State[problem])
loop
   do neighbor <- a highest_valued successor of current
      if Value[neighbor] ≤ Value[current] then
      return State[current]
      current <- neighbor   

end

Disadvantage − This algorithm is neither complete, nor optimal

Informed (Heuristic) Search Strategies
To solve large problems with large number of possible states, problem-specific knowledge needs to be added
to increase the efficiency of search algorithms.
Heuristic Evaluation Functions
They calculate the cost of optimal path between two states. A heuristic function for sliding-tiles games is
computed by counting number of moves that each tile makes from its goal state and adding these number of
moves for all tiles.
Pure Heuristic Search
It expands nodes in the order of their heuristic values. It creates two lists, a closed list for the already expanded
nodes and an open list for the created but unexpanded nodes.
In each iteration, a node with a minimum heuristic value is expanded, all its child nodes are created and placed
in the closed list. Then, the heuristic function is applied to the child nodes and they are placed in the open list
according to their heuristic value. The shorter paths are saved and the longer ones are disposed.

A * Search



It is best-known form of Best First search. It avoids expanding paths that are already expensive, but expands
most promising paths first.
f(n) = g(n) + h(n), where

 g(n) the cost (so far) to reach the node
 h(n) estimated cost to get from the node to the goal
 f(n) estimated total cost of path through n to goal. It is implemented using priority queue by increasing 

f(n).
Greedy Best First Search
It  expands  the node that  is  estimated to  be  closest  to  goal.  It  expands  nodes based  on f(n)  = h(n).  It  is
implemented using priority queue.
Disadvantage − It can get stuck in loops. It is not optimal.
Local Search Algorithms
They start  from a prospective solution and then move to a  neighboring solution. They can return a valid
solution even if it is interrupted at any time before they end.
.

Local Beam Search
In  this  algorithm, it  holds  k  number  of  states  at  any  given  time.  At  the  start,  these  states  are  generated
randomly. The successors of these k states are computed with the help of objective function. If any of these
successors is the maximum value of the objective function, then the algorithm stops.
Otherwise the (initial k states and k number of successors of the states = 2k) states are placed in a pool. The
pool is then sorted numerically. The highest k states are selected as new initial states. This process continues
until a maximum value is reached.
function BeamSearch( problem, k), returns a solution state.

start with k randomly generated states
loop
   generate all successors of all k states
   if any of the states = solution, then return the state
   else select the k best successors
end

Simulated Annealing
Annealing is the process  of heating and cooling a metal  to change its  internal  structure for  modifying its
physical properties. When the metal cools, its new structure is seized, and the metal retains its newly obtained
properties. In simulated annealing process, the temperature is kept variable.
We initially set the temperature high and then allow it to ‘cool' slowly as the algorithm proceeds. When the
temperature is high, the algorithm is allowed to accept worse solutions with high frequency.
Start

 Initialize k = 0; L = integer number of variables;
 From i → j, search the performance difference Δ.
 If Δ <= 0 then accept else if exp(-Δ/T(k)) > random(0,1) then accept;
 Repeat steps 1 and 2 for L(k) steps.
 k = k + 1;

Repeat steps 1 through 4 till the criteria is met.
End

Travelling Salesman Problem
In this algorithm, the objective is to find a low-cost tour that starts from a city, visits all cities en-route exactly
once and ends at the same starting city.

Start
   Find out all (n -1)! Possible solutions, where n is the total number of cities.
   Determine the minimum cost by finding out the cost of each of these (n -1)! solutions.
   Finally, keep the one with the minimum cost.
end





Soft
Computing:
Module-II

Introduction to derivative free optimization,

Derivative-free  optimization  is  a  discipline  in  mathematical  optimization  that  does  not  use  derivative
information in the classical sense to find optimal solutions: Sometimes information about the derivative of the
objective function f is unavailable, unreliable or impractical to obtain. For example, f might be non-smooth, or



time-consuming to evaluate, or in some way noisy, so that methods that rely on derivatives or approximate them
via finite differences are of little use. The problem to find optimal points in such situations is referred to as
derivative-free optimization, algorithms that do not use derivatives or finite differences are called derivative-free
algorithms (note that  this  classification is  not  precise).[1]  Derivative-free  optimization is  closely related  to
black-box optimization.[2]
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Introduction
The problem to be solved is to numerically optimize an objective function {\displaystyle f\colon A\to \mathbb
{R} } {\displaystyle f\colon A\to \mathbb {R} } for some set {\displaystyle A} A (usually {\displaystyle A\
subset \mathbb {R} ^{n}} {\displaystyle A\subset \mathbb {R} ^{n}}), i.e. find {\displaystyle x_{0}\in A} {\
displaystyle x_{0}\in A} such that without loss of generality {\displaystyle f(x_{0})\leq f(x)} {\displaystyle
f(x_{0})\leq f(x)} for all {\displaystyle x\in A} x\in A.

When applicable, a common approach is to iteratively improve a parameter guess by local hill-climbing in the
objective function landscape. Derivative-based algorithms use derivative information of {\displaystyle f} f to
find a good search direction, since for example the gradient gives the direction of steepest ascent. Derivative-
based optimization is efficient at finding local optima for continuous-domain smooth single-modal problems.
However, they can have problems when e.g. {\displaystyle A} A is disconnected, or (mixed-)integer, or when {\
displaystyle f}  f  is  expensive to evaluate,  or is  non-smooth, or noisy, so that  (numeric approximations of)
derivatives do not provide useful information. A slightly different problem is when {\displaystyle f} f is multi-
modal, in which case local derivative-based methods only give local optima, but might miss the global one.

In derivative-free optimization, various methods are employed to address these challenges using only function
values of {\displaystyle f} f, but no derivatives. Some of these methods can be proved to discover optima, but
some are rather metaheuristic since the problems are in general more difficult to solve compared to convex
optimization. For these, the ambition is rather to efficiently find "good" parameter values which can be near-
optimal given enough resources, but optimality guarantees can typically not be given. One should keep in mind
that the challenges are diverse, so that one can usually not use one algorithm for all kinds of problems.

Algorithms
A non-exhaustive collection of derivative-free optimization algorithms follows:
Bayesian optimization
Coordinate descent and adaptive coordinate descent
Cuckoo search
Evolution strategies, Natural evolution strategies (CMA-ES, xNES, SNES)
Cross-entropy methods (CEM)
Genetic algorithms
LIPO algorithm
MCS algorithm
Nelder-Mead method
Particle swarm optimization
Pattern search
Powell's COBYLA, UOBYQA, NEWUOA, BOBYQA and LINCOA algorithms
Random search (including Luus-Jaakola)
Shuffled complex evolution algorithm
Simulated annealing
Subgradient method

GA; biological background, search space of genetic algorithm,



Genetic Algorithm (GA) is a search-based optimization technique based on the principles of Genetics and
Natural Selection. It is frequently used to find optimal or near-optimal solutions to difficult problems which
otherwise would take a lifetime to solve. It is frequently used to solve optimization problems, in research, and
in machine learning.
Introduction to Optimization
Optimization is the process of making something better. In any process, we have a set of inputs and a set of
outputs as shown in the following figure.

Optimization refers to finding the values of inputs in such a way that we get the “best” output values. The
definition of “best” varies from problem to problem, but in mathematical terms, it refers to maximizing or
minimizing one or more objective functions, by varying the input parameters.
The set of all possible solutions or values which the inputs can take make up the search space. In this search
space, lies a point or a set of points which gives the optimal solution. The aim of optimization is to find that
point or set of points in the search space.
What are Genetic Algorithms?
Nature has always been a great source of inspiration to all mankind. Genetic Algorithms (GAs) are search
based algorithms based on the concepts of natural selection and genetics. GAs are a subset of a much larger
branch of computation known as Evolutionary Computation.
GAs were developed by John Holland and his students and colleagues at the University of Michigan, most
notably David E. Goldberg and has since been tried on various optimization problems with a high degree of
success.
In GAs, we have a pool or a population of possible solutions to the given problem. These solutions then
undergo recombination and mutation (like in natural  genetics),  producing new children, and the process is
repeated over various generations. Each individual (or candidate solution) is assigned a fitness value (based on
its objective function value) and the fitter individuals are given a higher chance to mate and yield more “fitter”
individuals. This is in line with the Darwinian Theory of “Survival of the Fittest”.
In this way we keep  “evolving” better  individuals  or  solutions over  generations,  till  we reach  a stopping
criterion.
Genetic Algorithms are sufficiently randomized in nature, but they perform much better than random local
search  (in  which we just  try  various  random solutions,  keeping  track  of  the best  so far),  as  they  exploit
historical information as well.
Advantages of GAs
GAs have various advantages which have made them immensely popular. These include −

 Does  not  require  any  derivative  information  (which  may  not  be  available  for  many  real-world
problems).

 Is faster and more efficient as compared to the traditional methods.
 Has very good parallel capabilities.
 Optimizes both continuous and discrete functions and also multi-objective problems.
 Provides a list of “good” solutions and not just a single solution.
 Always gets an answer to the problem, which gets better over the time.
 Useful when the search space is very large and there are a large number of parameters involved.

Limitations of GAs
Like any technique, GAs also suffer from a few limitations. These include −

 GAs are not suited for all problems, especially problems which are simple and for which derivative
information is available.

 Fitness value is calculated repeatedly which might be computationally expensive for some problems.
 Being stochastic, there are no guarantees on the optimality or the quality of the solution.
 If not implemented properly, the GA may not converge to the optimal solution.



Genetic Algorithms are primarily used in optimization problems of various kinds, but they are frequently used
in other application areas as well.
In this section, we list some of the areas in which Genetic Algorithms are frequently used. These are −

 Optimization − Genetic Algorithms are most commonly used in optimization problems wherein we
have to maximize or minimize a given objective function value under a given set of constraints. The
approach to solve Optimization problems has been highlighted throughout the tutorial.

 Economics − GAs are also used to characterize various economic models like the cobweb model,
game theory equilibrium resolution, asset pricing, etc.

 Neural Networks − GAs are also used to train neural networks, particularly recurrent neural networks.
 Parallelization − GAs also have very good parallel capabilities, and prove to be very effective means

in solving certain problems, and also provide a good area for research.
 Image Processing − GAs are used for various digital image processing (DIP) tasks as well like dense

pixel matching.
 Vehicle routing problems − With multiple soft time windows, multiple depots and a heterogeneous

fleet.
 Scheduling applications − GAs are used to solve various scheduling problems as well, particularly

the time tabling problem.
 Machine Learning − as already discussed, genetics based machine learning (GBML) is a niche area

in machine learning.
 Robot Trajectory Generation − GAs have been used to plan the path which a robot arm takes by

moving from one point to another.
 Parametric Design of Aircraft − GAs have been used to design aircrafts by varying the parameters

and evolving better solutions.
 DNA Analysis − GAs have been used to determine the structure of DNA using spectrometric data

about the sample.
 Multimodal Optimization − GAs are obviously very good approaches for multimodal optimization in

which we have to find multiple optimum solutions.
 Traveling salesman problem and its applications − GAs have been used to solve the TSP, which is

a well-known combinatorial problem using novel crossover and packing strategies.

Genetic algorithm Vs. Traditional algorithm;

Difference Between Genetic Algorithm and Traditional Algorithm
Definition
Genetic algorithm is an algorithm for solving both constrained and unconstrained optimization problems that are
based  on  Genetics  and  Natural  Selection  while  traditional  algorithm is  an  unambiguous  specification  that
defines how to solve a problem. Thus, this is the main difference between genetic algorithm and traditional
algorithm.

Usage
The  specific  use  of  each  algorithm  is  an  important  difference  between  genetic  algorithm  and  traditional
algorithm.  That  is;  the  genetic  algorithm  helps  to  find  the  optimal  solutions  for  difficult  problems  while
traditional algorithm provides a step by step methodical procedure to solve a problem.

Complexity
Another difference  between genetic  algorithm and traditional  algorithm is that  a genetic  algorithm is more
advanced than a traditional algorithm.

Applications
Genetic Algorithm is used in fields such as research, Machine Learning and, Artificial Intelligence. Traditional
algorithm is used in fields such as Programming, Mathematics, etc. Hence, this is also an important difference
between genetic algorithm and traditional algorithm.

Simple genetic algorithm and Genetic algorithm Operators:

Basic Structure



The basic structure of a GA is as follows −
We start with an initial population (which may be generated at random or seeded by other heuristics), select
parents from this population for mating. Apply crossover and mutation operators on the parents to generate
new off-springs. And finally these off-springs replace the existing individuals in the population and the process
repeats. In this way genetic algorithms actually try to mimic the human evolution to some extent.
Each of the following steps are covered as a separate chapter later in this tutorial.

A generalized pseudo-code for a GA is explained in the following program −

GA()
   initialize population
   find fitness of population
   
   while (termination criteria is reached) do
      parent selection
      crossover with probability pc
      mutation with probability pm
      decode and fitness calculation
      survivor selection
      find best
   return best



Encoding, selection criteria, Crossover, Mutation

One  of  the  most  important  decisions  to  make  while  implementing  a  genetic  algorithm  is  deciding  the
representation that we will use to represent our solutions. It has been observed that improper representation can
lead to poor performance of the GA.
Therefore, choosing a proper representation, having a proper definition of the mappings between the phenotype
and genotype spaces is essential for the success of a GA.
In this section, we present some of the most commonly used representations for genetic algorithms. However,
representation is highly problem specific and the reader might find that another representation or a mix of the
representations mentioned here might suit his/her problem better.
Binary Representation
This is one of the simplest and most widely used representation in GAs. In this type of representation the
genotype consists of bit strings.
For some problems when the solution space consists of Boolean decision variables – yes or no, the binary
representation is natural. Take for example the 0/1 Knapsack Problem. If there are n items, we can represent a
solution by a binary string of n elements, where the xth element tells whether the item x is picked (1) or not (0).

For other problems, specifically those dealing with numbers, we can represent the numbers with their binary
representation. The problem with this kind of encoding is that different bits have different significance and
therefore mutation and crossover operators can have undesired consequences. This can be resolved to some
extent by using Gray Coding, as a change in one bit does not have a massive effect on the solution.
Real Valued Representation
For problems where  we want  to define the genes using continuous rather  than discrete variables,  the real
valued representation  is  the most natural.  The precision of  these  real  valued or  floating point  numbers  is
however limited to the computer.

Integer Representation
For discrete valued genes, we cannot always limit the solution space to binary ‘yes’ or ‘no’. For example, if we
want to encode the four distances – North, South, East and West, we can encode them as {0,1,2,3}. In such
cases, integer representation is desirable.

Permutation Representation
In  many  problems,  the  solution  is  represented  by  an  order  of  elements.  In  such  cases  permutation
representation is the most suited.
A classic example of this representation is the travelling salesman problem (TSP). In this the salesman has to
take a tour of all the cities, visiting each city exactly once and come back to the starting city. The total distance
of the tour has to be minimized. The solution to this TSP is naturally an ordering or permutation of all the cities
and therefore using a permutation representation makes sense for this problem.



Genetic Algorithms - Population
Population is a subset of solutions in the current generation. It can also be defined as a set of chromosomes.
There are several things to be kept in mind when dealing with GA population −

 The  diversity  of  the  population  should  be  maintained  otherwise  it  might  lead  to  premature
convergence.

 The population size should not be kept very large as it can cause a GA to slow down, while a smaller
population might not be enough for a good mating pool. Therefore, an optimal population size needs
to be decided by trial and error.

The population is usually defined as a two dimensional array of – size population, size x, chromosome size.
Population Initialization
There are two primary methods to initialize a population in a GA. They are −

 Random Initialization − Populate the initial population with completely random solutions.
 Heuristic initialization − Populate the initial population using a known heuristic for the problem.

It has been observed that the entire population should not be initialized using a heuristic, as it can result in the
population having similar  solutions and very  little  diversity.  It  has  been experimentally  observed  that  the
random solutions are the ones to drive the population to optimality. Therefore, with heuristic initialization, we
just seed the population with a couple of good solutions, filling up the rest with random solutions rather than
filling the entire population with heuristic based solutions.
It  has  also been  observed  that  heuristic  initialization in  some cases,  only effects  the  initial  fitness  of  the
population, but in the end, it is the diversity of the solutions which lead to optimality.
Population Models
There are two population models widely in use −
Steady State
In steady state GA, we generate one or two off-springs in each iteration and they replace one or two individuals
from the population. A steady state GA is also known as Incremental GA.
Generational
In a generational model, we generate ‘n’ off-springs, where n is the population size, and the entire population is
replaced by the new one at the end of the iteration.

Genetic Algorithms - Fitness Function
The fitness function simply defined is a function which takes a candidate solution to the problem as input
and produces as output how “fit” our how “good” the solution is with respect to the problem in consideration.
Calculation of fitness value is done repeatedly in a GA and therefore it should be sufficiently fast. A slow
computation of the fitness value can adversely affect a GA and make it exceptionally slow.
In most cases the fitness function and the objective function are the same as the objective is to either maximize
or minimize the given objective function. However, for more complex problems with multiple objectives and
constraints, an Algorithm Designer might choose to have a different fitness function.
A fitness function should possess the following characteristics −

 The fitness function should be sufficiently fast to compute.
 It must quantitatively measure how fit a given solution is or how fit individuals can be produced from

the given solution.
In some cases, calculating the fitness function directly might not be possible due to the inherent complexities
of the problem at hand. In such cases, we do fitness approximation to suit our needs.
The following image shows the fitness calculation for a solution of the 0/1 Knapsack. It is a simple fitness
function which just sums the profit values of the items being picked (which have a 1), scanning the elements
from left to right till the knapsack is full.



Genetic Algorithms - Parent Selection
Parent Selection is the process of selecting parents which mate and recombine to create off-springs for the next
generation. Parent selection is very crucial to the convergence rate of the GA as good parents drive individuals
to a better and fitter solutions.
However, care should be taken to prevent one extremely fit solution from taking over the entire population in a
few generations, as this leads to the solutions being close to one another in the solution space thereby leading
to a loss of diversity. Maintaining good diversity in the population is extremely crucial for the success of a
GA.  This  taking  up  of  the  entire  population  by  one  extremely  fit  solution  is  known  as premature
convergence and is an undesirable condition in a GA.
Fitness Proportionate Selection
Fitness Proportionate Selection is one of the most popular ways of parent selection. In this every individual can
become a parent with a probability which is proportional to its fitness. Therefore,  fitter individuals have a
higher chance of mating and propagating their features  to the next generation. Therefore,  such a selection
strategy applies a selection pressure to the more fit individuals in the population, evolving better individuals
over time.
Consider a circular  wheel.  The wheel  is  divided into n pies,  where n is  the number of individuals in the
population. Each individual gets a portion of the circle which is proportional to its fitness value.
Two implementations of fitness proportionate selection are possible −
Roulette Wheel Selection
In a roulette wheel selection, the circular wheel is divided as described before. A fixed point is chosen on the
wheel circumference as shown and the wheel is rotated. The region of the wheel which comes in front of the
fixed point is chosen as the parent. For the second parent, the same process is repeated.

It is clear that a fitter individual has a greater pie on the wheel and therefore a greater chance of landing in
front of the fixed point when the wheel is rotated. Therefore, the probability of choosing an individual depends
directly on its fitness.
Implementation wise, we use the following steps −



 Calculate S = the sum of a finesses.
 Generate a random number between 0 and S.
 Starting from the top of the population, keep adding the finesses to the partial sum P, till P<S.
 The individual for which P exceeds S is the chosen individual.

Stochastic Universal Sampling (SUS)
Stochastic Universal Sampling is quite similar to Roulette wheel selection, however instead of having just one
fixed point, we have multiple fixed points as shown in the following image. Therefore,  all the parents are
chosen in just one spin of the wheel. Also, such a setup encourages the highly fit individuals to be chosen at
least once.

It is to be noted that fitness proportionate selection methods don’t work for cases where the fitness can take a
negative value.
Tournament Selection
In K-Way tournament selection, we select K individuals from the population at random and select the best out
of these to become a parent. The same process is repeated for selecting the next parent. Tournament Selection
is also extremely popular in literature as it can even work with negative fitness values.

Rank Selection
Rank  Selection  also  works  with  negative  fitness  values  and  is  mostly  used  when  the  individuals  in  the
population have very close fitness values  (this happens usually at  the end of the run).  This leads to each
individual having an almost equal share of the pie (like in case of fitness proportionate selection) as shown in
the following image and hence each individual no matter how fit relative to each other has an approximately
same probability of getting selected as a parent. This in turn leads to a loss in the selection pressure towards
fitter individuals, making the GA to make poor parent selections in such situations.



In this, we remove the concept of a fitness value while selecting a parent. However, every
individual in the population is ranked according to their fitness. The selection of the parents
depends on the rank of each individual and not the fitness. The higher ranked individuals are
preferred more than the lower ranked ones.

Chromosome Fitness Value Rank

A 8.1 1

B 8.0 4

C 8.05 2

D 7.95 6

E 8.02 3

F 7.99 5

Random Selection
In this strategy we randomly select parents from the existing population. There is no selection pressure towards
fitter individuals and therefore this strategy is usually avoided.

Genetic Algorithms - Crossover
In this chapter, we will discuss about what a Crossover Operator is along with its other modules, their uses and
benefits.
Introduction to Crossover
The crossover operator is analogous to reproduction and biological crossover. In this more than one parent is
selected and one or more off-springs are produced using the genetic material  of the parents.  Crossover is
usually applied in a GA with a high probability – pc .
Crossover Operators
In this section we will discuss some of the most popularly used crossover operators. It is to be noted that these
crossover  operators  are very generic  and the GA Designer might choose to implement  a problem-specific
crossover operator as well.
One Point Crossover
In this one-point crossover, a random crossover point is selected and the tails of its two parents are swapped to
get new off-springs.



Multi Point Crossover
Multi point crossover is a generalization of the one-point crossover wherein alternating segments are swapped
to get new off-springs.

Uniform Crossover
In a uniform crossover, we don’t divide the chromosome into segments, rather we treat each gene separately.
In this, we essentially flip a coin for each chromosome to decide whether or not it’ll be included in the off-
spring. We can also bias the coin to one parent, to have more genetic material in the child from that parent.

Whole Arithmetic Recombination
This is commonly used for integer representations and works by taking the weighted average of the two parents
by using the following formulae −

 Child1 = α.x + (1-α).y
 Child2 = α.x + (1-α).y

Obviously, if α = 0.5, then both the children will be identical as shown in the following image.

Davis’ Order Crossover (OX1)
OX1 is used for permutation based crossovers with the intention of transmitting information about relative
ordering to the off-springs. It works as follows −

 Create two random crossover points in the parent and copy the segment between them from the first
parent to the first offspring.

 Now,  starting  from the  second  crossover  point  in  the  second  parent,  copy the  remaining  unused
numbers from the second parent to the first child, wrapping around the list.

 Repeat for the second child with the parent’s role reversed.

There exist a lot of other crossovers like Partially Mapped Crossover (PMX), Order based crossover (OX2),
Shuffle Crossover, Ring Crossover, etc.

Genetic Algorithms - Mutation
Introduction to Mutation



In simple terms, mutation may be defined as a small random tweak in the chromosome, to get a new solution.
It  is used to maintain and introduce diversity in the genetic population and is usually applied with a low
probability – pm. If the probability is very high, the GA gets reduced to a random search.
Mutation is the part of the GA which is related to the “exploration” of the search space. It has been observed
that mutation is essential to the convergence of the GA while crossover is not.
Mutation Operators
In this section, we describe some of the most commonly used mutation operators. Like the crossover operators,
this is not an exhaustive list and the GA designer might find a combination of these approaches or a problem-
specific mutation operator more useful.
Bit Flip Mutation
In this bit flip mutation, we select one or more random bits and flip them. This is used for binary encoded GAs.

Random Resetting
Random Resetting is an extension of the bit flip for the integer representation. In this, a random value from the
set of permissible values is assigned to a randomly chosen gene.
Swap Mutation
In swap mutation, we select two positions on the chromosome at random, and interchange the values. This is
common in permutation based encodings.

Scramble Mutation
Scramble mutation is also popular with permutation representations. In this, from the entire chromosome, a
subset of genes is chosen and their values are scrambled or shuffled randomly.

Inversion Mutation
In inversion mutation, we select a subset of genes like in scramble mutation, but instead of shuffling the subset,
we merely invert the entire string in the subset.

Genetic Algorithms - Survivor Selection
The Survivor Selection Policy determines which individuals are to be kicked out and which are to be kept in
the  next  generation.  It  is  crucial  as  it  should  ensure  that  the  fitter  individuals  are  not  kicked  out  of  the
population, while at the same time diversity should be maintained in the population.
Some GAs employ Elitism. In simple terms, it means the current fittest member of the population is always
propagated to the next generation. Therefore,  under no circumstance can the fittest member of the current
population be replaced.
The easiest policy is to kick random members out of the population, but such an approach frequently has
convergence issues, therefore the following strategies are widely used.
Age Based Selection
In Age-Based Selection, we don’t have a notion of a fitness. It is based on the premise that each individual is
allowed in the population for a finite generation where it is allowed to reproduce, after that, it is kicked out of
the population no matter how good its fitness is.
For instance, in the following example, the age is the number of generations for which the individual has been
in the population. The oldest members of the population i.e. P4 and P7 are kicked out of the population and the
ages of the rest of the members are incremented by one.



Fitness Based Selection
In this fitness based selection, the children tend to replace  the least  fit  individuals in the population. The
selection of the least fit individuals may be done using a variation of any of the selection policies described
before – tournament selection, fitness proportionate selection, etc.
For example, in the following image, the children replace the least fit individuals P1 and P10 of the population.
It is to be noted that since P1 and P9 have the same fitness value, the decision to remove which individual from
the population is arbitrary.

Genetic Algorithms - Termination Condition
The termination condition of a Genetic Algorithm is important in determining when a GA run will end. It has
been observed that initially, the GA progresses very fast with better solutions coming in every few iterations,
but  this  tends  to  saturate  in  the later  stages  where  the  improvements  are  very small.  We usually want  a
termination condition such that our solution is close to the optimal, at the end of the run.
Usually, we keep one of the following termination conditions −

 When there has been no improvement in the population for X iterations.
 When we reach an absolute number of generations.
 When the objective function value has reached a certain pre-defined value.

For example, in a genetic algorithm we keep a counter which keeps track of the generations for which there has
been no improvement in the population. Initially, we set this counter to zero. Each time we don’t generate off-
springs which are better than the individuals in the population, we increment the counter.
However,  if  the fitness any of  the off-springs is  better,  then we reset  the counter  to  zero.  The algorithm
terminates when the counter reaches a predetermined value.



Like other parameters of a GA, the termination condition is also highly problem specific and the GA designer
should try out various options to see what suits his particular problem the best.

Genetic Algorithms - Application Areas
Genetic Algorithms are primarily used in optimization problems of various kinds, but they are frequently used
in other application areas as well.
In this section, we list some of the areas in which Genetic Algorithms are frequently used. These are −

 Optimization − Genetic Algorithms are most commonly used in optimization problems wherein we
have to maximize or minimize a given objective function value under a given set of constraints. The
approach to solve Optimization problems has been highlighted throughout the tutorial.

 Economics − GAs are also used to characterize various economic models like the cobweb model,
game theory equilibrium resolution, asset pricing, etc.

 Neural Networks − GAs are also used to train neural networks, particularly recurrent neural networks.
 Parallelization − GAs also have very good parallel capabilities, and prove to be very effective means

in solving certain problems, and also provide a good area for research.
 Image Processing − GAs are used for various digital image processing (DIP) tasks as well like dense

pixel matching.
 Vehicle routing problems − With multiple soft time windows, multiple depots and a heterogeneous

fleet.
 Scheduling applications − GAs are used to solve various scheduling problems as well, particularly

the time tabling problem.
 Machine Learning − as already discussed, genetics based machine learning (GBML) is a niche area

in machine learning.
 Robot Trajectory Generation − GAs have been used to plan the path which a robot arm takes by

moving from one point to another.
 Parametric Design of Aircraft − GAs have been used to design aircrafts by varying the parameters

and evolving better solutions.
 DNA Analysis − GAs have been used to determine the structure of DNA using spectrometric data

about the sample.
 Multimodal Optimization − GAs are obviously very good approaches for multimodal optimization in

which we have to find multiple optimum solutions.
 Traveling salesman problem and its applications − GAs have been used to solve the TSP, which is

a well-known combinatorial problem using novel crossover and packing strategies.

Genetic algorithms are substantially different to the more traditional search

Genetic algorithms are substantially different to the more traditional search andoptimization techniques. The
five main differences are:
1. Genetic algorithms search a population of points in parallel, not from a single point.
2. Genetic algorithms do not require derivative information or other auxiliaryknowledge; only the objective
function and corresponding fitness levels influencethe direction of the search
.3. Genetic algorithms use probabilistic transition rules, not deterministic rules.
4. Genetic algorithms work on an encoding of a parameter set not the parameter setitself (except where real-
valued individuals are used).
5. Genetic algorithms may provide a number of potential solutions to a given problem and the choice of the
final is left up to the use
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Neural Network : Biological neuron, artificial neuron, definition of ANN, Taxonomy of
neural net,

Yet another research area in AI, neural networks, is inspired from the natural neural network of human nervous
system.
What are Artificial Neural Networks (ANNs)?
The inventor of the first neurocomputer, Dr. Robert Hecht-Nielsen, defines a neural network as −
"...a computing system made up of a number of simple, highly interconnected processing elements, which 
process information by their dynamic state response to external inputs.”
Basic Structure of ANNs
The idea of ANNs is based on the belief that working of human brain by making the right connections, can be
imitated using silicon and wires as living neurons and dendrites.
The human brain is composed of 86 billion nerve cells called neurons. They are connected to other thousand
cells by Axons. Stimuli from external environment or inputs from sensory organs are accepted by dendrites.
These inputs create electric impulses, which quickly travel through the neural network. A neuron can then send
the message to other neuron to handle the issue or does not send it forward.

ANNs are composed of multiple nodes, which imitate biological neurons of human brain. The neurons are
connected  by links and they interact  with each  other.  The nodes can  take input  data and perform simple
operations on the data. The result of these operations is passed to other neurons. The output at each node is
called its activation or node value.
Each link is  associated  with weight. ANNs are  capable  of  learning,  which takes  place  by altering  weight
values. The following illustration shows a simple ANN −



Types of Artificial Neural Networks

There are two Artificial Neural Network topologies − FeedForward and Feedback.
FeedForward ANN
In this ANN, the information flow is unidirectional. A unit sends information to other unit from which it does
not  receive  any  information.  There  are  no  feedback  loops.  They  are  used  in  pattern
generation/recognition/classification. They have fixed inputs and outputs.

FeedBack ANN
Here, feedback loops are allowed. They are used in content addressable memories.



Working of ANNs

In the topology diagrams shown, each arrow represents a connection between two neurons and indicates the
pathway for the flow of information. Each connection has a weight, an integer number that controls the signal
between the two neurons.
If the network generates a “good or desired” output, there is no need to adjust the weights. However, if the
network generates a “poor or undesired” output or an error,  then the system alters the weights in order to
improve subsequent results.

Machine Learning in ANNs
ANNs are capable of learning and they need to be trained. There are several learning strategies −

 Supervised Learning − It involves a teacher that is scholar than the ANN itself. For example, the
teacher feeds some example data about which the teacher already knows the answers.
For example,  pattern recognizing.  The ANN comes up with guesses while recognizing.  Then the
teacher provides the ANN with the answers. The network then compares it guesses with the teacher’s
“correct” answers and makes adjustments according to errors.

 Unsupervised Learning − It is required when there is no example data set with known answers. For
example, searching for a hidden pattern. In this case, clustering i.e. dividing a set of elements into
groups according to some unknown pattern is carried out based on the existing data sets present.

 Reinforcement  Learning −  This  strategy  built  on  observation.  The  ANN  makes  a  decision  by
observing its environment. If the observation is negative, the network adjusts its weights to be able to
make a different required decision the next time.

Back Propagation Algorithm
It is the training or learning algorithm. It learns by example. If you submit to the algorithm the example of
what you want the network to do, it changes the network’s weights so that it can produce desired output for a
particular input on finishing the training.
Back Propagation networks are ideal for simple Pattern Recognition and Mapping Tasks.
Bayesian Networks (BN)
These  are  the graphical  structures  used to  represent  the probabilistic  relationship among a  set  of  random
variables.  Bayesian  networks  are  also  called Belief  Networks or Bayes  Nets. BNs reason  about  uncertain
domain.
In  these  networks,  each  node represents  a  random variable  with specific  propositions.  For  example,  in  a
medical diagnosis domain, the node Cancer represents the proposition that a patient has cancer.
The edges connecting the nodes represent probabilistic dependencies among those random variables. If out of
two nodes, one is affecting the other then they must be directly connected in the directions of the effect. The
strength of the relationship between variables is quantified by the probability associated with each node.



There is an only constraint on the arcs in a BN that you cannot return to a node simply by following directed
arcs. Hence the BNs are called Directed Acyclic Graphs (DAGs).
BNs are capable of handling multivalued variables simultaneously. The BN variables are composed of two
dimensions −

 Range of prepositions
 Probability assigned to each of the prepositions.

Consider a finite set X = {X1, X2, …,Xn} of discrete random variables, where each variable Xi may take values
from  a  finite  set,  denoted  by Val(Xi). If  there  is  a  directed  link  from  variable Xi to  variable, Xj, then
variable Xi will be a parent of variable Xj showing direct dependencies between the variables.
The structure of BN is ideal for combining prior knowledge and observed data. BN can be used to learn the
causal  relationships and understand various problem domains and to predict future events, even in case of
missing data.
Building a Bayesian Network
A knowledge engineer can build a Bayesian network. There are a number of steps the knowledge engineer
needs to take while building it.
Example problem − Lung cancer. A patient  has  been  suffering  from breathlessness.  He visits  the  doctor,
suspecting he has lung cancer.  The doctor knows that barring lung cancer,  there are various other possible
diseases the patient might have such as tuberculosis and bronchitis.
Gather Relevant Information of Problem

 Is the patient a smoker? If yes, then high chances of cancer and bronchitis.
 Is the patient exposed to air pollution? If yes, what sort of air pollution?
 Take an X-Ray positive X-ray would indicate either TB or lung cancer.

Identify Interesting Variables
The knowledge engineer tries to answer the questions −

 Which nodes to represent?
 What values can they take? In which state can they be?

For now let us consider nodes, with only discrete values. The variable must take on exactly one of these values
at a time.
Common types of discrete nodes are −

 Boolean nodes − They represent propositions, taking binary values TRUE (T) and FALSE (F).
 Ordered  values −  A  node Pollution might  represent  and  take  values  from  {low,  medium,  high}

describing degree of a patient’s exposure to pollution.
 Integral values − A node called Age might represent patient’s age with possible values from 1 to 120.

Even at this early stage, modeling choices are being made.
Possible nodes and values for the lung cancer example −

Node Name Type Value Nodes Creation

Polution Binary {LOW, HIGH,
MEDIUM}

Smoker Boolean {TRUE, FASLE}

Lung-
Cancer

Boolean {TRUE, FASLE}

X-Ray Binary {Positive,
Negative}

Create Arcs between Nodes
Topology of the network should capture qualitative relationships between variables.
For  example,  what  causes  a  patient  to  have  lung  cancer?  -  Pollution  and  smoking.  Then  add  arcs  from
node Pollution and node Smoker to node Lung-Cancer.
Similarly  if  patient  has  lung  cancer,  then  X-ray  result  will  be  positive.  Then  add  arcs  from node Lung-
Cancer to node X-Ray.



Specify Topology
Conventionally, BNs are laid out so that the arcs point from top to bottom. The set of parent nodes of a node X
is given by Parents(X).
The Lung-Cancer node  has  two  parents  (reasons  or  causes): Pollution and Smoker,  while  node Smoker is
an ancestor of  node X-Ray.  Similarly, X-Ray is  a  child  (consequence  or  effects)  of  node Lung-
Cancer and successor of nodes Smoker and Pollution.
Conditional Probabilities
Now quantify the relationships between connected nodes: this is done by specifying a conditional probability
distribution for each node. As only discrete variables are considered here, this takes the form of a  Conditional
Probability Table (CPT).
First, for each node we need to look at all the possible combinations of values of those parent nodes. Each such
combination is called an instantiation of the parent set. For each distinct instantiation of parent node values,
we need to specify the probability that the child will take.
For  example,  the Lung-Cancer node’s  parents  are Pollution and Smoking. They  take  the  possible  values  =
{ (H,T), ( H,F), (L,T), (L,F)}. The CPT specifies the probability of cancer for each of these cases as <0.05,
0.02, 0.03, 0.001> respectively.
Each node will have conditional probability associated as follows −



Applications of Neural Networks
They can perform tasks that are easy for a human but difficult for a machine −

 Aerospace − Autopilot aircrafts, aircraft fault detection.
 Automotive − Automobile guidance systems.
 Military − Weapon orientation and steering, target tracking, object discrimination, facial recognition,

signal/image identification.
 Electronics − Code sequence prediction, IC chip layout, chip failure analysis, machine vision, voice

synthesis.
 Financial − Real estate appraisal, loan advisor, mortgage screening, corporate bond rating, portfolio

trading  program, corporate  financial  analysis,  currency  value  prediction,  document  readers,  credit
application evaluators.

 Industrial − Manufacturing process control, product design and analysis, quality inspection systems,
welding  quality  analysis,  paper  quality  prediction,  chemical  product  design  analysis,  dynamic
modeling of chemical process systems, machine maintenance analysis, project bidding, planning, and
management.

 Medical − Cancer cell analysis, EEG and ECG analysis, prosthetic design, transplant time optimizer.
 Speech − Speech recognition, speech classification, text to speech conversion.
 Telecommunications −  Image  and  data  compression,  automated  information  services,  real-time

spoken language translation.
 Transportation − Truck Brake system diagnosis, vehicle scheduling, routing systems.
 Software − Pattern Recognition in facial recognition, optical character recognition, etc.
 Time Series Prediction − ANNs are used to make predictions on stocks and natural calamities.
 Signal  Processing −  Neural  networks  can  be  trained  to  process  an  audio  signal  and  filter  it

appropriately in the hearing aids.
 Control − ANNs are often used to make steering decisions of physical vehicles.
 Anomaly  Detection −  As  ANNs  are  expert  at  recognizing  patterns,  they  can  also  be  trained  to

generate an output when something unusual occurs that misfits the pattern.


Difference between ANN and human brain,
The main differences
1. Size: our brain contains about 86 billion neurons and more than a 100 trillion (or according to some

estimates 1000 trillion) synapses (connections). The number of “neurons” in artificial networks is much less
than  that (usually  in  the  ballpark  of  10–1000)  but  comparing  their  numbers  this  way  is  misleading.
Perceptrons just take inputs on their “dendrites” and generate output on their “axon branches”. A single
layer perceptron network consists of several perceptrons that are not interconnected: they all just perform
this very same task at once. Deep Neural Networks usually consist of input neurons (as many as the number
of features  in the data),  output neurons (as many as the number of classes if they are built to solve a
classification problem) and neurons in the hidden layers, in-between. All the layers are usually (but not
necessarily)  fully  connected  to  the  next  layer,  meaning  that  artificial  neurons  usually  have  as  many
connections as there are artificial neurons in the preceding and following layers combined. Convolutional
Neural Networks also use different techniques to extract features from the data that are more sophisticated
than what a few interconnected neurons can do alone. Manual feature extraction (altering data in a way that
it can be fed to machine learning algorithms) requires human brain power which is also not taken into
account when summing up the number of “neurons” required for Deep Learning tasks. The limitation in
size isn’t just computational: simply increasing the number of layers and artificial neurons does not always
yield better results in machine learning tasks.

2. Topology: all artificial layers compute one by one, instead of being part of a network that has nodes
computing asynchronously. Feedforward networks compute the state of one layer of artificial neurons and
their weights, then use the results to compute the following layer the same way. During backpropagation,
the algorithm computes some change in the weights the opposing way, to reduce the difference of the
feedforward computational results in the output layer from the expected values of the output layer.  Layers
aren’t connected to non-neighboring layers, but it’s possible to somewhat mimic loops with recurrent and
LSTM networks.  In biological networks,  neurons can fire asynchronously in parallel,  have small-world
nature with a small portion of highly connected neurons (hubs) and a large amount of lesser connected ones
(the degree distribution at least partly follows the power-law). Since artificial neuron layers are usually fully
connected, this small-world nature of biological neurons can only be simulated by introducing weights that
are 0 to mimic the lack of connections between two neurons.

3. Speed: certain biological  neurons can  fire  around 200 times a second on average.  Signals travel  at
different speeds depending on the type of the nerve impulse, ranging from 0.61 m/s up to 119 m/s. Signal
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travel speeds also vary from person to person depending on their sex, age, height, temperature, medical
condition, lack of sleep etc. Action potential frequency carries information for biological neuron networks:
information is carried by the firing frequency or the firing mode (tonic or burst-firing) of the output neuron
and by the amplitude of the incoming signal in the input neuron in biological  systems. Information in
artificial  neurons  is  instead  carried  over  by  the  continuous,  floating  point  number  values  of  synaptic
weights. How quickly feedforward or backpropagation algorithms are calculated carries no information,
other  than making the execution and training of  the model  faster.  There  are  no refractory  periods for
artificial neural networks (periods while it is impossible to send another action potential, due to the sodium
channels being lock shut) and artificial neurons do not experience “fatigue”: they are functions that can be
calculated  as many times and as  fast  as  the computer  architecture  would allow.  Since artificial  neural
network models can be understood as just a bunch of matrix operations and finding derivatives, running
such calculations can be highly optimized for vector processors (doing the very same calculations on large
amounts of data points over and over again) and sped up by magnitudes using GPUs or dedicated hardware
(like on AI chips in recent SmartPhones).

4. Fault-tolerance: biological neuron networks due to their topology are also fault-tolerant. Information is
stored redundantly so minor failures will not result in memory loss. They don’t have one “central” part. The
brain can also recover and heal to an extent. Artificial neural networks are not modeled for fault tolerance or
self regeneration (similarly to fatigue, these ideas are not applicable to matrix operations), though recovery
is possible by saving the current state (weight values) of the model and continuing the training from that
save state. Dropouts can turn on and off random neurons in a layer during training, mimicking unavailable
paths  for  signals  and  forcing  some  redundancy  (dropouts  are  actually  used  to  reduce  the  chance  of
overfitting). Trained models can be exported and used on different devices that support the framework,
meaning that the same artificial neural network model will yield the same outputs for the same input data on
every device it runs on. Training artificial neural networks for longer periods of time will not affect the
efficiency of the artificial neurons. However, the hardware used for training can wear out really fast if used
regularly, and will need to be replaced. Another difference is, that all processes (states and values) can be
closely monitored inside an artificial neural network.

5. Power consumption: the brain consumes about 20% of all the human body’s energy — despite it’s large
cut,  an adult  brain operates  on about 20 watts  (barely  enough to dimly light  a  bulb)  being extremely
efficient. Taking into account how humans can still operate for a while, when only given some c-vitamin
rich lemon juice and beef tallow, this is quite remarkable. For benchmark: a single Nvidia GeForce Titan X
GPU runs on 250 watts alone, and requires a power supply instead of beef tallow. Our machines are way
less efficient  than biological systems. Computers also generate a lot of heat when used, with consumer
GPUs operating safely between 50–80 degrees Celsius instead of 36.5–37.5 °C.

6. Signals: an action potential is either triggered or not — biological synapses either carry a signal or they
don’t. Perceptrons work somewhat similarly, by accepting binary inputs, applying weights to them and
generating binary outputs depending on whether the sum of these weighted inputs have reached a certain
threshold (also called a step function). Artificial neurons accept continuous values as inputs and apply a
simple non-linear, easily differentiable function (an activation function) on the sum of its weighted inputs to
restrict the outputs’ range of values. The activation functions are nonlinear so multiple layers in theory
could approximate  any  function. Formerly  sigmoid  and  hyperbolic  tangent  functions  were  used  as
activation functions, but these networks suffered from the vanishing gradient problem, meaning that the
more the layers in a network, the less the changes in the first layers will affect the output, due to these
functions squashing their inputs into a very small output range. These problems were overcome by the
introduction of different activation functions such as ReLU. The final outputs of these networks are usually
also squashed between 0 — 1 (representing probabilities for classification tasks) instead of outputting binary
signals.  As mentioned earlier,  neither  the frequency/speed of  the signals nor the firing rates  carry  any
information for artificial neural networks (this information is carried over by the input weights instead). The
timing of the signals is synchronous, where artificial neurons in the same layer receive their input signals
and then send their output signals all at once. Loops and time deltas can only be partly simulated with
Recurrent (RNN) layers (that suffer greatly from the aforementioned vanishing gradient problem) or with
Long short-term memory (LSTM) layers that act more like state machines or latch circuits than neurons.
These are all considerable differences between biological and artificial neurons.

7. Learning: we still do not understand how brains learn, or how redundant connections store and recall
information.  Brain  fibers  grow and reach  out  to  connect  to  other  neurons,  neuroplasticity  allows  new
connections to be created or areas to move and change function, and synapses may strengthen or weaken
based  on their  importance. Neurons that  fire  together,  wire together (although this  is  a  very simplified
theory and should not taken too literally). By learning, we are building on information that is already stored
in the brain. Our knowledge deepens by repetition and during sleep, and tasks that once required a focus can
be executed automatically once mastered. Artificial neural networks in the other hand, have a predefined
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model,  where  no  further  neurons  or  connections  can  be  added  or  removed. Only  the  weights  of  the
connections  (and  biases  representing  thresholds)  can  change  during  training.  The  networks  start  with
random weight values and will slowly try to reach a point where further changes in the weights would no
longer improve performance. Just like there are many solutions for the same problems in real life, there is
no guarantee that the weights of the network will be the best possible arrangement of weights to a problem 
— they  will  only  represent  one  of  the  infinite  approximations  to  infinite  solutions.  Learning  can  be
understood as the process of finding optimal weights to minimize the differences between the network’s
expected and generated output: changing weights one way would increase this error, changing them the
other way would decrees it. Imagine a foggy mountain top, where all we could tell is that stepping towards
a certain direction would take us downhill. By repeating this process, we would eventually reach a valley
where taking any step further would only take us higher. Once this valley is found we can say that we have
reached a local minima. Note that it’s possible that there are other, better valleys that are even lower from
the mountain top (global minima) that we have missed, since we could not see them. Doing this in usually
more than 3 dimensions is called gradient descent. To speed up this “learning process”, instead of going
through each and every example every time, random samples (batches) are taken from the data set and used
for training iterations. This will only give an approximation of how to adjust the weights to reach a local
minima (finding which direction to take downhill without carefully looking at all directions all the time),
but it’s still a pretty good approximation. We can also take larger steps when ascending the top and take
smaller ones as we are reaching a valley where even small nudges could take us the wrong way. Walking
like this downhill, going faster than carefully planning each and every step is called stochastic gradient
descent. So the rate of how artificial neural networks learn can change over time (it decreases to ensure
better performance), but there aren’t any periods similar to human sleep phases when the networks would
learn  better.  There  is  no neural  fatigue  either,  although GPUs overheating  during training can  reduce
performance.  Once  trained,  an  artificial  neural  network’s  weights  can  be  exported  and  used  to  solve
problem similar  to the ones found in the training set.  Training (backpropagation using an optimization
method like stochastic gradient descent, over many layers and examples) is extremely expensive, but using
a trained network (simply doing feedforward calculation) is ridiculously cheap. Unlike the brain, artificial
neural  networks don’t learn by recalling information — they only learn during training, but will  always
“recall” the same, learned answers afterwards, without making a mistake. The great thing about this is that
“recalling” can be done on much weaker hardware as many times as we want to. It is also possible to use
previously pretrained models (to save time and resources by not having to start from a totally random set of
weights) and improve them by training with additional examples that have the same input features. This is
somewhat similar to how it’s easier for the brain to learn certain things (like faces), by having dedicated
areas for processing certain kinds of information.

So artificial and biological neurons do differ in more ways than the materials of their environment— biological
neurons have only provided an inspiration to their artificial counterparts, but they are in no way direct copies with
similar potential. If someone calls another human being smart or intelligent, we automatically assume that they
are also capable of handling a large variety of problems, and are probably polite, kind and diligent as well.
Calling a software intelligent only means that it is able to find an optimal solution to a set of problems.

Structure and Function of a single neuron, , single layer network,

Single-Layer Network
By connecting multiple neurons, the true computing power of the neural networks comes, though even a single 
neuron can perform substantial level of computation [Ler91]. The most common structure of connecting 
neurons into a network is by layers. The simplest form of layered network is shown in figure 2.7. The shaded 
nodes on the left are in the so-called input layer. The input layer neurons are to only pass and distribute the 
inputs and perform no computation. Thus, the only true layer of neurons is the one on the right. Each of the 

inputs  is connected to every artificial neuron in the output layer through the connection 

weight. Since every value of outputs  is calculated from the same set of input values, each 
output is varied based on the connection weights. Although the presented network is fully connected, the true 
biological neural network may not have all possible connections - the weight value of zero can be represented as
``no connection".
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: Single Layer Neural Network

Perceptron training algorithm, Linear separability, Widrow & Hebb;s
learning rule/Delta rule, ADALINE, MADALINE,

As  the  name suggests, supervised  learning takes  place  under  the  supervision  of  a  teacher.  This  learning
process is dependent. During the training of ANN under supervised learning, the input vector is presented to
the network,  which will  produce an output vector.  This output vector  is  compared with the desired/target
output  vector.  An  error  signal  is  generated  if  there  is  a  difference  between  the  actual  output  and  the
desired/target output vector. On the basis of this error signal, the weights would be adjusted until the actual
output is matched with the desired output.
Perceptron
Developed by Frank Rosenblatt by using McCulloch and Pitts model, perceptron is the basic operational unit
of  artificial  neural  networks.  It  employs supervised learning rule and is able to classify the data into two
classes.
Operational characteristics of the perceptron: It consists of a single neuron with an arbitrary number of inputs
along with adjustable weights, but the output of the neuron is 1 or 0 depending upon the threshold. It also
consists  of  a  bias  whose  weight  is  always  1.  Following  figure  gives  a  schematic  representation  of  the
perceptron.

Perceptron thus has the following three basic elements −
 Links − It would have a set of connection links, which carries a weight including a bias always having

weight 1.
 Adder − It adds the input after they are multiplied with their respective weights.



 Activation function − It limits the output of neuron. The most basic activation function is a Heaviside
step function that has two possible outputs. This function returns 1, if the input is positive, and 0 for
any negative input.

Training Algorithm
Perceptron network can be trained for single output unit as well as multiple output units.
Training Algorithm for Single Output Unit
Step 1 − Initialize the following to start the training −

 Weights
 Bias
 Learning rate αα

For easy calculation and simplicity, weights and bias must be set equal to 0 and the learning rate must be set
equal to 1.
Step 2 − Continue step 3-8 when the stopping condition is not true.
Step 3 − Continue step 4-6 for every training vector x.
Step 4 − Activate each input unit as follows −

xi=si(i=1ton)xi=si(i=1ton)
Step 5 − Now obtain the net input with the following relation −

yin=b+∑inxi.wiyin=b+∑inxi.wi
Here ‘b’ is bias and ‘n’ is the total number of input neurons.
Step 6 − Apply the following activation function to obtain the final output.

f(yin)=⎧⎩⎨10−1ifyin>θif−θ⩽yin⩽θifyin<−θf(yin)={1ifyin>θ0if−θ⩽yin⩽θ−1ifyin<−θ
Step 7 − Adjust the weight and bias as follows −
Case 1 − if y ≠ t then,

wi(new)=wi(old)+αtxiwi(new)=wi(old)+αtxi
b(new)=b(old)+αtb(new)=b(old)+αt

Case 2 − if y = t then,
wi(new)=wi(old)wi(new)=wi(old)

b(new)=b(old)b(new)=b(old)
Here ‘y’ is the actual output and ‘t’ is the desired/target output.
Step 8 − Test for the stopping condition, which would happen when there is no change in weight.
Training Algorithm for Multiple Output Units
The following diagram is the architecture of perceptron for multiple output classes.

Step 1 − Initialize the following to start the training −
 Weights
 Bias
 Learning rate αα

For easy calculation and simplicity, weights and bias must be set equal to 0 and the learning rate must be set
equal to 1.
Step 2 − Continue step 3-8 when the stopping condition is not true.
Step 3 − Continue step 4-6 for every training vector x.



Step 4 − Activate each input unit as follows −
xi=si(i=1ton)xi=si(i=1ton)

Step 5 − Obtain the net input with the following relation −
yin=b+∑inxiwijyin=b+∑inxiwij

Here ‘b’ is bias and ‘n’ is the total number of input neurons.
Step 6 − Apply the following activation function to obtain the final output for each output unit j = 1 to m −

f(yin)=⎧⎩⎨⎪⎪10−1ifyinj>θif−θ⩽yinj⩽θifyinj<−θf(yin)={1ifyinj>θ0if−θ⩽yinj⩽θ−1ifyinj<−θ
Step 7 − Adjust the weight and bias for x = 1 to n and j = 1 to m as follows −
Case 1 − if yj ≠ tj then,

wij(new)=wij(old)+αtjxiwij(new)=wij(old)+αtjxi
bj(new)=bj(old)+αtjbj(new)=bj(old)+αtj

Case 2 − if yj = tj then,
wij(new)=wij(old)wij(new)=wij(old)

bj(new)=bj(old)bj(new)=bj(old)
Here ‘y’ is the actual output and ‘t’ is the desired/target output.
Step 8 − Test for the stopping condition, which will happen when there is no change in weight.
Adaptive Linear Neuron (Adaline)
Adaline which stands for Adaptive Linear Neuron, is a network having a single linear unit. It was developed by
Widrow and Hoff in 1960. Some important points about Adaline are as follows −

 It uses bipolar activation function.
 It uses delta rule for training to minimize the Mean-Squared Error (MSE) between the actual output

and the desired/target output.
 The weights and the bias are adjustable.

Architecture
The basic structure of Adaline is similar to perceptron having an extra feedback loop with the help of which the
actual output is compared with the desired/target output. After comparison on the basis of training algorithm,
the weights and bias will be updated.

Training Algorithm
Step 1 − Initialize the following to start the training −

 Weights
 Bias
 Learning rate αα

For easy calculation and simplicity, weights and bias must be set equal to 0 and the learning rate must be set
equal to 1.
Step 2 − Continue step 3-8 when the stopping condition is not true.
Step 3 − Continue step 4-6 for every bipolar training pair s:t.
Step 4 − Activate each input unit as follows −

xi=si(i=1ton)xi=si(i=1ton)
Step 5 − Obtain the net input with the following relation −

yin=b+∑inxiwiyin=b+∑inxiwi



Here ‘b’ is bias and ‘n’ is the total number of input neurons.
Step 6 − Apply the following activation function to obtain the final output −

f(yin)={1−1ifyin⩾0ifyin<0f(yin)={1ifyin⩾0−1ifyin<0
Step 7 − Adjust the weight and bias as follows −
Case 1 − if y ≠ t then,

wi(new)=wi(old)+α(t−yin)xiwi(new)=wi(old)+α(t−yin)xi
b(new)=b(old)+α(t−yin)b(new)=b(old)+α(t−yin)

Case 2 − if y = t then,
wi(new)=wi(old)wi(new)=wi(old)

b(new)=b(old)b(new)=b(old)
Here ‘y’ is the actual output and ‘t’ is the desired/target output.
(t−yin)(t−yin) is the computed error.
Step 8 − Test for the stopping condition, which will happen when there is no change in weight or the highest
weight change occurred during training is smaller than the specified tolerance.
Multiple Adaptive Linear Neuron (Madaline)
Madaline which stands for Multiple Adaptive Linear Neuron, is a network which consists of many Adalines in
parallel. It will have a single output unit. Some important points about Madaline are as follows −

 It is just like a multilayer perceptron, where Adaline will act as a hidden unit between the input and the
Madaline layer.

 The  weights  and  the  bias  between  the  input  and  Adaline  layers,  as  in  we  see  in  the  Adaline
architecture, are adjustable.

 The Adaline and Madaline layers have fixed weights and bias of 1.
 Training can be done with the help of Delta rule.

Architecture
The architecture of Madaline consists of “n” neurons of the input layer, “m”neurons of the Adaline layer, and
1 neuron of the Madaline layer. The Adaline layer can be considered as the hidden layer as it is between the
input layer and the output layer, i.e. the Madaline layer.

Training Algorithm
By now we know that only the weights and bias between the input and the Adaline layer are to be adjusted, and
the weights and bias between the Adaline and the Madaline layer are fixed.
Step 1 − Initialize the following to start the training −

 Weights
 Bias
 Learning rate αα

For easy calculation and simplicity, weights and bias must be set equal to 0 and the learning rate must be set
equal to 1.
Step 2 − Continue step 3-8 when the stopping condition is not true.
Step 3 − Continue step 4-6 for every bipolar training pair s:t.
Step 4 − Activate each input unit as follows −

xi=si(i=1ton)xi=si(i=1ton)
Step 5 − Obtain the net input at each hidden layer, i.e. the Adaline layer with the following relation −

Qinj=bj+∑inxiwijj=1tomQinj=bj+∑inxiwijj=1tom



Here ‘b’ is bias and ‘n’ is the total number of input neurons.
Step 6 − Apply the following activation function to obtain the final output at the Adaline and the Madaline
layer −

f(x)={1−1ifx⩾0ifx<0f(x)={1ifx⩾0−1ifx<0
Output at the hidden (Adaline) unit

Qj=f(Qinj)Qj=f(Qinj)
Final output of the network

y=f(yin)y=f(yin)
i.e. yinj=b0+∑mj=1Qjvjyinj=b0+∑j=1mQjvj
Step 7 − Calculate the error and adjust the weights as follows −
Case 1 − if y ≠ t and t = 1 then,

wij(new)=wij(old)+α(1−Qinj)xiwij(new)=wij(old)+α(1−Qinj)xi
bj(new)=bj(old)+α(1−Qinj)bj(new)=bj(old)+α(1−Qinj)

In this case, the weights would be updated on Qj where the net input is close to 0 because t = 1.
Case 2 − if y ≠ t and t = -1 then,

wik(new)=wik(old)+α(−1−Qink)xiwik(new)=wik(old)+α(−1−Qink)xi
bk(new)=bk(old)+α(−1−Qink)bk(new)=bk(old)+α(−1−Qink)

In this case, the weights would be updated on Qk where the net input is positive because t = -1.
Here ‘y’ is the actual output and ‘t’ is the desired/target output.
Case 3 − if y = t then
There would be no change in weights.
Step 8 − Test for the stopping condition, which will happen when there is no change in weight or the highest
weight change occurred during training is smaller than the specified tolerance.
Back Propagation Neural Networks
Back Propagation Neural (BPN) is a multilayer neural network consisting of the input layer, at least one hidden
layer and output layer. As its name suggests, back propagating will take place in this network. The error which
is calculated at the output layer, by comparing the target output and the actual output, will be propagated back
towards the input layer.
Architecture
As shown in the diagram, the architecture of BPN has three interconnected layers having weights on them. The
hidden layer as well as the output layer also has bias, whose weight is always 1, on them. As is clear from the
diagram, the working of BPN is in two phases. One phase sends the signal from the input layer to the output
layer, and the other phase back propagates the error from the output layer to the input layer.

Training Algorithm
For training, BPN will use binary sigmoid activation function. The training of BPN will have the following
three phases.

 Phase 1 − Feed Forward Phase
 Phase 2 − Back Propagation of error
 Phase 3 − Updating of weights

All these steps will be concluded in the algorithm as follows
Step 1 − Initialize the following to start the training −

 Weights



 Learning rate αα
For easy calculation and simplicity, take some small random values.
Step 2 − Continue step 3-11 when the stopping condition is not true.
Step 3 − Continue step 4-10 for every training pair.
Phase 1
Step 4 − Each input unit receives input signal xi and sends it to the hidden unit for all i = 1 to n
Step 5 − Calculate the net input at the hidden unit using the following relation −

Qinj=b0j+∑i=1nxivijj=1topQinj=b0j+∑i=1nxivijj=1top
Here b0j is the bias on hidden unit, vij is the weight on j unit of the hidden layer coming from i unit of the input
layer.
Now calculate the net output by applying the following activation function

Qj=f(Qinj)Qj=f(Qinj)
Send these output signals of the hidden layer units to the output layer units.
Step 6 − Calculate the net input at the output layer unit using the following relation −

yink=b0k+∑j=1pQjwjkk=1tomyink=b0k+∑j=1pQjwjkk=1tom
Here b0k is the bias on output unit, wjk is the weight on k unit of the output layer coming from j unit of the
hidden layer.
Calculate the net output by applying the following activation function

yk=f(yink)yk=f(yink)
Phase 2
Step 7 − Compute the error correcting term, in correspondence with the target pattern received at each output
unit, as follows −

δk=(tk−yk)f′(yink)δk=(tk−yk)f′(yink)
On this basis, update the weight and bias as follows −

Δvjk=αδkQijΔvjk=αδkQij
Δb0k=αδkΔb0k=αδk

Then, send δkδk back to the hidden layer.
Step 8 − Now each hidden unit will be the sum of its delta inputs from the output units.

δinj=∑k=1mδkwjkδinj=∑k=1mδkwjk
Error term can be calculated as follows −

δj=δinjf′(Qinj)δj=δinjf′(Qinj)
On this basis, update the weight and bias as follows −

Δwij=αδjxiΔwij=αδjxi
Δb0j=αδjΔb0j=αδj

Phase 3
Step 9 − Each output unit (ykk = 1 to m) updates the weight and bias as follows −

vjk(new)=vjk(old)+Δvjkvjk(new)=vjk(old)+Δvjk
b0k(new)=b0k(old)+Δb0kb0k(new)=b0k(old)+Δb0k

Step 10 − Each output unit (zjj = 1 to p) updates the weight and bias as follows −
wij(new)=wij(old)+Δwijwij(new)=wij(old)+Δwij
b0j(new)=b0j(old)+Δb0jb0j(new)=b0j(old)+Δb0j

Step 11 − Check for the stopping condition, which may be either the number of epochs reached or the target
output matches the actual output.
Generalized Delta Learning Rule
Delta rule works only for the output layer.  On the other hand, generalized delta rule,  also called as back-
propagation rule, is a way of creating the desired values of the hidden layer.
Mathematical Formulation
For the activation function yk=f(yink)yk=f(yink) the derivation of net input on Hidden layer as well as on
output layer can be given by

yink=∑iziwjkyink=∑iziwjk
And yinj=∑ixivijyinj=∑ixivij
Now the error which has to be minimized is

E=12∑k[tk−yk]2E=12∑k[tk−yk]2
By using the chain rule, we have

∂E∂wjk=∂∂wjk(12∑k[tk−yk]2)∂E∂wjk=∂∂wjk(12∑k[tk−yk]2)
=∂∂wjk⟮12[tk−t(yink)]2⟯=∂∂wjk 12[tk−t(yink)]2⟮ ⟯
=−[tk−yk]∂∂wjkf(yink)=−[tk−yk]∂∂wjkf(yink)

=−[tk−yk]f(yink)∂∂wjk(yink)=−[tk−yk]f(yink)∂∂wjk(yink)
=−[tk−yk]f′(yink)zj=−[tk−yk]f′(yink)zj

Now let us say δk=−[tk−yk]f′(yink)δk=−[tk−yk]f′(yink)



The weights on connections to the hidden unit zj can be given by −
∂E∂vij=−∑kδk∂∂vij(yink)∂E∂vij=−∑kδk∂∂vij(yink)

Putting the value of yinkyink we will get the following
δj=−∑kδkwjkf′(zinj)δj=−∑kδkwjkf′(zinj)

Weight updating can be done as follows −
For the output unit −

Δwjk=−α∂E∂wjkΔwjk=−α∂E∂wjk
=αδkzj=αδkzj

For the hidden unit −
Δvij=−α∂E∂vijΔvij=−α∂E∂vij

=αδjxi

AI v/s ANN.

Artificial  intelligence  (AI)  and  artificial  neural  networks  (ANN)  are  two exciting and intertwined  fields  in
computer science. There are, however, several differences between the two that are worth knowing about. The
key difference is that neural networks are a stepping stone in the search for artificial intelligence.

Artificial intelligence is a vast field that has the goal of creating intelligent machines, something that has been
achieved many times depending on how you define intelligence. Despite the fact that we have computers that
can  win at  “Jeopardy”  and  beat  chess  champions,  the goal  of  AI  is  generally  seen  as  a  quest  for  general
intelligence,  or  intelligence  that  can  be  applied  to  diverse  and  unrelated  situational  problems. A  grossly
simplified example is the pain from getting burned. When this happens for the first time, a connection is made in
your brain that identifies the sensory information known as fire (flames, smell of smoke, heat) and relates it with
pain.  This is  how you learn,  at  a  very young age,  how to avoid getting burned.  Through this same neural
network, we can do a lot of general learning like “ice cream tastes good” and even make deductive leaps like
“there are always clouds before rain” or “stocks always rally in December.” These leaps are not always correct
(there  is  bad  ice  cream  and  there  are  stocks  that  drop  in  December),  but  they  can  be  corrected  through
experience, thus allowing adaptive learning.
Artificial neural networks try to recreate this learning system on computers by constructing a simple framework
program to respond to a problem and receive feedback on how it does. A computer can optimize its response by
doing the same problem thousands of times and adjusting its response according to the feedback it receives. The
computer can then be given a different problem, which it can approach in the same way as it learned from the
previous one. By varying the problems and the number of approaches to solving them that the computer has
learned, computer scientists can teach a computer to be a generalist.
Although  this  conjures  up  images  of  computers  taking  over  the  world  and  harvesting  humans  as  seen  in
Hollywood movies like “The Martrix,” we are still a long way from neural networking our way to artificial
intelligence. The problems being tested on neural networks are all expressed mathematically. You can’t hold a
flower up to a computer and tell it to guess the color by the smell, because the smell would have to be expressed
in numbers and then the computer would have to catalog those numbers in memory, along with images of
flowers emitting that smell.
That said, artificial neural networks that can be given more inputs of things like smell – and the capacity to learn
from all those inputs – may be on track to produce the first artificial intelligence that meets the standards of even
the most hardcore AI enthusiast.
In essence, artificial neural networks are models of human neural networks that are designed to help computers
learn. Artificial intelligence is the Holy Grail some computer scientists are trying to achieve using techniques
like mimicking neural networks.
Example: Here’s the basic structure:



In order to have some numbers to work with, here are the initial weights, the biases, and training inputs/outputs:

The goal of backpropagation is to optimize the weights so that the neural network can learn how to correctly 
map arbitrary inputs to outputs.
For the rest of this tutorial we’re going to work with a single training set: given inputs 0.05 and 0.10, we want 
the neural network to output 0.01 and 0.99.
The Forward Pass
To begin, lets see what the neural network currently predicts given the weights and biases above and inputs of 
0.05 and 0.10. To do this we’ll feed those inputs forward though the network.
We figure out the total net input to each hidden layer neuron, squash the total net input using an activation 
function (here we use the logistic function), then repeat the process with the output layer neurons.
Total net input is also referred to as just net input by some sources.
Here’s how we calculate the total net input for :

We then squash it using the logistic function to get the output of :

http://web.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf


Carrying out the same process for  we get:

We repeat this process for the output layer neurons, using the output from the hidden layer neurons as inputs.
Here’s the output for :

And carrying out the same process for  we get:

Calculating the Total Error
We can now calculate the error for each output neuron using the squared error function and sum them to get the 
total error:

Some sources refer to the target as the ideal and the output as the actual.

The  is included so that exponent is cancelled when we differentiate later on. The result is eventually multiplied
by a learning rate anyway so it doesn’t matter that we introduce a constant here [1].
For example, the target output for  is 0.01 but the neural network output 0.75136507, therefore its error is:

Repeating this process for  (remembering that the target is 0.99) we get:

The total error for the neural network is the sum of these errors:

The Backwards Pass
Our goal with backpropagation is to update each of the weights in the network so that they cause the actual 
output to be closer the target output, thereby minimizing the error for each output neuron and the network as a 
whole.
Output Layer

Consider . We want to know how much a change in  affects the total error, aka .

 is read as “the partial derivative of  with respect to “. You can also say “the gradient with 
respect to “.
By applying the chain rule we know that:

Visually, here’s what we’re doing:

We need to figure out each piece in this equation.
First, how much does the total error change with respect to the output?

http://en.wikipedia.org/wiki/Chain_rule
http://en.wikipedia.org/wiki/Backpropagation#Derivation
http://www.amazon.com/Introduction-Math-Neural-Networks-Heaton-ebook/dp/B00845UQL6/ref=sr_1_1?ie=UTF8&qid=1426296804&sr=8-1&keywords=neural+network
http://en.wikipedia.org/wiki/Backpropagation#Derivation


 is sometimes expressed as 
When we take the partial derivative of the total error with respect to , the 

quantity  becomes zero because  does not affect it which means we’re taking the
derivative of a constant which is zero.
Next, how much does the output of  change with respect to its total net input?
The partial derivative of the logistic function is the output multiplied by 1 minus the output:

Finally, how much does the total net input of  change with respect to ?

Putting it all together:

You’ll often see this calculation combined in the form of the delta rule:

Alternatively, we have  and  which can be written as , aka  (the Greek letter delta) aka 
the node delta. We can use this to rewrite the calculation above:

Therefore:

Some sources extract the negative sign from  so it would be written as:

To decrease the error, we then subtract this value from the current weight (optionally multiplied by some 
learning rate, eta, which we’ll set to 0.5):

Some sources use  (alpha) to represent the learning rate, others use (eta), and others even use  (epsilon).
We can repeat this process to get the new weights , , and :

We perform the actual updates in the neural network after we have the new weights leading into the hidden 
layer neurons (ie, we use the original weights, not the updated weights, when we continue the backpropagation 
algorithm below).
Hidden Layer
Next, we’ll continue the backwards pass by calculating new values for , , , and .
Big picture, here’s what we need to figure out:

Visually:

http://web.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf
https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf
http://aima.cs.berkeley.edu/
http://en.wikipedia.org/wiki/Delta_rule
http://en.wikipedia.org/wiki/Delta_rule
http://en.wikipedia.org/wiki/Logistic_function#Derivative


We’re going to use a similar process as we did for the output layer, but slightly different to account for the fact 
that the output of each hidden layer neuron contributes to the output (and therefore error) of multiple output 

neurons. We know that  affects both  and  therefore the  needs to take into 
consideration its effect on the both output neurons:

Starting with :

We can calculate  using values we calculated earlier:

And  is equal to :

Plugging them in:

Following the same process for , we get:

Therefore:

Now that we have , we need to figure out  and then  for each weight:

We calculate the partial derivative of the total net input to  with respect to the same as we did for the 
output neuron:

https://matthewmazur.files.wordpress.com/2015/03/nn-calculation.png


Putting it all together:

You might also see this written as:

We can now update :

Repeating this for , , and 

Finally, we’ve updated all of our weights! When we fed forward the 0.05 and 0.1 inputs originally, the error on 
the network was 0.298371109. After this first round of backpropagation, the total error is now down to 
0.291027924. It might not seem like much, but after repeating this process 10,000 times, for example, the error 
plummets to 0.0000351085. At this point, when we feed forward 0.05 and 0.1, the two outputs neurons generate 
0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).

limitation, characteristics back propagation

Gradient descent with backpropagation is not guaranteed to find the global minimum of the error function, but
only a local minimum; also, it has trouble crossing plateaus in the error function landscape. This issue, caused
by the non-convexity of error functions in neural networks, was long thought to be a major drawback, but Yann
LeCun et al. argue that in many practical problems, it is not.[7]
Backpropagation  learning  does  not  require  normalization  of  input  vectors;  however,  normalization  could
improve performance

Application of EBPA.

As an elective for my Bachelor's degree, I took a graduate-level class in Neural Networks and found it to be
extremely exciting. In one of the final assignments, we were individually asked to apply and evaluate  back-
propagation in solving several types of problems that include classification, function estimation, and time-series
prediction.
MATLAB's  ability  to  efficiently  calculate  vectors  made it  the tool  of  choice  in  building the "Back  Prop"
framework. I then built a series of tests to evaluate the effectiveness of "Back Prop" configurations for each
specific  problem.  Although  the  goal  was  to  ultimately  solve  each  problem,  setting-up  and  refactoring  the
problem to work under the constraints of neural networks was also a rewarding task in itself.
Application #1: Classification
In this classification problem, the goal is to identify whether a certain "data point" belongs to Class 1, 2, or 3
(see above). Random points are assigned to a certain class, and the neural network is trained to find the pattern.
When training is complete, it will use what it has learned to accurately classify new points.

http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Backpropagation


Here, the network was able to distinguish group 1 (red)
from group 2 (blue).

Here, the system was trained to identify three groups.
Application #2: Function Approximation
In this problem, the network tries to approximate the value of a certain function. It is fed with noisy data, and
the goal is to find the true pattern. After training, the network successfully estimates the value of the gaussian
function (below).

Estimating the Gaussian function
Application #3: Time-series Prediction
In this problem, the goal is to design a neural network to predict a value based on a given time-series data (i.e.
stock market prediction based on given trends). To approach this problem, the inputs to the neural network have



to be refactored in chunks, and the resulting output will be the next data item directly following that chunk (see
below)

The input space and output space for the time-series prediction problem.
In this specific problem, goal was to predict time-series data based on a sine wave. After training the network,
lo' and behold system was able to accurately predict 1000 data points for the sine wave. The results are seen
below.

1000 sine wave predictions for the trained network.
Besides  acquiring  a  fascination  with  Neural  Networks,  learning  and  interacting  with  the  brilliant  graduate
students in the class also made it a worthwhile experience.

.



Adaptive Resonance Theory: Architecture, classifications, Implementation
and training, Associative Memory.

his network was developed by Stephen Grossberg and Gail Carpenter in 1987. It is based on competition and
uses  unsupervised learning model.  Adaptive Resonance  Theory (ART) networks,  as the name suggests,  is
always open to new learning (adaptive) without losing the old patterns (resonance). Basically, ART network is
a vector classifier which accepts an input vector and classifies it into one of the categories depending upon
which of the stored pattern it resembles the most.
Operating Principal
The main operation of ART classification can be divided into the following phases −

 Recognition phase − The input vector is compared with the classification presented at every node in
the output layer.  The output of the neuron becomes “1” if it  best  matches with the classification
applied, otherwise it becomes “0”.

 Comparison phase − In this phase, a comparison of the input vector to the comparison layer vector is
done. The condition for reset is that the degree of similarity would be less than vigilance parameter.

 Search phase − In this phase, the network will search for reset as well as the match done in the above
phases. Hence, if there would be no reset and the match is quite good, then the classification is over.
Otherwise, the process would be repeated and the other stored pattern must be sent to find the correct
match.

ART1
It  is  a  type of ART, which is designed to cluster  binary vectors.  We can understand  about this with the
architecture of it.
Architecture of ART1
It consists of the following two units −
Computational Unit − It is made up of the following −

 Input unit (F1 layer) − It further has the following two portions −
o F1(a) layer (Input portion) − In ART1, there would be no processing in this portion rather

than having the input vectors only. It is connected to F1(b) layer (interface portion).
o F1(b) layer (Interface portion) − This portion combines the signal from the input portion

with that of F2 layer. F1(b) layer is connected to F2 layer through bottom up weights bij and
F2layer is connected to F1(b) layer through top down weights tji.

 Cluster Unit (F2 layer) − This is a competitive layer. The unit having the largest net input is selected
to learn the input pattern. The activation of all other cluster unit are set to 0.

 Reset Mechanism − The work of this mechanism is based upon the similarity between the top-down
weight and the input vector. Now, if the degree of this similarity is less than the vigilance parameter,
then the cluster is not allowed to learn the pattern and a rest would happen.

Supplement Unit − Actually the issue with Reset mechanism is that the layer F2 must have to be inhibited
under  certain  conditions  and  must  also  be  available  when  some  learning  happens.  That  is  why  two
supplemental units namely, G1 and G2 is added along with reset unit, R. They are called gain control units.
These units receive and send signals to the other units present in the network. ‘+’ indicates an excitatory signal,
while ‘−’ indicates an inhibitory signal.



Parameters Used
Following parameters are used −

 n − Number of components in the input vector
 m − Maximum number of clusters that can be formed
 bij − Weight from F1(b) to F2 layer, i.e. bottom-up weights
 tji − Weight from F2 to F1(b) layer, i.e. top-down weights
 ρ − Vigilance parameter
 ||x|| − Norm of vector x

Algorithm
Step 1 − Initialize the learning rate, the vigilance parameter, and the weights as follows −

α>1and0<ρ≤1α>1and0<ρ≤1
0<bij(0)<αα−1+nandtij(0)=10<bij(0)<αα−1+nandtij(0)=1

Step 2 − Continue step 3-9, when the stopping condition is not true.
Step 3 − Continue step 4-6 for every training input.
Step 4 − Set activations of all F1(a) and F1 units as follows
F2 = 0 and F1(a) = input vectors
Step 5 − Input signal from F1(a) to F1(b) layer must be sent like

si=xisi=xi
Step 6 − For every inhibited F2 node
yj=∑ibijxiyj=∑ibijxi the condition is yj ≠ -1
Step 7 − Perform step 8-10, when the reset is true.
Step 8 − Find J for yJ ≥ yj for all nodes j
Step 9 − Again calculate the activation on F1(b) as follows

xi=sitJixi=sitJi
Step 10 − Now, after calculating the norm of vector x and vector s, we need to check the reset condition as
follows −
If ||x||/ ||s|| < vigilance parameter ρ, then inhibit  node J and go to step 7
Else If ||x||/ ||s|| ≥ vigilance parameter ρ, then proceed further.
Step 11 − Weight updating for node J can be done as follows −

bij(new)=αxiα−1+||x||bij(new)=αxiα−1+||x||
tij(new)=xitij(new)=xi

Step 12 − The stopping condition for algorithm must be checked and it may be as follows −
 Do not have any change in weight.
 Reset is not performed for units.
 Maximum number of epochs reached.
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Fuzzy Logic: Fuzzy set theory

Fuzzy Logic | Introduction
The term fuzzy refers to things which are not clear or are vague. In the real world many times we encounter a
situation when we can’t determine whether the state is true or false, their fuzzy logic provides a very valuable
flexibility for reasoning. In this way, we can consider the inaccuracies and uncertainties of any situation.

In boolean system truth value, 1.0 represents absolute truth value and 0.0 represents absolute false value. But in
the fuzzy  system, there is  no logic for  absolute truth and absolute false value.  But in fuzzy logic,  there is
intermediate value too present which is partially true and partially false.

Architecture

Its Architecture contains four parts :

RULE BASE: It contains the aet of rules and the IF-THEN conditions provided by the experts to govern the
decision making system, on the basis  of  linguistic  information. Recent  developments in fuzzy theory offer
several effective methods for the design and tuning of fuzzy controllers. Most of these developments reduce the
number of fuzzy rules.
FUZZIFICATION: It is used to convert inputs i.e. crisp numbers into fuzzy sets. Crisp inputs are basically the
exact  inputs  measured  by sensors  and  passed  into  the  control  system for  processing,  such as  temperature,
pressure, rpm’s, etc.
INFERENCE ENGINE: It determines the matching degree of the current fuzzy input with respect to each rule
and decides which rules are to be fired according to the input field. Next, the fired rules are combined to form
the control actions.
DEFUZZIFICATION: It is used to convert the fuzzy sets obtained by inference engine into a crisp value. There
are several defuzzification methods available and the best suited one is used with a specific expert system to
reduce the error.

Membership function

Definition: A graph that defines how each point in the input space is mapped to membership value between 0
and 1. Input space is often referred as the universe of discourse or universal  set  (u),  which contain all  the
possible elements of concern in each particular application.

There are largely three types of fuzzifiers:
singleton fuzzifier,
Gaussian fuzzifier, and
trapezoidal or triangular fuzzifier
What is Fuzzy Control?

It is a technique to embody human-like thinkings into a control system.
It may not be designed to give accurate reasoning but it is designed to give acceptable reasoning.
It can emulate human deductive thinking, that is, the process people use to infer conclusions from what they
know.
Any uncertainties can be easily dealt with the help of fuzzy logic.
Advantages of Fuzzy Logic System

This system can work with any type of inputs whether it is imprecise, distorted or noisy input information.
The construction of Fuzzy Logic Systems is easy and understandable.
Fuzzy logic comes with mathematical concepts of set theory and the reasoning of that is quite simple.
It provides a very efficient solution to complex problems in all fields of life as it resembles human reasoning and
decision making.
The algorithms can be described with little data, so little memory is required.
Disadvantages of Fuzzy Logic Systems



Many  researchers  proposed  different  ways  to  solve  a  given  problem  through  fuzzy  logic  which  lead  to
ambiguity.There is no systematic approach to solve a given problem through fuzzy logic.
Proof  of  its  characteristics  is  difficult  or  impossible  in  most  cases  because  every  time  we  do  not  get
mathematical description of our approach.
As fuzzy logic works on precise as well as imprecise data so most of the time accuracy 
iscompromised.

Application of FL

It is used in the aerospace field for altitude control of spacecraft and satellite.
It has used in the automotive system for speed control, traffic control.
It is used for decision making support systems and personal evaluation in the large company business.
It has application in chemical industry for controlling the pH, drying, chemical distillation process.
Fuzzy logic are used in Natural language processing and various intensive applications in Artificial Intelligence.
Fuzzy logic are extensively used in modern control systems such as expert systems.
Fuzzy Logic is used with Neural Networks as it mimics how a person would make decisions, only much faster.
It is done by Aggregation of data and changing into more meaningful data by forming partial truths as Fuzzy
sets.

Fuzzy set versus crisp set

 
Fuzzy logic is a form of many-valued logic in which the truth values of variables may be any real number 
between 0 and 1 inclusive. It is employed to handle the concept of partial truth, where the truth value may range 
between completely true and completely false. By contrast, in Boolean logic, the truth values of variables may 
only be the integer values 0 or 1.
The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory by Lotfi Zadeh. Fuzzy logic had 
however been studied since the 1920s, as infinite-valued logic—notably by Łukasiewicz and Tarski. 
It is based on the observation that people make decisions based on imprecise and non-numerical information, 
fuzzy models or sets are mathematical means of representing vagueness and imprecise information, hence the 
term fuzzy. These models have the capability of recognising, representing, manipulating, interpreting, and 
utilising data and information that are vague and lack certainty. 
Fuzzy logic has been applied to many fields, from control theory to artificial intelligence.
A set is an unordered collection of different elements. It can be written explicitly by listing its elements using
the set bracket. If the order of the elements is changed or any element of a set is repeated, it does not make any
changes in the set.
Example

 A set of all positive integers.
 A set of all the planets in the solar system.
 A set of all the states in India.
 A set of all the lowercase letters of the alphabet.

Mathematical Representation of a Set
Sets can be represented in two ways −
Roster or Tabular Form
In this form, a set is represented by listing all the elements comprising it. The elements are enclosed within
braces and separated by commas.
Following are the examples of set in Roster or Tabular Form −

 Set of vowels in English alphabet, A = {a,e,i,o,u}
 Set of odd numbers less than 10, B = {1,3,5,7,9}

Set Builder Notation
In this form, the set is defined by specifying a property that elements of the set have in common. The set is
described as A = {x:p(x)}
Example 1 − The set {a,e,i,o,u} is written as

A = {x:x is a vowel in English alphabet}
Example 2 − The set {1,3,5,7,9} is written as
B = {x:1 ≤ x < 10 and (x%2) ≠ 0}
If an element x is a member of any set S, it is denoted by x S and if an element y is not a member of set S, it∈
is denoted by y S.∉
Example − If S = {1,1.2,1.7,2},1  S but 1.5  S∈ ∉
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Cardinality of a Set
Cardinality of a set S, denoted by |S||S|, is the number of elements of the set. The number is also referred as the
cardinal number. If a set has an infinite number of elements, its cardinality is ∞∞.
Example − |{1,4,3,5}| = 4,|{1,2,3,4,5,…}| = ∞
If there are two sets X and Y, |X| = |Y| denotes two sets X and Y having same cardinality. It occurs when the
number of elements in X is exactly equal to the number of elements in Y. In this case, there exists a bijective
function ‘f’ from X to Y.
|X| ≤ |Y| denotes that set X’s cardinality is less than or equal to set Y’s cardinality. It occurs when the number
of elements in X is less than or equal to that of Y. Here, there exists an injective function ‘f’ from X to Y.
|X| < |Y| denotes that set X’s cardinality is less than set Y’s cardinality. It occurs when the number of elements
in X is less than that of Y. Here, the function ‘f’ from X to Y is injective function but not bijective.
If |X| ≤ |Y| and |X| ≤ |Y| then |X| = |Y|. The sets X and Y are commonly referred as equivalent sets.
Types of Sets
Sets can be classified into many types; some of which are finite, infinite, subset, universal, proper, singleton
set, etc.
Finite Set
A set which contains a definite number of elements is called a finite set.
Example − S = {x|x  N and 70 > x > 50}∈
Infinite Set
A set which contains infinite number of elements is called an infinite set.
Example − S = {x|x  N and x > 10}∈
Subset
A set X is a subset of set Y (Written as X  Y) if every element of X is an element of set Y.⊆
Example 1 − Let, X = {1,2,3,4,5,6} and Y = {1,2}. Here set Y is a subset of set X as all the elements of set Y
is in set X. Hence, we can write Y X.⊆
Example 2 − Let, X = {1,2,3} and Y = {1,2,3}. Here set Y is a subset (not a proper subset) of set X as all the
elements of set Y is in set X. Hence, we can write Y X.⊆
Proper Subset
The term “proper subset” can be defined as “subset of but not equal to”. A Set X is a proper subset of set Y
(Written as X  Y) if every element of X is an element of set Y and |X| < |Y|.⊂
Example − Let, X = {1,2,3,4,5,6} and Y = {1,2}. Here set Y  X, since all elements in Y are contained in X⊂
too and X has at least one element which is more than set Y.
Universal Set
It is a collection of all elements in a particular context or application. All the sets in that context or application
are essentially subsets of this universal set. Universal sets are represented as U.
Example − We may define U as the set of all animals on earth. In this case, a set of all mammals is a subset of
U, a set of all fishes is a subset of U, a set of all insects is a subset of U, and so on.
Empty Set or Null Set
An empty set contains no elements. It is denoted by Φ. As the number of elements in an empty set is finite,
empty set is a finite set. The cardinality of empty set or null set is zero.
Example – S = {x|x  N and 7 < x < 8} = Φ∈
Singleton Set or Unit Set
A Singleton set or Unit set contains only one element. A singleton set is denoted by {s}.
Example − S = {x|x  N, 7 < x < 9} = {8}∈
Equal Set
If two sets contain the same elements, they are said to be equal.
Example − If A = {1,2,6} and B = {6,1,2}, they are equal as every element of set A is an element of set B and
every element of set B is an element of set A.
Equivalent Set
If the cardinalities of two sets are same, they are called equivalent sets.
Example −  If  A  =  {1,2,6}  and  B  =  {16,17,22},  they  are  equivalent  as  cardinality  of  A is  equal  to  the
cardinality of B. i.e. |A| = |B| = 3
Overlapping Set
Two sets that have at least one common element are called overlapping sets. In case of overlapping sets −

n(A∪B)=n(A)+n(B)−n(A∩B)n(A B)=n(A)+n(B)−n(A∩B)∪
n(A∪B)=n(A−B)+n(B−A)+n(A∩B)n(A B)=n(A−B)+n(B−A)+n(A∩B)∪

n(A)=n(A−B)+n(A∩B)n(A)=n(A−B)+n(A∩B)
n(B)=n(B−A)+n(A∩B)n(B)=n(B−A)+n(A∩B)

Example −  Let,  A  =  {1,2,6}  and  B =  {6,12,42}.  There  is  a  common element  ‘6’,  hence  these  sets  are
overlapping sets.



Disjoint Set
Two sets A and B are called disjoint sets if they do not have even one element in common. Therefore, disjoint
sets have the following properties −

n(A∩B)=ϕn(A∩B)=ϕ
n(A∪B)=n(A)+n(B)n(A B)=n(A)+n(B)∪

Example − Let, A = {1,2,6} and B = {7,9,14}, there is not a single common element, hence these sets are
overlapping sets.

Operations on Classical Sets

Set Operations include Set Union, Set Intersection, Set Difference, Complement of Set, and Cartesian Product.
Union
The union of sets A and B (denoted by A  BA  B) is the set of elements which are in A, in B, or in both A∪ ∪
and B. Hence, A  B = {x|x  A OR x  B}.∪ ∈ ∈
Example − If A = {10,11,12,13} and B = {13,14,15}, then A  B = {10,11,12,13,14,15} – The common∪
element occurs only once.

Intersection
The intersection of sets A and B (denoted by A ∩ B) is the set of elements which are in both A and B. Hence,
A ∩ B = {x|x  A AND x  B}.∈ ∈

Difference/ Relative Complement
The set difference of sets A and B (denoted by A–B) is the set of elements which are only in A but not in B.
Hence, A − B = {x|x  A AND x  B}.∈ ∉
Example − If A = {10,11,12,13} and B = {13,14,15}, then (A − B) = {10,11,12} and (B − A) = {14,15}. Here,
we can see (A − B) ≠ (B − A)

Complement of a Set
The complement of a set A (denoted by A′) is the set of elements which are not in set A. Hence, A′ = {x|x ∉
A}.
More specifically, A′ = (U−A) where U is a universal set which contains all objects.
Example − If A = {x|x belongs to set of add integers} then A′ = {y|y does not belong to set of odd integers}

Cartesian Product / Cross Product
The Cartesian product of n number of sets A1,A2,…An denoted as A1 × A2...× An can be defined as all
possible ordered pairs (x1,x2,…xn) where x1  A1,x2  A2,…xn  An∈ ∈ ∈
Example − If we take two sets A = {a,b} and B = {1,2},



The Cartesian product of A and B is written as − A × B = {(a,1),(a,2),(b,1),(b,2)}
And, the Cartesian product of B and A is written as − B × A = {(1,a),(1,b),(2,a),(2,b)}
Properties of Classical Sets
Properties on sets play an important role for obtaining the solution. Following are the different properties of
classical sets −
Commutative Property
Having two sets A and B, this property states −

A∪B=B∪AA B=B A∪ ∪
A∩B=B∩AA∩B=B∩A

Associative Property
Having three sets A, B and C, this property states −

A (∪ B∪C)=(A∪B)∪CA (B C)=(A B) C∪ ∪ ∪ ∪
A∩(B∩C)=(A∩B)∩CA∩(B∩C)=(A∩B)∩C

Distributive Property
Having three sets A, B and C, this property states −

A (∪ B∩C)=(A∪B)∩(A∪C)A (B∩C)=(A B)∩(A C)∪ ∪ ∪
A∩(B∪C)=(A∩B) (∪ A∩C)A∩(B C)=(A∩B) (A∩C)∪ ∪

Idempotency Property
For any set A, this property states −

A∪A=AA A=A∪
A∩A=AA∩A=A

Identity Property
For set A and universal set X, this property states −

A∪φ=AA φ=A∪
A∩X=AA∩X=A
A∩φ=φA∩φ=φ

A∪X=XA X=X∪
Transitive Property
Having three sets A, B and C, the property states −

If A⊆B⊆CA B C⊆ ⊆ , then A⊆CA C⊆
Involution Property
For any set A, this property states −

A¯¯¯¯¯¯¯¯=AA¯¯=A
De Morgan’s Law
It is a very important law and supports in proving tautologies and contradiction. This law states −

A∩B¯¯¯¯¯¯¯¯¯¯¯¯¯=A¯¯¯¯∪B¯¯¯¯A∩B¯=A¯ B¯∪
A∪B¯¯¯¯¯¯¯¯¯¯¯¯¯=A¯¯¯¯∩B¯¯¯¯

Fuzzy sets can be considered as an extension and gross oversimplification of classical  sets. It  can be best
understood in the context  of  set  membership.  Basically  it  allows partial  membership which means that  it
contain  elements  that  have  varying  degrees  of  membership in  the  set.  From this,  we can  understand  the
difference between classical set and fuzzy set. Classical set contains elements that satisfy precise properties of
membership while fuzzy set contains elements that satisfy imprecise properties of membership.

Mathematical Concept
A fuzzy set A˜A~ in the universe of information UU can be defined as a set of ordered pairs and it can be
represented mathematically as −

A˜={(y,μA˜(y))|y∈U}A~={(y,μA~(y))|y U}∈
Here μA˜(y)μA~(y) = degree of membership of yy in \widetilde{A}, assumes values in the range from 0 to 1,
i.e., μA˜(y) [∈ 0,1]μA~(y) [0,1]∈ .
Representation of fuzzy set
Let us now consider two cases of universe of information and understand how a fuzzy set can be represented.



Case 1
When universe of information UU is discrete and finite −

A˜={μA˜(y1)y1+μA˜(y2)y2+μA˜(y3)y3+...}A~={μA~(y1)y1+μA~(y2)y2+μA~(y3)y3+...}
={∑ni=1μA˜(yi)yi}={∑i=1nμA~(yi)yi}
Case 2
When universe of information UU is continuous and infinite −

A˜={∫μA˜(y)y}A~={∫μA~(y)y}
In the above representation, the summation symbol represents the collection of each element.
Operations on Fuzzy Sets
Having two fuzzy sets A˜A~ and B˜B~, the universe of information UU and an element  of the universe, the𝑦
following relations express the union, intersection and complement operation on fuzzy sets.
Union/Fuzzy ‘OR’
Let us consider the following representation to understand how the Union/Fuzzy ‘OR’ relation works −

μA˜∪B˜(y)=μA˜∨μB˜ y∀ ∈UμA~ B~(y)=μA~ μB~ y U∪ ∨ ∀ ∈
Here  represents the ‘max’ operation.∨

Intersection/Fuzzy ‘AND’

Let us consider the following representation to understand how the Intersection/Fuzzy ‘AND’ relation works
−

μA˜∩B˜(y)=μA˜∧μB˜ y∀ ∈UμA~∩B~(y)=μA~ μB~ y U∧ ∀ ∈
Here  represents the ‘min’ operation.∧

Complement/Fuzzy ‘NOT’
Let us consider the following representation to understand how the Complement/Fuzzy ‘NOT’ relation works
−

μA˜=1−μA˜(y)y∈UμA~=1−μA~(y)y U∈



Properties of Fuzzy Sets
Let us discuss the different properties of fuzzy sets.
Commutative Property
Having two fuzzy sets A˜A~ and B˜B~, this property states −

A˜∪B˜=B˜∪A˜A~ B~=B~ A~∪ ∪
A˜∩B˜=B˜∩A˜A~∩B~=B~∩A~

Associative Property
Having three fuzzy sets A˜A~, B˜B~ and C˜C~, this property states −

A˜ (∪ B˜∪C˜)=(A˜∪B˜)∪C˜A~ (B~ C~)=(A~ B~) C~∪ ∪ ∪ ∪
A˜∩(B˜∩C˜)=(A˜∪B˜)∪C˜A~∩(B~∩C~)=(A~ B~) C~∪ ∪

Distributive Property
Having three fuzzy sets A˜A~, B˜B~ and C˜C~, this property states −

A˜ (∪ B˜∩C˜)=(A˜∪B˜)∩(A˜∪C˜)A~ (B~∩C~)=(A~ B~)∩(A~ C~)∪ ∪ ∪
A˜∩(B˜∪C˜)=(A˜∩B˜) (∪ A˜∩C˜)A~∩(B~ C~)=(A~∩B~) (A~∩C~)∪ ∪

Idempotency Property
For any fuzzy set A˜A~, this property states −

A˜∪A˜=A˜A~ A~=A~∪
A˜∩A˜=A˜A~∩A~=A~

Identity Property
For fuzzy set A˜A~ and universal set UU, this property states −

A˜∪φ=A˜A~ φ=A~∪
A˜∩U=A˜A~∩U=A~

A˜∩φ=φA~∩φ=φ
A˜∪U=UA~ U=U∪

Transitive Property
Having three fuzzy sets A˜A~, B˜B~ and C˜C~, this property states −

IfA˜⊆B˜⊆C˜,thenA˜⊆C˜IfA~ B~ C~,thenA~ C~⊆ ⊆ ⊆
Involution Property
For any fuzzy set A˜A~, this property states −

A˜¯¯¯¯¯¯¯¯=A˜A~¯¯=A~
De Morgan’s Law
This law plays a crucial role in proving tautologies and contradiction. This law states −

A˜∩B˜¯¯¯¯¯¯¯¯¯¯¯¯¯=A˜¯¯¯¯∪B˜¯¯¯¯A~∩B~¯=A~¯ B~¯∪
A˜∪B˜¯¯¯¯¯¯¯¯¯¯¯¯¯=A˜¯¯¯¯∩B˜¯¯¯¯

We already know that fuzzy logic is not logic that is fuzzy but logic that is used to describe fuzziness. This
fuzziness  is  best  characterized  by  its  membership  function.  In  other  words,  we can  say  that  membership
function represents the degree of truth in fuzzy logic.

Following are a few important points relating to the membership function −
 Membership functions were first  introduced in 1965 by Lofti A. Zadeh in his first  research paper

“fuzzy sets”.
 Membership  functions  characterize  fuzziness  (i.e.,  all  the  information  in  fuzzy  set),  whether  the

elements in fuzzy sets are discrete or continuous.
 Membership functions can be defined as a technique to solve practical problems by experience rather

than knowledge.
 Membership functions are represented by graphical forms.
 Rules for defining fuzziness are fuzzy too.

Mathematical Notation



We have already studied that a fuzzy set Ã in the universe of information Ucan be defined as a set of ordered
pairs and it can be represented mathematically as −

A˜={(y,μA˜(y))|y∈U}A~={(y,μA~(y))|y U}∈
Here μA˜(∙)μA~(∙) =  membership  function  of A˜A~;  this  assumes  values  in  the  range  from  0  to  1,
i.e., μA˜(∙) [∈ 0,1]μA~(∙) [0,1]∈ .  The  membership  function μA˜(∙)μA~(∙) maps UU to  the  membership
spaceMM.
The dot (∙)(∙) in the membership function described above, represents the element in a fuzzy set; whether it is
discrete or continuous.
Features of Membership Functions
We will now discuss the different features of Membership Functions.
Core
For any fuzzy set A˜A~, the core of a membership function is that region of universe that is characterize by full
membership in the set. Hence, core consists of all those elements yy of the universe of information such that,

μA˜(y)=1μA~(y)=1
Support
For any fuzzy set A˜A~, the support of a membership function is the region of universe that is characterize by a
nonzero membership in the set. Hence core consists of all those elements yy of the universe of information
such that,

μA˜(y)>0μA~(y)>0
Boundary
For any fuzzy set A˜A~, the boundary of a membership function is the region of universe that is characterized
by a  nonzero  but  incomplete  membership in  the set.  Hence,  core  consists  of  all  those  elements yy of  the
universe of information such that,

1>μA˜(y)>01>μA~(y)>0

Fuzzification
It may be defined as the process of transforming a crisp set to a fuzzy set or a fuzzy set to fuzzier set. Basically,
this operation translates accurate crisp input values into linguistic variables.
Following are the two important methods of fuzzification −
Support Fuzzification(s-fuzzification) Method
In this method, the fuzzified set can be expressed with the help of the following relation −

A˜=μ1Q(x1)+μ2Q(x2)+...+μnQ(xn)A~=μ1Q(x1)+μ2Q(x2)+...+μnQ(xn)
Here  the  fuzzy  set Q(xi)Q(xi) is  called  as  kernel  of  fuzzification.  This  method  is  implemented  by
keeping μiμi constant and xixi being transformed to a fuzzy set Q(xi)Q(xi).
Grade Fuzzification (g-fuzzification) Method
It is quite similar to the above method but the main difference is that it kept xixi constant and μiμi is expressed
as a fuzzy set.
Defuzzification
It may be defined as the process of reducing a fuzzy set into a crisp set or to convert a fuzzy member into a
crisp member.



We have already studied that  the fuzzification process  involves  conversion  from crisp quantities  to fuzzy
quantities. In a number of engineering applications, it  is necessary to defuzzify the result  or rather “fuzzy
result” so that it must be converted to crisp result. Mathematically, the process of Defuzzification is also called
“rounding it off”.
The different methods of Defuzzification are described below −
Max-Membership Method
This method is limited to peak output functions and also known as height method. Mathematically it can be
represented as follows −

μA˜(x )>∗ μA˜(x)forallx∈XμA~(x )>μA~(x)forallx X∗ ∈
Here, x∗x∗ is the defuzzified output.
Centroid Method
This  method  is  also  known  as  the  center  of  area  or  the  center  of  gravity  method.  Mathematically,  the
defuzzified output x∗x∗ will be represented as −

x =∫∗ μA˜(x).xdx∫μA˜(x).dxx =∫μA~(x).xdx∫μA~(x).dx∗
Weighted Average Method
In this method, each membership function is weighted by its maximum membership value. Mathematically, the
defuzzified output x∗x∗ will be represented as −

x =∑∗ μA˜(xi¯¯¯¯¯).xi¯¯¯¯¯∑μA˜(xi¯¯¯¯¯)x =∑μA~(xi¯).xi¯∑μA~(xi¯)∗
Mean-Max Membership
This method is also known as the middle of the maxima. Mathematically, the defuzzified output  x∗x∗ will
be represented as −

x =∑∗ i=1nxi¯¯¯¯¯n
Logic, which was originally just the study of what distinguishes sound argument from unsound argument, has
now developed into a powerful and rigorous system whereby true statements can be discovered, given other
statements that are already known to be true.
Predicate Logic
This logic deals with predicates, which are propositions containing variables.
A predicate is an expression of one or more variables defined on some specific domain. A predicate with
variables can be made a proposition by either assigning a value to the variable or by quantifying the variable.
Following are a few examples of predicates −

 Let E(x, y) denote "x = y"
 Let X(a, b, c) denote "a + b + c = 0"
 Let M(x, y) denote "x is married to y"

Propositional Logic
A proposition is a collection of declarative statements that have either a truth value "true” or a truth value
"false". A propositional consists of propositional variables and connectives. The propositional variables are
dented by capital letters (A, B, etc). The connectives connect the propositional variables.
A few examples of Propositions are given below −

 "Man is Mortal", it returns truth value “TRUE”
 "12 + 9 = 3 – 2", it returns truth value “FALSE”

The following is not a Proposition −
 "A is less than 2" − It is because unless we give a specific value of A, we cannot say whether the

statement is true or false.
Connectives
In propositional logic, we use the following five connectives −

 OR ( )∨∨
 AND ( )∧∧
 Negation/ NOT (¬¬)
 Implication / if-then (→→)
 If and only if ( )⇔⇔

OR ( )∨∨
The  OR  operation  of  two  propositions  A  and  B  (written  as  A BA B)  is  true  if  at  least  any  of  the∨ ∨
propositional variable A or B is true.
The truth table is as follows −

A B A ∨
B

True True True



True False True

False True True

False False False

AND ( )∧∧
The AND operation of two propositions A and B (written as A BA B) is true if both the propositional∧ ∧
variable A and B is true.
The truth table is as follows −

A B A ∧
B

True True True

True False False

False True False

False False False

Negation (¬¬)
The negation of a proposition A (written as ¬A¬A) is false when A is true and is true when A is false.
The truth table is as follows −

A ¬A

True False

False True

Implication / if-then (→→)
An implication A→BA→B is the proposition “if A, then B”. It is false if A is true and B is false. The rest cases
are true.
The truth table is as follows −

A B A→B

True True True

True False False

False True True

False False True

If and only if ( )⇔⇔
A BA B is a bi-conditional logical connective which is true when p and q are same, i.e., both are false or⇔ ⇔
both are true.
The truth table is as follows −

A B A B⇔

True True True

True False False

False True False



False False True

Well Formed Formula
Well Formed Formula (wff) is a predicate holding one of the following −

 All propositional constants and propositional variables are wffs.
 If x is a variable and Y is a wff, xY and xY are also wff.∀ ∃
 Truth value and false values are wffs.
 Each atomic formula is a wff.
 All connectives connecting wffs are wffs.

Quantifiers
The variable of predicates is quantified by quantifiers. There are two types of quantifier in predicate logic −

 Universal Quantifier
 Existential Quantifier

Universal Quantifier
Universal quantifier states that the statements within its scope are true for every value of the specific variable.
It is denoted by the symbol .∀

xP(x)∀  is read as for every value of x, P(x) is true.
Example − "Man is mortal" can be transformed into the propositional form xP(x). Here, P(x) is the predicate∀
which denotes that x is mortal and the universe of discourse is all men.
Existential Quantifier
Existential quantifier states that the statements within its scope are true for some values of the specific variable.
It is denoted by the symbol .∃
xP(x)∃  for some values of x is read as, P(x) is true.

Example − "Some people are dishonest" can be transformed into the propositional form x P(x) where P(x) is∃
the predicate which denotes x is dishonest and the universe of discourse is some people.
Nested Quantifiers
If we use a quantifier that appears within the scope of another quantifier, it is called a nested quantifier.
Example

 ∀ a bP(x,y) where P(a,b) denotes a+b = 0∃
 ∀ a b cP(a,b,c) where P(a,b) denotes a+(b+c) = (a+b)+c∀ ∀

Note − a bP(x,y) ≠ a bP(x,y)∀ ∃ ∃ ∀
Following are the different modes of approximate reasoning −
Categorical Reasoning
In  this  mode  of  approximate  reasoning,  the  antecedents,  containing  no  fuzzy  quantifiers  and  fuzzy
probabilities, are assumed to be in canonical form.
Qualitative Reasoning
In this mode of approximate reasoning, the antecedents and consequents have fuzzy linguistic variables; the
input-output relationship of a system is expressed as a collection of fuzzy IF-THEN rules. This reasoning is
mainly used in control system analysis.
Syllogistic Reasoning
In this mode of approximation reasoning, antecedents with fuzzy quantifiers are related to inference rules. This
is expressed as −

x = S1A′s are B′s
y = S2C′s are D′s

------------------------
z = S3E′s are F′s

Here A,B,C,D,E,F are fuzzy predicates.
 S1 and S2 are given fuzzy quantifiers.
 S3 is the fuzzy quantifier which has to be decided.

Dispositional Reasoning
In this mode of approximation reasoning, the antecedents are dispositions that may contain the fuzzy quantifier
“usually”. The quantifier Usually links together the dispositional and syllogistic reasoning; hence it pays an
important role.
For example, the projection rule of inference in dispositional reasoning can be given as follows −

usually( (L,M) is R )  usually (L is [R ↓ L])⇒
Here [R ↓ L] is the projection of fuzzy relation R on L
Fuzzy Logic Rule Base
It is a known fact that a human being is always comfortable making conversations in natural language. The
representation of human knowledge can be done with the help of following natural language expression −

IF antecedent THEN consequent



The expression as stated above is referred to as the Fuzzy IF-THEN rule base.
Canonical Form
Following is the canonical form of Fuzzy Logic Rule Base −
Rule 1 − If condition C1, then restriction R1
Rule 2 − If condition C1, then restriction R2
.
..
Rule n − If condition C1, then restriction Rn
Interpretations of Fuzzy IF-THEN Rules
Fuzzy IF-THEN Rules can be interpreted in the following four forms −
Assignment Statements
These kinds of statements use “=” (equal to sign) for the purpose of assignment. They are of the following
form −

a = hello
climate = summer

Conditional Statements
These kinds of statements use the “IF-THEN” rule base form for the purpose of condition. They are of the
following form −

IF temperature is high THEN Climate is hot
IF food is fresh THEN eat.

Unconditional Statements
They are of the following form −

GOTO 10
turn the Fan off

Linguistic Variable
We have studied  that  fuzzy  logic  uses  linguistic  variables  which  are  the  words or  sentences  in  a  natural
language. For example, if we say temperature, it is a linguistic variable; the values of which are very hot or
cold, slightly hot or cold, very warm, slightly warm, etc. The words very, slightly are the linguistic hedges.
Characterization of Linguistic Variable
Following four terms characterize the linguistic variable −

 Name of the variable, generally represented by x.
 Term set of the variable, generally represented by t(x).
 Syntactic rules for generating the values of the variable x.
 Semantic rules for linking every value of x and its significance.

Propositions in Fuzzy Logic
As we know that propositions are sentences expressed in any language which are generally expressed in the
following canonical form −

s as P
Here, s is the Subject and P is Predicate.
For example, “Delhi is the capital of India”, this is a proposition where “Delhi” is the subject and “is the
capital of India” is the predicate which shows the property of subject.
We know that logic is the basis of reasoning and fuzzy logic extends the capability of reasoning by using fuzzy
predicates,  fuzzy-predicate  modifiers,  fuzzy  quantifiers  and  fuzzy  qualifiers  in  fuzzy  propositions  which
creates the difference from classical logic.
Propositions in fuzzy logic include the following −
Fuzzy Predicate
Almost every predicate in natural language is fuzzy in nature hence, fuzzy logic has the predicates like tall,
short, warm, hot, fast, etc.
Fuzzy-predicate Modifiers
We discussed linguistic hedges above; we also have many fuzzy-predicate modifiers which act as hedges. They
are very essential for producing the values of a linguistic variable. For example, the words very, slightly are
modifiers and the propositions can be like “water is slightly hot.”
Fuzzy Quantifiers
It can be defined as a fuzzy number which gives a vague classification of the cardinality of one or more fuzzy
or non-fuzzy sets. It can be used to influence probability within fuzzy logic. For example, the words many,
most, frequently are used as fuzzy quantifiers and the propositions can be like “most people are allergic to it.”
Fuzzy Qualifiers
Let  us  now understand  Fuzzy  Qualifiers.  A Fuzzy  Qualifier  is  also a  proposition of  Fuzzy  Logic.  Fuzzy
qualification has the following forms −



Fuzzy Qualification Based on Truth
It claims the degree of truth of a fuzzy proposition.
Expression − It is expressed as x is t. Here, t is a fuzzy truth value.
Example − (Car is black) is NOT VERY True.
Fuzzy Qualification Based on Probability
It claims the probability, either numerical or an interval, of fuzzy proposition.
Expression − It is expressed as x is λ. Here, λ is a fuzzy probability.
Example − (Car is black) is Likely.
Fuzzy Qualification Based on Possibility
It claims the possibility of fuzzy proposition.
Expression − It is expressed as x is π. Here, π is a fuzzy possibility.
Example − (Car is black) is Almost Impossible.

Fuzzy rule base system: fuzzy propositions,  formation, decomposition &
aggregation of fuzzy rules, fuzzy reasoning, fuzzy inference systems, 

Fuzzy Inference System is the key unit of a fuzzy logic system having decision making as its primary work. It
uses the “IF…THEN” rules along with connectors “OR” or “AND” for drawing essential decision rules.
Characteristics of Fuzzy Inference System
Following are some characteristics of FIS −

 The output from FIS is always a fuzzy set irrespective of its input which can be fuzzy or crisp.
 It is necessary to have fuzzy output when it is used as a controller.
 A defuzzification unit would be there with FIS to convert fuzzy variables into crisp variables.

Functional Blocks of FIS
The following five functional blocks will help you understand the construction of FIS −

 Rule Base − It contains fuzzy IF-THEN rules.
 Database − It defines the membership functions of fuzzy sets used in fuzzy rules.
 Decision-making Unit − It performs operation on rules.
 Fuzzification Interface Unit − It converts the crisp quantities into fuzzy quantities.
 Defuzzification Interface Unit − It converts the fuzzy quantities into crisp quantities. Following is a

block diagram of fuzzy interference system.

Working of FIS

The working of the FIS consists of the following steps −
 A fuzzification unit supports the application of numerous fuzzification methods, and converts the crisp

input into fuzzy input.
 A knowledge base - collection of rule base and database is formed upon the conversion of crisp input

into fuzzy input.
 The defuzzification unit fuzzy input is finally converted into crisp output.

Methods of FIS



Let us now discuss the different methods of FIS. Following are the two important methods of FIS, having
different consequent of fuzzy rules −

 Mamdani Fuzzy Inference System
 Takagi-Sugeno Fuzzy Model (TS Method)

Mamdani Fuzzy Inference System
This system was proposed in 1975 by Ebhasim Mamdani. Basically,  it  was anticipated to control a steam
engine and boiler  combination by synthesizing a set  of  fuzzy  rules  obtained  from people  working on the
system.
Steps for Computing the Output
Following steps need to be followed to compute the output from this FIS −

 Step 1 − Set of fuzzy rules need to be determined in this step.
 Step 2 − In this step, by using input membership function, the input would be made fuzzy.
 Step 3 − Now establish the rule strength by combining the fuzzified inputs according to fuzzy rules.
 Step 4 − In this step, determine the consequent of rule by combining the rule strength and the output

membership function.
 Step 5 − For getting output distribution combine all the consequents.
 Step 6 − Finally, a defuzzified output distribution is obtained.

Following is a block diagram of Mamdani Fuzzy Interface System.

Takagi-Sugeno Fuzzy Model (TS Method)
This model was proposed by Takagi, Sugeno and Kang in 1985. Format of this rule is given as −

IF x is A and y is B THEN Z = f(x,y)
Here, AB are fuzzy sets in antecedents and z = f(x,y) is a crisp function in the consequent.
Fuzzy Inference Process
The fuzzy inference process under Takagi-Sugeno Fuzzy Model (TS Method) works in the following way −

 Step 1: Fuzzifying the inputs − Here, the inputs of the system are made fuzzy.
 Step 2: Applying the fuzzy operator − In this step, the fuzzy operators must be applied to get the

output.
Rule Format of the Sugeno Form
The rule format of Sugeno form is given by −

if 7 = x and 9 = y then output is z = ax+by+c
Comparison between the two methods
Let us now understand the comparison between the Mamdani System and the Sugeno Model.

 Output  Membership  Function −  The  main  difference  between  them  is  on  the  basis  of  output
membership function. The Sugeno output membership functions are either linear or constant.



 Aggregation  and  Defuzzification  Procedure −  The  difference  between  them  also  lies  in  the
consequence of fuzzy rules and due to the same their aggregation and defuzzification procedure also
differs.

 Mathematical Rules − More mathematical rules exist for the Sugeno rule than the Mamdani rule.
 Adjustable Parameters − The Sugeno controller has more adjustable parameters than the Mamdani

controller.
e have studied in our previous chapters that Fuzzy Logic is an approach to computing based on "degrees of
truth" rather than the usual "true or false" logic. It deals with reasoning that is approximate rather than precise
to solve problems in a way that more resembles human logic, hence database querying process by the two
valued realization of Boolean algebra is not adequate.
Fuzzy Scenario of Relations on Databases
The Fuzzy Scenario of Relations on Databases can be understood with the help of the following example −
Example
Suppose we have a database having the records of persons who visited India.  In simple
database, we will have the entries made in the following way −

Name Age Citizen Visited Country Days Spent Year of Visit

John Smith 35 U.S. India 41 1999

John Smith 35 U.S. Italy 72 1999

John Smith 35 U.S. Japan 31 1999

Now, if anyone queries about the person who visited India and Japan in the year 99 and is the citizen of US,
then the output will show two entries having the name of John Smith. This is simple query generating simple
output.
But what if we want to know whether the person in the above query is young or not. According to the above
result, the age of the person is 35 years. But can we assume the person to be young or not? Similarly, same
thing can be applied on the other fields like days spent, year of visit, etc.
The solution of the above issues can be found with the help of Fuzzy Value sets as follows −

 FV(Age){ very young, young, somewhat old, old }
 FV(Days Spent){ barely few days, few days, quite a few days, many days }
 FV(Year of Visit){distant past, recent past, recent }
 Now if any query will have the fuzzy value then the result will also be fuzzy in nature.

Fuzzy Query System
A fuzzy  query system is  an interface  to  users  to  get  information from the database  using (quasi)  natural
language sentences.  Many fuzzy query implementations have been proposed, resulting in slightly different
languages. Although there are some variations according to the particularities of different implementations, the
answer to a fuzzy query sentence is generally a list of records, ranked by the degree of matching.
In  modeling natural  language  statements,  quantified  statements  play  an  important  role.  It  means  that  NL
heavily depends on quantifying construction which often includes fuzzy concepts like “almost all”, “many”,
etc. Following are a few examples of quantifying propositions −

 Every student passed the exam.
 Every sport car is expensive.
 Many students passed the exam.
 Many sports cars are expensive.

In the above examples, the quantifiers “Every” and “Many” are applied to the crisp restrictions “students” as
well as crisp scope “(person who)passed the exam” and “cars” as well as crisp scope ”sports”.
Fuzzy Events, Fuzzy Means and Fuzzy Variances
With the help of an example, we can understand the above concepts. Let us assume that we are a shareholder
of a company named ABC. And at present the company is selling each of its share for 40. There are three₹
different companies whose business is similar to ABC but these are offering their shares at different rates -

100 a share, 85 a share and 60 a share respectively.₹ ₹ ₹
Now the probability distribution of this price takeover is as follows −

Price 100₹ 85₹ 60₹

Probability 0.3 0.5 0.2

Now, from the standard probability theory, the above distribution gives a mean of expected price as below −



100×0.3+85×0.5+60×0.2=84.5100×0.3+85×0.5+60×0.2=84.5
And, from the standard probability theory, the above distribution gives a variance of expected price as below −
(100−84.5)2×0.3+(85−84.5)2×0.5+(60−84.5)2×0.2=124.825(100−84.5)2×0.3+(85−84.5)2×0.5+(60−84.5)2×0.

2=124.825
Suppose the degree of membership of 100 in this set is 0.7, that of 85 is 1, and the degree of membership is 0.5
for the value 60. These can be reflected in the following fuzzy set −

{0.7100,185,0.560,}{0.7100,185,0.560,}
The fuzzy set obtained in this manner is called a fuzzy event.
We want the probability of the fuzzy event for which our calculation gives −

0.7×0.3+1×0.5+0.5×0.2=0.21+0.5+0.1=0.810.7×0.3+1×0.5+0.5×0.2=0.21+0.5+0.1=0.81
Now, we need to calculate the fuzzy mean and the fuzzy variance, the calculation is as follows −
Fuzzy_mean =(10.81)×(100×0.7×0.3+85×1×0.5+60×0.5×0.2)=(10.81)×(100×0.7×0.3+85×1×0.5+60×0.5×0.2)
=85.8=85.8
Fuzzy_Variance =7496.91−7361.91=135.27
t is an activity which includes the steps to be taken for choosing a suitable alternative from those that are
needed for realizing a certain goal.
Steps for Decision Making
Let us now discuss the steps involved in the decision making process −

 Determining the Set of Alternatives − In this step, the alternatives from which the decision has to be
taken must be determined.

 Evaluating Alternative − Here, the alternatives must be evaluated so that the decision can be taken
about one of the alternatives.

 Comparison between Alternatives − In this step, a comparison between the evaluated alternatives is
done.

Types of Decision
Making We will now understand the different types of decision making.
Individual Decision Making
In this type of decision making, only a single person is responsible for taking decisions. The decision making
model in this kind can be characterized as −

 Set of possible actions
 Set of goals Gi(i∈Xn);Gi(i Xn);∈
 Set of Constraints Cj(j∈Xm)Cj(j Xm)∈

The goals and constraints stated above are expressed in terms of fuzzy sets.
Now consider a set A. Then, the goal and constraints for this set are given by −
Gi(a)Gi(a) = composition[Gi(a)][Gi(a)] = G1i(Gi(a))Gi1(Gi(a)) with G1iGi1
Cj(a)Cj(a) = composition[Cj(a)][Cj(a)] = C1j(Cj(a))Cj1(Cj(a)) with C1jCj1 for a∈Aa A∈
The fuzzy decision in the above case is given by −

FD=min[i∈XinnfGi(a),j∈XinmfCj(a)]FD=min[i XninfGi(a),j XminfCj(a)]∈ ∈
Multi-person Decision Making
Decision making in this case includes several persons so that the expert knowledge from various persons is
utilized to make decisions.
Calculation for this can be given as follows −
Number of persons preferring xixi to xjxj = N(xi,xj)N(xi,xj)
Total number of decision makers = nn
Then, SC(xi,xj)=N(xi,xj)nSC(xi,xj)=N(xi,xj)n
Multi-objective Decision Making
Multi-objective decision making occurs when there are several objectives to be realized. There are following
two issues in this type of decision making −

 To acquire proper information related to the satisfaction of the objectives by various alternatives.
 To weigh the relative importance of each objective.

Mathematically we can define a universe of n alternatives as −
A=[a1,a2,...,ai,...,an]A=[a1,a2,...,ai,...,an]
And the set of “m” objectives as O=[o1,o2,...,oi,...,on]O=[o1,o2,...,oi,...,on]
Multi-attribute Decision Making
Multi-attribute decision making takes place when the evaluation of alternatives can be carried out based on
several attributes of the object. The attributes can be numerical data, linguistic data and qualitative data.
Mathematically, the multi-attribute evaluation is carried out on the basis of linear equation as follows −

Y=A1X1+A2X2+...+AiXi+...+ArXr
Fuzzy logic is applied with great success in various control application. Almost all the consumer products have
fuzzy  control.  Some  of  the  examples  include  controlling  your  room  temperature  with  the  help  of  air-



conditioner, anti-braking system used in vehicles, control on traffic lights, washing machines, large economic
systems, etc.
Why Use Fuzzy Logic in Control Systems
A control system is an arrangement of physical components designed to alter another physical system so that
this  system exhibits  certain  desired  characteristics.  Following are  some reasons  of  using  Fuzzy  Logic  in
Control Systems −

 While applying traditional control, one needs to know about the model and the objective function
formulated in precise terms. This makes it very difficult to apply in many cases.

 By applying fuzzy logic for control we can utilize the human expertise and experience for designing a
controller.

 The fuzzy control rules, basically the IF-THEN rules, can be best utilized in designing a controller.
Assumptions in Fuzzy Logic Control (FLC) Design
While designing fuzzy control system, the following six basic assumptions should be made −

 The plant is observable and controllable − It must be assumed that the input, output as well as state
variables are available for observation and controlling purpose.

 Existence of  a knowledge body − It  must be assumed that  there exist  a  knowledge body having
linguistic rules and a set of input-output data set from which rules can be extracted.

 Existence of solution − It must be assumed that there exists a solution.
 ‘Good enough’ solution is enough − The control engineering must look for ‘good enough’ solution

rather than an optimum one.
 Range of precision − Fuzzy logic controller must be designed within an acceptable range of precision.
 Issues regarding stability and optimality − The issues of stability and optimality must be open in

designing Fuzzy logic controller rather than addressed explicitly.
Architecture of Fuzzy Logic Control
The following diagram shows the architecture of Fuzzy Logic Control (FLC).

Major Components of FLC
Followings are the major components of the FLC as shown in the above figure −

 Fuzzifier − The role of fuzzifier is to convert the crisp input values into fuzzy values.
 Fuzzy Knowledge Base − It stores the knowledge about all the input-output fuzzy relationships. It

also has the membership function which defines the input variables to the fuzzy rule base and the
output variables to the plant under control.

 Fuzzy Rule Base − It stores the knowledge about the operation of the process of domain.
 Inference  Engine −  It  acts  as  a  kernel  of  any  FLC.  Basically  it  simulates  human  decisions  by

performing approximate reasoning.
 Defuzzifier − The role of defuzzifier is to convert the fuzzy values into crisp values getting from fuzzy

inference engine.
Steps in Designing FLC
Following are the steps involved in designing FLC −

 Identification of variables − Here, the input, output and state variables must be identified of the plant
which is under consideration.



 Fuzzy subset configuration − The universe of information is divided into number of fuzzy subsets
and each subset is assigned a linguistic label. Always make sure that these fuzzy subsets include all
the elements of universe.

 Obtaining membership function − Now obtain the membership function for each fuzzy subset that
we get in the above step.

 Fuzzy  rule  base  configuration −  Now  formulate  the  fuzzy  rule  base  by  assigning  relationship
between fuzzy input and output.

 Fuzzification − The fuzzification process is initiated in this step.
 Combining fuzzy outputs − By applying fuzzy approximate reasoning, locate the fuzzy output and

merge them.
 Defuzzification − Finally, initiate defuzzification process to form a crisp output.

Advantages of Fuzzy Logic Control
Let us now discuss the advantages of Fuzzy Logic Control.

 Cheaper −  Developing  a  FLC  is  comparatively  cheaper  than  developing  model  based  or  other
controller in terms of performance.

 Robust − FLCs are more robust than PID controllers because of their capability to cover a huge range
of operating conditions.

 Customizable − FLCs are customizable.
 Emulate  human  deductive  thinking −  Basically  FLC  is  designed  to  emulate  human  deductive

thinking, the process people use to infer conclusion from what they know.
 Reliability − FLC is more reliable than conventional control system.
 Efficiency − Fuzzy logic provides more efficiency when applied in control system.

Disadvantages of Fuzzy Logic Control
We will now discuss what are the disadvantages of Fuzzy Logic Control.

 Requires lots of data − FLC needs lots of data to be applied.
 Useful in case of moderate historical data − FLC is not useful for programs much smaller or larger

than historical data.
 Needs high human expertise − This is one drawback as the accuracy of the system depends on the

knowledge and expertise of human beings.
 Needs regular updating of rules − The rules must be updated with time.


Applications of fuzzy logic

In this chapter, we will discuss the fields where the concepts of Fuzzy Logic are extensively applied.
Aerospace
In aerospace, fuzzy logic is used in the following areas −

 Altitude control of spacecraft
 Satellite altitude control
 Flow and mixture regulation in aircraft deicing vehicles

Automotive
In automotive, fuzzy logic is used in the following areas −

 Trainable fuzzy systems for idle speed control
 Shift scheduling method for automatic transmission
 Intelligent highway systems
 Traffic control
 Improving efficiency of automatic transmissions

Business
In business, fuzzy logic is used in the following areas −

 Decision-making support systems
 Personnel evaluation in a large company

Defense
In defense, fuzzy logic is used in the following areas −

 Underwater target recognition
 Automatic target recognition of thermal infrared images
 Naval decision support aids
 Control of a hypervelocity interceptor
 Fuzzy set modeling of NATO decision making

Electronics



In electronics, fuzzy logic is used in the following areas −
 Control of automatic exposure in video cameras
 Humidity in a clean room
 Air conditioning systems
 Washing machine timing
 Microwave ovens
 Vacuum cleaners

Finance
In the finance field, fuzzy logic is used in the following areas −

 Banknote transfer control
 Fund management
 Stock market predictions

Industrial Sector
In industrial, fuzzy logic is used in following areas −

 Cement kiln controls heat exchanger control
 Activated sludge wastewater treatment process control
 Water purification plant control
 Quantitative pattern analysis for industrial quality assurance
 Control of constraint satisfaction problems in structural design
 Control of water purification plants

Manufacturing
In the manufacturing industry, fuzzy logic is used in following areas −

 Optimization of cheese production
 Optimization of milk production

Marine
In the marine field, fuzzy logic is used in the following areas −

 Autopilot for ships
 Optimal route selection
 Control of autonomous underwater vehicles
 Ship steering

Medical
In the medical field, fuzzy logic is used in the following areas −

 Medical diagnostic support system
 Control of arterial pressure during anesthesia
 Multivariable control of anesthesia
 Modeling of neuropathological findings in Alzheimer's patients
 Radiology diagnoses
 Fuzzy inference diagnosis of diabetes and prostate cancer

Securities
In securities, fuzzy logic is used in following areas −

 Decision systems for securities trading
 Various security appliances

Transportation
In transportation, fuzzy logic is used in the following areas −

 Automatic underground train operation
 Train schedule control
 Railway acceleration
 Braking and stopping

Pattern Recognition and Classification
In Pattern Recognition and Classification, fuzzy logic is used in the following areas −

 Fuzzy logic based speech recognition
 Fuzzy logic based
 Handwriting recognition
 Fuzzy logic based facial characteristic analysis
 Command analysis
 Fuzzy image search

Psychology
In Psychology, fuzzy logic is used in following areas −

 Fuzzy logic based analysis of human behavior
 Criminal investigation and prevention based on fuzzy logic reasoning



Text Books: 

1. Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley and Sons. 
2.Neural Networks: A Comprehensive Foundation (2nd Edition), Simon Haykin, Prentice Hall.
Reference Books: 
1. K.H.Lee. First Course on Fuzzy Theory and Applications, Springer-Verlag.
2. J. Yen and R. Langari.. Fuzzy Logic, Intelligence, Control and Information, Pearson Education.

CO-PO Mapping

CO
PO
1

PO2 POP3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CS702A.1 2
CS702A.2 2
CS702A.3 1 3
CS702A.4 2
CS702A.5 1 3
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