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MODULE 01: Complexity Analysis: 
 
 

The word “Algorithm” comes from 
khowarizmi in ninth century, who has 

   An Algorithm is a set of rules for

   An Algorithm is a well defined
output. 

   An Algorithm is a finite sequence
particular output. 
 
Any Algorithm must satisfy the following

1. Input: It generally requires finite
2. Output: It must produce at least
3. Uniqueness: Each instruction should
4. Finiteness: It must terminate offer
 
 
Characteristics of an algorithm 
 
Every algorithm should have the following
 

1. Input 
2. Output 
3. Definiteness 
4. Effectiveness 
5. Finiteness 

 
Therefore, an algorithm can be defined
which terminates with the production of correct output from the given input. In other words, 
viewed little more formally, an algorithm is a step by step formalization of a mapping function to 
map input set onto an output set. 
 
“Analysis of algorithm” is a field in
of the complexity of algorithms (in terms
storage (or space) requirement taken
 
Suppose M is an algorithm, and suppose
by the algorithm M are the two main
counting the number of key operations,
algorithms, the number of comparisons
operations are so defined that the time
proportional to the time for the key
maximum of memory needed by the 
 
The complexity of an algorithm M is
space requirement of the algorithm in 

xity Analysis: [3L] 

 the Persian author Abdullah Jafar Muhammad
has given the definition of algorithm as follows: 

for carrying out calculation either by hand or on a

defined computational procedure that takes input 

sequence of instructions or steps (i.e. inputs) to 

following criteria (or Properties) 

finite no. of inputs. 
least one output. 

should be clear and unambiguous 
offer a finite no. of steps. 

following five characteristic features 

defined as a sequence of definite and effective 
terminates with the production of correct output from the given input. In other words, 

algorithm is a step by step formalization of a mapping function to 

in computer science whose overall goal is an understanding
terms of time Complexity), also known as execution

taken by that algorithm. 

suppose n is the size of the input data. The time and 
main measures for the efficiency of M. The time is 

operations, for example, in case of sorting and
comparisons is the number of key operations. That is 

time for the other operations is much less than 
key operations. The space is measured by counting

the algorithm. 

M is the function f(n), which give the running time
in terms of the size n of the input data. Frequently,

Muhammad ibn Musa Al-
 

or on a machine. 

 and produces 

 achieve some 

 instructions, 
terminates with the production of correct output from the given input. In other words, 

algorithm is a step by step formalization of a mapping function to 

understanding 
execution time & 

and space used 
is measured by 
and searching 

 because key 
than or at most 

counting the 

time and/or storage 
Frequently, the storage 



space required by an algorithm is
“complexity” given anywhere simply
cases, in general, to find the complexity
 

1. Best case: The minimum value

2. Worst case: The maximum value

3. Average case: The value of
possible input. Generally the Average

The analysis of the average case assumes
one such assumption might be that
likely. The Average case also 
numbers𝑁 , 𝑁 ,……, 𝑁  occur with

Then the expectation or average value

To understand the Best, Worst and 
, where the array A contains

in understanding. Suppose you want

in the given array A or to send some

in A. Here the linear search algorithm

with each element in A. That is, we 
such that x=A[LOC]. 

 

 

Analysis of linear search algorithm
 
The complexity of the search algorithm
array elements A[K]. 

is simply a multiple of the data size n. In general
simply refers to the running time of the algorithm.

complexity function f(n): 

value of 𝑓(𝑥) for any possible input. 

value of 𝑓(𝑥) for any possible input. 

of 𝑓(𝑥) which is in between maximum and minimum
Average case implies the expected value of 𝑓(𝑥).

assumes a certain probabilistic distribution for the
that all possible permutations of an input data set

 uses the concept of probability theory. 
with respective probabilities  𝑃 ,𝑃 ,……..,𝑃  

value of E is given by 𝐸 = 𝑃  𝑁 + 𝑃  𝑁 + ⋯ + 𝑃

and Average cases of an algorithm, consider a 
contains n-elements. Students may you are having some

want either to find the location LOC of a given element

some message, such as LOC=0, to indicate that  does 

algorithm solves this problem by comparing given ,

we compare with A[1], then A[2], and so on, until 

algorithm 

algorithm is given by the number C of comparisons 

general the term 
algorithm. There are 3 

minimum for any 
( ).   

the input data; 
set are equally 
 Suppose the 

 𝑁  

 linear array
some problem 

element (say ) 

does not appear 

, one-by-one, 

 we find LOC 

 

 between x and 



 
Best case: Clearly the best case 

. In this case 

Worst case: Clearly the worst case occurs
present in given array A (to ensure 
this case, we have 

 

 Average case: Here we assume that
to occur at any position in the array.
 
 

 then 

 

 

 

 

 

 

It means the average number of comparisons
equal to half the number of elements
complexity of an algorithm in the average
worst case. Unless otherwise stated 
 
 
There are three basic asymptotic 
running time of an algorithm in terms
N={1,2,3,…..}. These are: 
     O (Big- Oh):  This   notation   

     Ω (Big- Omega): This notation
steps required to solve a problem  

    Θ (“Theta”) Notations: Used to 
 

Asymptotic notation gives the rate
“sufficiently large input sizes” 

for a specific input size (which should
Upper bound (worst case); Ω- notation
Notations is used to express both upper

 

Space Complexity 

The Space Complexity of an algorithm
The time complexity of an algorithm
completion. The time complexity of
algorithm to compute the function it
 

 occurs when x is the first element in the array A that
 

occurs when x is the last element in the array A
 this we have to search entire array A till last element).

that searched element  appear array A, and it is equally
array. Here the number of comparisons can be any

 , and each number occurs with the 
                                 

comparisons needed to find the location of x is approximately
elements in array A. From above discussion, it may be noted

average case is much more complicated to analyze
 or implied, we always find and write the complexity

   notations which are used to
terms of function, whose domain is the set of natural numbers

 is   used   to   express   Upper   bound (maximum

notation is used to express Lower bound i.e. minimum

 express both Upper & Lower bound, also called

rate of growth, i.e. performance, of the run
 and is not a measure of the particular

should be done empirically). O-notation is used to
notation is used to express the Lower bound (Best 

upper and lower bound (i.e. Average case) on a function

algorithm is the amount of memory it needs to run to
algorithm is the amount of computer time it needs

of an algorithm is given by the no. of steps taken
it was written for. 

array A that is 

A or  is not 
element). In 

equally likely 
any of numbers
the probability

approximately 
be noted that the 

analyze than that of 
complexity of an  

to express the 
natural numbers 

(maximum steps)  

minimum (at least) 

called tight bound 

run time for 
particular run time 

to express the 
 case) and Θ- 

function. 

to completion. 
needs to run to 

taken be the 



Time Complexity 

The time , taken by a program P, is

The Compile time does not depends
outputs, magnitude of inputs, magnitude
Thus we are concerned with the running
 

1. Algorithm
 

 
                                     

 

Here the problem instance is characterized
 

2. Algorithm
 

 

P, is the sum of the Compile time & the Run (execution)

depends on the instance characteristics (i.e. no. of inputs,
magnitude of outputs etc.). 

running time of a program only. 

Algorithm X (a,b,c) 

 

characterized by the specified values of a, b, and c. 

Algorithm SUM (a, n) 

S:= 0 

For i = 1 to n do 

S = S + a [i]; 

Return S; 

(execution) time. 

inputs, no. of 



Here the problem instance is characterized
 
This run time is denoted by ,  we have:

           (n) = ADD(n) + CsSUB(n)

characteristics. Ca, Cs, Cm, Cd denotes 

Division and so on. 
 
ADD, SUB, MUL, DIV is a functions
for P is used on an instance with characteristics
is given by the no. steps taken by the
number of steps is itself a function of
 
 
How to calculate time complexity of
 
The number of machine instructions
called its time complexity. This number
Time taken by a program is the sum
we consider run time only. The time
elementary operations. 
 
The following primitive operations that are
to calculate the running time: 
 

 Assigning a value to a variable
Comparing two variables 
 Indexing into a array of following
 
The following fragment shows how
algorithm. 
 

 
{ 
 
 

 
 

characterized by value of n, i.e., number of elements 

have: 

SUB(n) + CmMUL(n) + CdDIV(n) + …. where 

denotes time needed for an Addition, Subtraction, Multiplication,

functions whose values are the numbers of performed 
characteristics n. Generally, the time complexity of

the algorithm to complete the function it was written
of the instance characteristics. 

of any program 

instructions which a program executes during its running
number depends primarily on the size of the program
sum of the compile time and the run time. In time
time required by an algorithm is determined by 

that are independent from the programming language

variable calling a function Performing an arithmetic

of following a pointer reference Returning from a function

shows how to count the number of primitive operations executed

 

 to be summed. 

 n → instance 

Subtraction, Multiplication, 

 when the code 
of an algorithm 
written for. The 

running time is 
program’s input. 
time complexity, 

 the number of 

language are used 

arithmetic operation 

function 

executed by an 



 
 
 

Asymptotic notation 

The notations we use to describe the asymptotic running time of an algorithm are defined in 
terms of functions whose domains are the set of natural numbers N = {0, 1, 2, ...}. Such 
notations are convenient for describing the worst-case running-time function T (n), which is 
usually defined only on integer input sizes. It is sometimes convenient, however, to abuse 
asymptotic notation in a variety of ways. For example, the notation is easily extended to the 
domain of real numbers or, alternatively, restricted to a subset of the natural numbers. It is 
important, however, to understand the precise meaning of the notation so that when it is abused, 
it is not misused. This section defines the basic asymptotic notations and also introduces some 
common abuses. 
 
Θ-notation 

We found that the worst-case running time of insertion sort is T (n) = Θ(n2). Let us define what 
this notation means. For a given function g(n), we denote by Θ(g(n)) the set of functions 

Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) 

for all n ≥n0}. 

A function f(n) belongs to the set Θ(g(n)) if there exist positive constants c1 and c2 such that it 

can be "sandwiched" between c1g(n) and c2g(n), for sufficiently large n. Because Θ(g(n)) is a 

set, we could write "f(n) ∈ Θ(g(n))" to indicate that f(n) is a member of Θ(g(n)). Instead, we will 

usually write "f(n) = Θ(g(n))" to express the same notion. This abuse of equality to denote set 
membership may at first appears confusing, but we shall see later in this section that it has 
advantages. 
 
Figure 1.1(a) gives an intuitive picture of functions f(n) and g(n), where we have that f(n) = 
Θ(g(n)). For all values of n to the right of n0, the value of f(n) lies at or above c1g(n) and at or 

below c2g(n). In other words, for all n ≥ n0, the function f(n) is equal to g(n) to within a 

constant factor. We say that g(n) is an asymptotically tight bound for f(n). 
 
 



   

 

Figure 1.1: Graphic examples of the O, Ω and Θ notations. In each part, the value of n0 shown is 

the minimum possible value; any greater value would also work. (a) O-notation gives an upper 
bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive 
constants n0 and c such that to the right of n0, the value of f(n) always lies on or below cg(n). (b) 

Ω- notation gives a lower bound for a function to within a constant factor. We write f(n) = 
Ω(g(n)) if there are positive constants n0 and c such that to the right of n0, the value of f(n) 

always lies on or above cg(n). (c) Θ-notation bounds a function to within constant factors. We 
write f(n) = Θ(g(n)) if there exist positive constants n0, c1, and c2 such that to the right of n0, 

the value of f(n) always lies between c1g(n) and c2g(n) inclusive. 

 

The definition of Θ(g(n)) requires that every member f(n) ∈ Θ(g(n)) be asymptotically 

nonnegative, that is, that f(n) be nonnegative whenever n is sufficiently large. (An 
asymptotically positive function is one that is positive for all sufficiently large n.) Consequently, 
the function g(n) itself must be asymptotically nonnegative, or else the set Θ(g(n)) is empty. We 
shall therefore assume that every function used within Θ-notation is asymptotically 
nonnegative. This assumption holds for the other asymptotic notations defined in this chapter as 
well. 
 
We introduced an informal notion of Θ-notation that amounted to throwing away lower-order 
terms and ignoring the leading coefficient of the highest-order term. Let us briefly justify this 

intuition by using the formal definition to show that 1/2n2 - 3n = Θ(n2). To do so, we must 

determine positive constants c1, c2, and n0 such that c1n2 ≤ 1/2n2 - 3n ≤ c2n2 for all n ≥ n0. 

Dividing by n2 yields c1 ≤ 1/2 - 3/n ≤ c2. The right-hand inequality can be made to hold for any 

value of n ≥ 1 by choosing c2 ≥ 1/2. Likewise, the left- hand inequality can be made to hold for 

any value of n ≥ 7 by choosing c1 ≤ 1/14. Thus, by choosing c1 = 1/14, c2 = 1/2, and n0 = 7, we 

can verify that 1/2n2 - 3n = Θ(n2). Certainly, other choices for the constants exist, but the 
important thing is that some choice exists. Note that these constants depend on the function 

1/2n2 - 3n; a different function belonging to Θ(n2) would usually require different constants. We 

can also use the formal definition to verify that 6n3 ≠ Θ(n2). Suppose for the purpose of 



contradiction that c2 and n0 exist such that 6n3 ≤ c2n2 for all n ≥ n0. But then n ≤ c2/6, which 

cannot possibly hold for arbitrarily large n, since c2 is constant. 

Intuitively, the lower-order terms of an asymptotically positive function can be ignored in 
determining asymptotically tight bounds because they are insignificant for large n. A tiny 
fraction of the highest-order term is enough to dominate the lower-order terms. Thus, setting c1 
to a value that is slightly smaller than the coefficient of the highest-order term and setting c2 to a 

value that is slightly larger permits the inequalities in the definition of Θ-notation to be satisfied. 
The coefficient of the highest-order term can likewise be ignored, since it only changes c1 and 

c2 by a constant factor equal to the coefficient. 

 
O-notation 

The Θ-notation asymptotically bounds a function from above and below. When we have only an 
asymptotic upper bound, we use O-notation. For a given function g(n), we denote by O(g(n)) 
(pronounced "big-oh of g of n" or sometimes just "oh of g of n") the set of functions O(g(n)) = 
{f(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.We use O-

notation to give an upper bound on a function, to within a constant factor. Figure 1(b) shows the 
intuition behind O-notation. For all values n to the right of n0, the value of the function f(n) is on 

or below g(n). 

We write f(n) = O(g(n)) to indicate that a function f(n) is a member of the set O(g(n)). Note that 
f(n) = Θ(g(n)) implies f(n) = O(g(n)), since Θ-notation is a stronger notion than O-notation. 
Written set-theoretically, we  have Θ(g(n)) ⊆ O(g(n)). Thus, our proof that any quadratic 

function an2 + bn + c, where a > 0, is in Θ(n2) also shows that any quadratic function is in 

O(n2). What may be more surprising is that any linear function an + b is in O(n2), which is 
easily verified by taking c = a + |b| and n0 = 1. 

Some readers who have seen O-notation before may find it strange that we should write, for 

example, n = O (n2). In the literature, O-notation is sometimes used informally to describe 
asymptotically tight bounds, that is, what we have defined using Θ-notation. In this book, 
however, when we write f(n) = O(g(n)), we are merely claiming that some constant multiple of 
g(n) is an asymptotic upper bound on f(n), with no claim about how tight an upper bound it is. 
Distinguishing asymptotic upper bounds from asymptotically tight bounds has now become 
standard in the algorithms literature. 

Using O-notation, we can often describe the running time of an algorithm merely by inspecting 
the algorithm's overall structure. For example, the doubly nested loop structure of the insertion 

sort algorithm from Chapter 2 immediately yields an O(n2) upper bound on the worst-case 
running time: the cost of each iteration of the inner loop is bounded from above by O(1) 
(constant), the indices i and j are both at most n, and the inner loop is executed at most once for 

each of the n2 pairs of values for i and j. 

Since O-notation describes an upper bound, when we use it to bound the worst-case running 



time of an algorithm, we have a bound on the running time of the algorithm on every input. 

Thus, the O(n2) bound on worst-case running time of insertion sort also applies to its running 

time on every input. The Θ(n2) bound on the worst-case running time of insertion sort, 

however, does not imply a Θ(n2) bound on the running time of insertion sort on every input. For 
example, we saw in Chapter 2 that when the input is already sorted, insertion sort runs in Θ(n) 
time. 

Technically, it is an abuse to say that the running time of insertion sort is O(n2), since for a given 
n, the actual running time varies, depending on the particular input of size n. When we say "the 

running time is O(n2)," we mean that there is a function f(n) that is O(n2) such that for any value 
of n, no matter what particular input of size n is chosen, the running time on that input is 
bounded from above by the value f(n). Equivalently, we mean that the worst-case running time 

is O(n2). 
 
Ω-notation 

Just as O-notation provides an asymptotic upper bound on a function, Ω-notation provides an 
asymptotic lower bound. For a given function g(n), we denote by Ω(g(n)) (pronounced "big-
omega of g of n" or sometimes just "omega of g of n") the set of functions 
 
Ω(g(n)) = {f(n): there exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}. 

The intuition behind Ω-notation is shown in Figure 3.1(c). For all values n to the right of n0, the 

value of f(n) is on or above cg(n). 
 
Theorem 1.1 
 
For any two functions f(n) and g(n), we have f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = 
Ω(g(n)). 
 

As an example of the application of this theorem, our proof that an2 + bn + c = Θ(n2) for any 

constants a, b, and c, where a > 0, immediately implies that an2 + bn + c = Ω(n2) and an2 + bn + c 

= O(n2). In practice, rather than using Theorem 1.1 to obtain asymptotic upper and lower bounds 
from asymptotically tight bounds, as we did for this example, we usually use it to prove 
asymptotically tight bounds from asymptotic upper and lower bounds. 
 
Since Ω-notation describes a lower bound, when we use it to bound the best-case running time of 
an algorithm, by implication we also bound the running time of the algorithm on arbitrary inputs 
as well. For example, the best-case running time of insertion sort is Ω(n), which implies that the 
running time of insertion sort is Ω(n). 

The running time of insertion sort therefore falls between Ω(n) and O(n2), since it falls anywhere 
between a linear function of n and a quadratic function of n. Moreover, these bounds are 



asymptotically as tight as possible: for instance, the running time of insertion sort is not Ω(n2), 
since there exists an input for which insertion sort runs in Θ(n) time (e.g., when the input is 
already sorted). It is not contradictory, however, to say that the worst-case running time of 

insertion sort is Ω(n2), since there exists an input that causes the algorithm to take Ω(n2) time. 
When we say that the running time (no modifier) of an algorithm is Ω(g(n)), we mean that no 
matter what particular input of size n is chosen for each value of n, the running time on that 
input is at least a constant times g(n), for sufficiently large n. 
 
Asymptotic notation in equations and inequalities 

We have already seen how asymptotic notation can be used within mathematical formulas. For 

example, in introducing O-notation, we wrote "n = O(n2)." We might also write 2n2 + 3n + 1 = 

2n2 + Θ(n). How do we interpret such formulas? 

When the asymptotic notation stands alone on the right-hand side of an equation (or inequality), 

as in n = O (n2), we have already defined the equal sign to mean set membership: n ∈ O(n2). In 
general, however, when asymptotic notation appears in a formula, we interpret it as standing for 

some anonymous function that we do not care to name. For example, the formula 2n2 + 3n + 1 = 

2n2 + Θ(n) means that 2n2 + 3n + 1 = 2n2 + f(n), where f(n) is some function in the set Θ(n). In 
this case, f(n) = 3n + 1, which indeed is in Θ(n). 

Using asymptotic notation in this manner can help eliminate inessential detail and clutter in an 
equation. For example, we expressed the worst-case running time of merge sort as the 
recurrence 

T(n) = 2T (n/2) + Θ(n). 

If we are interested only in the asymptotic behavior of T(n), there is no point in specifying all 
the lower-order terms exactly; they are all understood to be included in the anonymous function 
denoted by the term Θ(n). 

The number of anonymous functions in an expression is understood to be equal to the number of 
times the asymptotic notation appears. For example, in the expression  

 
 
there is only a single anonymous function (a function of i). This expression is thus not the same as 
O(1) + O(2) + . . . + O(n), which doesn't really have a clean interpretation. 

In some cases, asymptotic notation appears on the left-hand side of an equation, as in 2n2 + Θ(n) = 

Θ(n2). 
We interpret such equations using the following rule: No matter how the anonymous functions are 
chosen on the left of the equal sign, there is a way to choose the anonymous functions on the right 
of the equal sign to make the equation valid. Thus, the meaning of our example is that for any 

function f(n) ∈ Θ(n), there is some function g(n) ∈ Θ(n2) such that 2n2 + f(n) = g(n) for all n. In 



other words, the right-hand side of an equation provides a coarser level of detail than the left-hand 
side. 

A number of such relationships can be chained together, as in 
 

2n2 + 3n + 1 = 2n2 + Θ(n) 
 = Θ(n2). 

We can interpret each equation separately by the rule above. The first equation says that there is 

some function f(n) ∈ Θ(n) such that 2n2 + 3n + 1 = 2n2 + f(n) for all n. The second equation 
says that for any function g(n) ∈ Θ(n) (such as the f(n) just mentioned), there is some function 

h(n) ∈ Θ(n2) such that 2n2 + g 

(n) = h(n) for all n. Note that this interpretation implies that 2n2 + 3n + 1 = Θ(n2), which is what 
the chaining of equations intuitively gives us. 
 
o-notation 

The asymptotic upper bound provided by O-notation may or may not be asymptotically tight. The 

bound 2n2 

= O(n2) is asymptotically tight, but the bound 2n = O(n2) is not. We use o-notation to denote an 
upper bound that is not asymptotically tight. We formally define o(g(n)) ("little-oh of g of n") as 
the set o(g(n)) = {f(n) : for any positive constant c > 0, there exists a constant n0 > 0 such that 0 

≤ f(n) < cg(n) for all n ≥ n0}. 

For example, 2n = o(n2), but 2n2 ≠ o(n2). 

The definitions of O-notation and o-notation are similar. The main difference is that in f(n) = 
O(g(n)), the bound 0 ≤ f(n) ≤ cg(n) holds for some constant c > 0, but in f(n) = o(g(n)), the 
bound 0 ≤ f(n) < cg(n) holds for all constants c > 0. Intuitively, in the o-notation, the function 
f(n) becomes insignificant relative to g(n) as n approaches infinity; that is, 
 
(3.1)  

Some authors use this limit as a definition of the o-notation; the definition in this book also 
restricts the anonymous functions to be asymptotically nonnegative. 
 
ω-notation 

By analogy, ω-notation is to Ω-notation as o-notation is to O-notation. We use ω-notation to 
denote a lower bound that is not asymptotically tight. One way to define it is by 

f(n) ∈ ω(g(n)) if and only if g(n) ∈ o(f(n)). 

Formally, however, we define ω(g(n)) ("little-omega of g of n") as the set 



ω(g(n)) = {f(n): for any positive constant c > 0, there exists a constant n0 > 0 such that 0 ≤ cg(n) 

< f(n) for all n ≥ n0}. 

For example, n2/2 = ω(n), but n2/2 ≠ ω(n2). The relation f(n) = ω(g(n)) implies that 
 

 
 
if the limit exists. That is, f(n) becomes arbitrarily large relative to g(n) as n approaches infinity. 
 
 

Example: 2n2 = O(n3), with c = 1 and n0 = 2. Examples of functions in O(n2): 
 
o n2 

o n2 + n 

o n2 + 1000n  

o 1000n2 + 1000n 
o n/1000  
o n1.99999 

o n2/ lg lg lg n 
 

A recurrence is a function is depending in terms of one or more base cases, and itself, with smaller 
arguments. 
Recursion is a particularly powerful kind of reduction, which can be described loosely as 

follows: 

• If the given instance of the problem is small or simple enough, just solve it. 
 
• Otherwise, reduce the problem to one or more simpler instances of the same problem. 
 
Recursion is generally expressed in terms of recurrences. In other words, when an algorithm 

calls to itself, we can often describe its running time by a recurrence equation which describes 

the overall running time of a problem of size n in terms of the running time on smaller inputs. 

E.g.the worst case running time T (n) of the merge sort procedure by recurrence can be 

expressed as 

 
T(n)=  ϴ(1)  ; if n=1 

 = 2T(n/2)  + ϴ(n)   ;if n>1  

whose solution can be found as T(n)=ϴ(nlog n) 



There are various techniques to solve recurrences. 
 

Substitution method 
1. Guess the solution. 
2. Use induction to Þnd the constants and show that the solution works. 

Recursion trees 
Use to generate a guess. Then verify by substitution method. 
Master method 
Used for many divide-and-conquer recurrences of the form T (n) = aT (n/b) + f (n) , where a ≥ 1, b 
> 1, and f (n) > 0. 
 
The details are: 
 

1. Substitution method: 
 
The substitution method comprises of 3 steps 
 
i. Guess the form of the solution 

ii. Verify by induction 

iii. Solve for constants 
 
We substitute the guessed solution for the function when applying the inductive hypothesis to 

smaller values. Hence the name “substitution method”. This method is powerful, but we must 

be able to guess the form of the answer in order to apply it. 

e.g. recurrence equation: T(n)=4T(n/2)+n 
 

step 1:   guess the form of solution 

T(n)=4T(n/2) 

F(n)=4f(n/2) 

 F(2n)=4f(n) 

 F(n)=n2 

So, T(n) is order of n2 Guess T(n)=O(n3) 

Step 2: verify the induction 
 

Assume T(k)<=ck3 T(n)=4T(n/2)+n 

<=4c(n/2)3 +n 

<=cn3/2+n 



<=cn3-(cn3/2-n) 

T(n)<=cn3 as (cn3/2 –n) is always positive So what we assumed was true. 

 T(n)=O(n3) 

Step 3:  solve for constants Cn3/2-n>=0 

      n>=1, c>=2 
 

Now suppose we guess that T(n)=O(n2) which is tight upper bound 

Assume, T(k)<=ck2 

so, we should prove that T(n)<=cn2 
 
T(n)=4T(n/2)+n 

              =4c(n/2)2+n 

              =cn2+n 

So,T(n) will never be less than cn2. But if we will take the assumption of T(k)=c1 k2-c2k, then 

we can find that T(n) = O(n2) 

 
 

2. By iterative method: 
 
e.g. T(n)=2T(n/2)+n 
 
=> 2[2T(n/4) + n/2 ]+n 
 

=>22T(n/4)+n+n 
 

=> 22[2T(n/8)+ n/4]+2n 
 

=>23T(n/23)  +3n 
 

After k iterations ,T(n)=2kT(n/2k)+kn-------------- (1) Sub problem size is 1 after n/2k=1 => 

k=logn 

So,after logn iterations ,the sub-problem size will be 1. So, when k=logn is put in equation 1 

T(n)=nT(1)+nlogn 



  =nc+nlogn (say c=T(1)) 

  = O(nlogn) 

 
 
3.  By recursion tree method: 
 
In a recursion tree ,each node represents the cost of a single sub-problem somewhere in the set of 

recursive problems invocations .we sum the cost within each level of the tree to obtain a set of 

per level cost,and then we sum all the per level cost to determine the total cost of all levels of 

recursion . 

Constructing a recursion tree for the recurrence T (n) =3T (n/4) +cn2 
 
 

 
 
 

 
 
Constructing a recursion tree for the recurrence T (n)= 3T (n=4) + cn2.. Part (a) shows T (n), 
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which progressively expands in (b)–(d) to form the recursion tree. The fully expanded tree in part 

(d) has height log4n (it has log4n + 1 levels). Sub problem size at depth i =n/4i 

Sub problem size is 1 when n/4i=1 => i=log4n So, no. of levels =1+ log4n 

Cost of each level = (no. of nodes) x (cost of each node) 

No. Of nodes at depth i=3i 
 

Cost of each node at depth i=c (n/4i)2 
 

Cost of each level at depth i=3i c (n/4i)2 = (3/16)icn2 T(n)= i=0∑log4n   cn2(3/16)i 

T(n)= i=0∑log4n -1  cn2(3/16)i + cost of last level Cost of nodes in last level =3iT(1) 

=c3log4  n    (at last level i=log n) 

= cnlog4 3 

 
 

T(n)= +   c nlog  3 
 

=  cn2 
 

    = cn2*(16/13)+ cnlog  3   => T(n)=O(n2) 
 
4. By master method: 
 

The master method solves recurrences of the form 
 
T(n)=aT(n/b)+f(n) 
 
where a>=1  and b>1 are constants  and f(n) is a asymptotically positive function . 
To use the master method, we have to remember 3 cases: 

1. If f(n)=O(nlogb  a - Ɛ) for some constants  Ɛ >0,then T(n)=ϴ(nlogb  a) 

2. If f(n)=ϴ( nlogb  a)  then T(n)=ϴ(nlogb  alogn) 

3. If f(n)=Ὠ(nlog  a+Ɛ)  for some constant Ɛ>0 ,and if a*f(n/b)<=c*f(n) for some constant c<1 

and all sufficiently large n,then T(n)=ϴ(f(n)) 

 

Example:  
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e.g. (n)=2T(n/2)+nlogn 
 
ans: a=2  b=2 

f(n)=nlogn 

using 2nd formula f(n)=ϴ( nlog  2logkn) 

=>ϴ(n1 logkn)=nlogn =>K=1 
 

T(n)=ϴ( nlog  2 log1n) 

                      =>ϴ(nlog2n) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MODULE 01 MCQ and Short type Problem 
MCQ:  

1. If all c(i, j )’s and r(i, j)’s are calculated, then OBST algorithm in worst case takes 
one of the following time. 

(a) O(n log n) (b) O(n3) (c) O(n2)  (d) O(log n)  (e) O(n4). Ans : O(n3) 

2. The asymptotic notation for defining the average time complexity is 
(a)Equivalence 
(b)Symmetric 
(c)Reflexive 
(d) Both (c) and (b) above.  
Ans : Equivalence 

 
3. The  upper  bound  on  the  time  complexity  of  the  nondeterministic sorting 
algorithm is 

(a) O(n)  (b) O(n log n)  (c) O(1) (d) O( log n)  (e) O(n2). Ans: O(n) 

4. The worst case time complexity of the nondeterministic dynamic knapsack algorithm is 

(a) O(n log n)  (b) O( log n)  (c) O(n2) (d) O(n)  (e) O(1). Ans :O(n) 

5. Recursive algorithms are based on 
(a) Divide and conquer approach    (b) Top-down approach 



(c) Bottom-up approach (d) Hierarchical approach 
(e) Heuristic approach. 

 Ans : Bottom-up approach 

6. What do you call the selected keys in the uick sort method? 
(a) Outer key (b)Inner Key (c) Partition key(d) Pivot key (e) Recombine key. Ans : 
Pivot key 

7. How do you determine the cost of a spanning tree? 
(a) By the sum of the costs of the edges of the tree 
(b) By the sum of the costs of the edges and vertices of the tree 
(c) By the sum of the costs of the vertices of the tree 
(d) By the sum of the costs of the edges of the graph 
(e) By the sum of the costs of the edges and vertices of the graph. 

Ans : By the sum of the costs of the edges of the tree 
 
8. The time complexity of the normal quick sort, randomized quick sort algorithms in the 
worst case is 
(a) O(n2), O(n log n) (b) O(n2), O(n2)  (c) O(n log n), O(n2)  (d) 

O(n log n), O(n log n) (e) O(n log n), O(n2 log n). 

 Ans :O(n2), O(n2) 

9. Let there be an array of length ‘N’, and the selection sort algorithm is used to sort it, 
how many times a swap function is called to complete the execution? 
 
 

(a) N log N times (b) log N times (c) N2 times 

(d) N-1 times 
 
Ans :N-1 times 

(e) N times.  

 

10. The Sorting method which is used for external sort is 
 

(a) Bubble sort (b) Quick sort (c) Merge sort 
(d) Radix sort 
 
Ans :Radix sort 

(e) Selection sort.  

 

11. In analysis of algorithm, approximate relationship between the size of the job and the 
amount of work required to do is expressed by using    
(a) Central tendency (b) Differential equation (c) Order of execution (d) 
Order of magnitude (e) Order of Storage. 
 
Ans: Order of execution 
 
12. Worst case efficiency of binary search is 
(a) log2 n + 1 



(b) n 
(c) N2 
(d) 2n 
(e) log n.  

Ans : log2 n + 1 

13. For defining the best time complexity,
(a)f (n) Ω(g(n)), but g(n) Ω (f(n))
(c)f (n) Ω(g(n)), and g(n) Ω (f(n))
 
Ans :f (n) Ω(g(n)), but g(n) Ω (f(n))
 
14. For analyzing an algorithm,

(a) O (100 Log N)  (b) O (N) 

Ans :O (100 Log N) 

 
15. Let f, t: N→R 0, and t (n) 
constant andn≥ no, then no is   
(a) Upper bound (b)Lower
(d) Threshold value (e) Maximum

Ans : Lower bound 

 
 
SHORT TYPE PROBLEM:  
 
1.Write all the 3 cases of Master method 

2. Use Mater Theorem to give the tight
 

a.

b.   

c.

d.   

e.

f. 

3.  Write  a  condition  when  Master

complexity, let f (n) = log n and g (n) = √n, 
(f(n)) (b) f (n) Ω(g(n)), but g(n) Ω
(f(n)) (d) f (n) Ω(g(n)), and g(n) Ω 

(f(n)) 

algorithm, which is better computing time? 

 (c) O (2N)  (d) O (N logN)  (e) O (N

 O (f (n)) iff t(n)≤ c.f (n) where cis positive real
  

(b)Lower bound  (c) Duality value 
Maximum value.  

method to solve a recurrence 

 
tight asymptotic bounds of the following recurrences:

a.  

b.     

c.  

d.     

e.  

  

Master  method  fails  to  solve  a  recurrence 

 _   
Ω (f(n)) 
Ω (f(n)) 

(N2). 

real 

recurrences: 



{   
if 

 

 

4. Can Master Theorem be applied to

not? Give an asymptotic upper bound

5. Write a recurrence relation for the

recursive functions: a) 

 
 
 
 
 

                           } 
 
 
 
 
 

                     b) 
 
 
 

 

 

                                                     } 

 

 

 

6.  Solve the following recurrence using Iteration
 
a)  

b) Recurrence obtained in .1 a) 
 

c) Recurrence obtained in .1 b) part
 

7. Solve the following recurrence Using

a. 

b. 

c. 
 

{   
if 

//if n is even 

 

to the recurrence of  why

bound of the recurrence? 

the following 

 

using Iteration Method: 

 part 

Recurrence obtained in .1 b) part 

Using Recursion tree method  

why and why 



MODULE 2: Algorithm Design Techniques:[12] 
 
Divide and Conquer 
 
Divide and Conquer Algorithm 
 
 In this approach ,we solve a problem recursively by applying 3 steps 

1. DIVIDE-break the problem into several sub problems of smaller size. 

2. CONQUER-solve the problem recursively. 

3. COMBINE-combine these solutions to create a solution to the original problem. Control 

abstraction for divide and conquer algorithm 

Algorithm D and C (P) 

{ 

if small(P) 

then return S(P) 



else 
 
{   divide P into smaller instances P1 ,P2 .....Pk Apply D and C to each 

sub problem 

Return combine (D and C(P1)+ D and C(P2)+.......+D and C(Pk)) 
} 
 
Rurrence relation is expressed as  
T(n)= ϴ(1),if n<=C 

                       =aT(n/b) + D(n)+ C(n) ,otherwise 

then  n=input size a=no. Of sub-problems n/b= input size of the sub-problems 
 
 
 
  
 
Merge sort 
 
It is one of the well-known divide-and-conquer algorithms. This is a simple and very 

efficient algorithm for sorting a list of numbers. 

We are given a sequence of n numbers which we will assume is stored in an array A 

[1...n]. The objective is to output a permutation of this sequence, sorted in increasing order. 

This is normally done by permuting the elements within the array A. 

How can we apply divide-and-conquer to sorting? Here are the major elements of the Merge 

Sort algorithm. 

 Divide: Split A down the middle into two sub-sequences, each of size roughly n/2 . 
Conquer: Sort each subsequence (by calling MergeSort recursively on each). 

 Combine: Merge the two sorted sub-sequences into a single sorted list. 

 
The dividing process ends when we have split the sub-sequences down to a single item. A 

sequence of length one is trivially sorted. The key operation where all the work is done is in the 

combine stage, which merges together two sorted lists into a single sorted list. It turns out that 

the merging process is quite easy to implement. 



 
 
The following figure gives a high-level view of the algorithm. The “divide” phase is shown on 

the left. It works top-down splitting up the list into smaller sublists. The “conquer and 

combine” phases are shown on the right. They work bottom-up, merging sorted lists together 

into larger sorted lists. 

 

 
 

Figure 2.1  Merge Sort 
 
Designing the Merge Sort algorithm top-down. We’ll assume that the procedure that merges 

two sorted list is available to us. We’ll implement it later. Because the algorithm is called 

recursively on sub lists, in addition to passing in the array itself, we will pass in two 

indices, which indicate the first and last indices of the subarray that we are to sort. The call 

MergeSort(A, p, r) will sort the sub-arrayA [ p..r ] and return the sorted result in the same 

subarray. 

Here is the overview. If r = p, then this means that there is only one element to sort, and we 

may return immediately. Otherwise (if p < r) there are at least two elements, and we will invoke 

the divide-and-conquer. We find the index q, midway between p and r, namely q = ( p + r ) / 2 

(rounded down to then earest integer). Then we split the array into subarrays A [ p..q ] and A [ q 

+ 1 ..r ] . Call Merge Sort recursively to sort each subarray. Finally, we invoke a 

procedure (which we have yet to write) which merges these two subarrays into a single sorted 

array. 

MergeSort(array A, int p, int r) { 

if (p < r) { // we have at least 2 items q = (p + r)/2 

MergeSort(A, p, q) // sort A[p..q] 

MergeSort(A, q+1, r) // sort A[q+1..r] 



 
 
Merge(A, p, q, r) // merge everything together 

} } 
 
Merging: All that is left is to describe the procedure that merges two sorted lists. Merge(A, p, q, 

r)assumes that the left sub array, A [ p..q ] , and the right sub array, A [ q + 1 ..r ] , have 

already been sorted. We merge these two sub arrays by copying the elements to a temporary 

working array called B. For convenience, we will assume that the array B has the same 

index range A, that is, B [ p..r ] . We have to indices i and j, that point to the current elements 

of each sub array. We move the smaller element into the next position of B (indicated by index 

k) and then increment the corresponding index (either i or j). When we run out of elements in 

one array, then we just copy the rest of the other array into B. Finally, we copy the entire 

contents of B back into A. 

 
 
 
Merge(array A, int p, int q, int r) { // merges A[p..q] with A[q+1..r] 

array B[p..r] 

i = k = p //initialize pointers 

j = q+1 

while (i <= q and j <= r) { //   while   both   subarrays   are   nonempty 

if (A[i] <= A[j]) B[k++] = A[i++] // copy from left subarray 

else B[k++] = A[j++] // copy from right subarray 

} 

while (i <= q) B[k++] = A[i++] // copy any leftover to B 

while (j <= r) B[k++] = A[j++] 

for i = p to r do A[i] = B[i] // copy B back to A } 
 
Analysis: What remains is to analyze the running time of MergeSort. First let us consider the 

running time of the procedure Merge(A, p, q, r). Let n = r − p + 1 denote the total length of both 

the left and right sub arrays. What is the running time of Merge as a function of n? The algorithm 

contains four loops (none nested in the other). It is easy to see that each loop can be executed 

at most n times. Thus the running time to Merge n items is Θ ( n ) . Let us write this without 

the asymptotic notation, simply as n. (We’ll see later why we do this.) 

Now, how do we describe the running time of the entire MergeSort algorithm? We will do this 

through the use of a recurrence, that is, a function that is defined recursively in terms of itself. 

To avoid circularity, the recurrence for a given value of n is defined in terms of values that are 



strictly smaller than n. Finally, a recurrence has some basis values (e.g. for n = 1 ), which 

are defined explicitly. 

Let’s see how to apply this to Merge Sort. Let T ( n ) denote the worst case running time of 

Merge Sort on an array of length n. For concreteness we could count whatever we like: number 

of lines of pseudo code, number of comparisons, number of array accesses, since these will only 

differ by a constant factor. Since all of the real work is done in the Merge procedure, we will 

count the total time spent in the Merge procedure. 

First observe that if we call Merge Sort with a list containing a single element, then the running 

time is a constant. Since we are ignoring constant factors, we can just write T ( n ) =1 . 

When we call Merge Sort with a list of length n >1 , e.g. Merge(A, p, r), where r − p +1 = n, 

the algorithm first computes q = ( p + r ) / 2 . The sub array A [ p..q ] , which contains q − 

p + 1 elements. You can verify that is of size n/ 2 . Thus the remaining sub array A [ q +1 ..r ] 

has n/ 2 elements in it. How long does it take to sort the left sub array? We do  not  know this,  

but because n/ 2< n for n >1 , we can express this as T (n/ 2) . Similarly, we can express the 

time that it takes to sort the right sub array as T (n/ 2). 

Finally, to merge both sorted lists takes n time, by the comments made above. In conclusion we 

have 

T ( n ) =1 if n = 1 , 
 
2T (n/ 2) + n otherwise. 
 
Solving the above recurrence we can see that merge sort has a time complexity of Θ (n log n) . 



 

QUICKSORT 
 

 Worst-case running time: O (n2). 

 Expected running time: O (n lgn). 

 Sorts in place. 
 
Description of quicksort 

Quicksort is based on the three-step process of divide-and-conquer. 

• To sort the subarrayA[p . . r ]: 

Divide: Partition A[p . . r ], into two (possibly empty) subarraysA[p . . q − 1] and 

A[q + 1 . . r ], such that each element in the ÞrstsubarrayA[p . . q − 1] is ≤ A[q] and 

A[q] is ≤ each element in the second subarrayA[q + 1 . . r ]. 

Conquer: Sort the two subarrays by recursive calls to QUICKSORT. 

Combine: No work is needed to combine the subarrays, because they are sorted in place. 

• Perform the divide step by a procedure PARTITION, which returns the index q that marks 

the position separating the subarrays. 

QUICKSORT (A, p, r) 

ifp < r 

thenq ←PARTITION(A, p, r ) 

QUICKSORT (A, p, q − 1) QUICKSORT (A, q + 1, r) 

 
Initial call is QUICKSORT (A, 1, n) 
 
Partitioning 

Partition subarrayA [p . . . r] by the following procedure: 

PARTITION (A, p, r) 

x ← A[r ] 

i ← p –1 

for j ← p to r –1 

do if A[ j ] ≤ x 
 
theni ← i + 1 



 
 

exchangeA[i ] ↔ A[ j ] 

exchangeA[i + 1] ↔ A[r ] 

returni + 1 
 
 PARTITION always selects the last element A[r ] in the subarrayA[p . . r ] as the 

pivot the element around which to partition. 

 As the procedure executes, the array is partitioned into four regions, some of which may 

be empty: 

 
 

 
Figure 2.2 Quick sort  
 

Performance of Quick sort 

The running time of Quick sort depends on the partitioning of the sub arrays: 

• If the sub arrays are balanced, then Quick sort can run as fast as merge sort. 

• If they are unbalanced, then Quick sort can run as slowly as insertion sort. 
 
Worst case 

• Occurs when the sub arrays are completely unbalanced. 

• Have 0 elements in one sub array and n − 1 elements in the other sub array. 



 

 

 
 

• Get the recurrence 

T (n) = T (n − 1) + T (0) + Θ (n) 

= T (n − 1) + Θ (n) 

= O (n2) . 

• Same running time as insertion sort. 

• In fact, the worst-case running time occurs when Quick sort takes a sorted array as input, 

but insertion sort runs in O(n) time in this case. 

 
 
Best case 

• Occurs when the sub arrays are completely balanced every time. 

• Each sub array has ≤ n/2 elements. 

• Get the recurrence 

T (n) = 2T (n/2) + Θ (n) = O(n lgn). 
 
 
Balanced partitioning 

• QuickPort’s average running time is much closer to the best case than to the worst case. 

• Imagine that PARTITION always produces a 9-to-1 split. 

• Get the recurrence 

T (n) ≤ T (9n/10) + T (n/10) + _ (n) = O (n lgn). 

• Intuition: look at the recursion tree. 

• It’s like the one for T (n) = T (n/3) + T (2n/3) + O (n). 

• Except that here the constants are different; we get log10 n full levels and log10/9 n 

levels that are nonempty. 

• As long as it’s a constant, the base of the log doesn’t matter in asymptotic notation. 

• Any split of constant proportionality will yield a recursion tree of depth O (lgn). 
 
 
 
HEAPSORT 
 

 In place algorithm 

 Running Time: O(n log n) 

 Complete Binary Tree 
 
The (binary) heap data structure is an array object that we can view as a nearly complete 

binary tree. Each node of the tree corresponds to an element of the array. The tree is 



 

 

completely filled on all levels except possibly the lowest, which is filled from the left up to a 

point. 

The root of the tree is A[1], and given the index i of a node, we can easily compute the indices 

of its parent, left child, and right child: 

 
 

Figure 2.3 (a) Max Heap (b) heap data structure  
 
 PARENT (i) => return [ i / 2 ] 

 LEFT (i)  => return 2i 

 RIGHT (i)  => return 2i+ 1 
 

On most computers, the LEFT procedure can compute 2i in one instruction by simply 

shifting the binary representation of i left by one bit position. 

Similarly,  the  RIGHT procedure  can quickly compute 2i  +  1 by shifting the binary 

representation of i left by one bit position and then adding in a 1 as the low-order bit.The 

PARENT procedure can compute [i/2] by shifting i right one bit position.  Good 

implementations of heapsort often implement these procedures as "macros" or "inline" 

procedures. 

There are two kinds of binary heaps: max-heaps and min-heaps. 
 
 In a max-heap,the max-heap property is  that for every node i other than the 

root, A[PARENT(i)] >= A[i] ,that is, the value of a node is at most the value of its 

parent. Thus, the largest element in a max-heap is stored at the root, and the 

subtree rooted at a node contains values no larger than that contained at the node 

itself. 

 A min-heap is organized in the opposite way; the min-heap property is that for 

every node i other than the root, A[PARENT(i)<=A[i] , 

The smallest element in a min-heap is at the root. 
 
 The height of a node in a heap is the number of edges on the longest simple 

downward path from the node to a leaf and 



 

 

 The height of the heap is the height of its root. 

 Height of a heap of n elements which is based on a complete binary tree is O(log n). 
 

Maintaining the heap property 
 

MAX-HEAPIFY  lets the value at A[i] "float down" in the max-heap so that the subtree 

rooted at index i obeys the max-heap property. 

MAX-HEAPIFY(A,i) 
 
1. l LEFT(i) 

2. r RIGHT(i) 

3. if A[l] > A[i] 

4. largest l 

5. if A[r] > A[largest] 

6. Largest r 

7. if largest != i 

8. Then exchange A[i] A[largest] 

9.  MAX-HEAPIFY(A,largest) 
 

At each step, the largest of the elements A[i], A[LEFT(i)], and A[RIGHT(i)] is determined, 

and its index is stored in largest. If A[i] is largest, then the sub tree rooted at node i is already 

a max-heap and the procedure terminates. Otherwise, one of the two children has the 

largest element, and A[i ] is swapped with A[largest], which causes node i and its children 

to satisfy the max-heap property. The node indexed by largest, however, now has the original 

value A[i], and thus the sub tree rooted at largest might violate the max-heap property. 

Consequently, we call MAX-HEAPIFY recursively on that sub tree. 

 

 
 



 

 

Figure 2.4 The action of MAX-HEAPIFY (A, 2), where heap-size = 10. (a) The initial con- 

figuration, with A [2] at node i = 2 violating the max-heap property since it is not larger 

than both children. The max-heap property is restored for node 2 in (b) by exchanging A 

[2] with A[4], which destroys the max-heap property for node 4. The recursive call MAX-

HEAPIFY (A,4) Now has i = 4. After swapping A[4] with A[9], as shown in (c), node 4 

is fixed up, and the recursive call MAX-HEAPIFY(A, 9) yields no further change to the data 

structure. 

The running time of MAX-HEAPIFY by the recurrence can be described as T (n) < = T (2n/3) 

+ O (1) 

The solution to this recurrence is  T(n)=O(log n) 
 

Building a heap 
 

Build-Max-Heap(A) 
 

1. for i[n/2] to 1 

2. do MAX-HEAPIFY(A,i) 
 
 

 
(a) 



 

 

 
(b) 

 
(c) 

Figure 2.5 Max Heap  
 

We can derive a tighter bound by observing that the time for MAX-HEAPIFY to run at a 

node varies with the height of the node in the tree, and the heights of most nodes are 

small. Our tighter analysis relies on the properties that an n-element heap has height [log n] 

and at most [n/2h+1] nodes of any height h. 

The total cost of BUILD-MAX-HEAP as being bounded is T(n)=O(n) 
 
The HEAPSORT Algorithm 
 

HEAPSORT(A) 
 
1. BUILD MAX-HEAP(A) 

2. for i=n to 2 



 

 

3. exchange A[1] with A[i] 

4. MAX-HEAPIFY(A,1) 
 

 
 

 
 
 
 
 
 
 



 

 
 
 

 

 
 
TheHEAPSORT procedure takes time O(n log n), since the call to BUILD-MAX- HEAP 

takes time O(n) and each of the n - 1 calls to MAX-HEAPIFY takes time O(log n). 

 
MODULE 2:  Algorithm Design Techniques:[12] 
Dynamic Programming  
 
 

The Dynamic Programming (DP) is the most powerful design technique for solving optimization 
problems. The  DP  in  closely related to divide and conquer techniques, where the problem is 
divided into smaller sub-problems and each sub-problem is solved recursively. The DP 
differs from divide and conquer in a way that instead of solving sub-problems recursively, it 
solves each of the sub-problems only once and stores the solution to the sub-problems in a 
table. The solution to the main problem is obtained by the solutions of these sub- problems. 
The steps of Dynamic Programming technique are: 
 

 Dividing the problem into sub-problems: The main problem is divided into smaller 
sub- problems. The solution of the main problem is expressed in terms of the solution 
for the smaller sub-problems. 
 

 Storing the sub solutions in a table: The solution for each sub-problem is stored in 
a table so that it can be referred many times whenever required. 

 Bottom-up computation: The DP technique starts with the smallest problem instance 

Figure 2.6 Heap Sort 



 

 

 
The strategy can be used when the process of obtaining a solution of a problem can be viewed 
as a sequence of decisions. The problems of this type can be solved by taking an optimal 
sequence  of decisions. An optimal sequence of decisions is found by taking one decision at a 
time and never making an erroneous decision. In Dynamic Programming, an optimal sequence 
of decisions is arrived at by using the principle of optimality. The principle of optimality states 
that whatever be the initial  state  and decision, the remaining decisions must constitute an 
optimal decision sequence with regard to the state resulting form the first decision. 
A fundamental difference between the greedy strategy and dynamic programming is that in 
the greedy strategy only one decision sequence is generated, wherever in the dynamic 
programming, a number of them may be generated. Dynamic programming technique 
guarantees the optimal solution for a problem whereas greedy method never gives such 
guarantee. 
 
Let, we have three matrices A1, A2  and A3, with order (10 x 100), (100 x 5) and (5 x 50) 
respectively. 

Then the three matrices can be multiplied in two ways. 
 

(i) First, multiplying A2 and A3, then multiplying A1  with the resultant matrix i.e. A1(A2 
A3). 

(ii) First, multiplying A1 and A2, and then multiplying the resultant matrix with A3 i.e. 
(A1A2) A3. 

 

 

The number of scalar multiplications required in case 1 is 100 * 5 * 50 + 10 * 100 * 50 = 
25000 + 50,000 = 75,000 and the number of scalar multiplications required in case 2 is 10 * 100 
* 5  + 10 * 5 * 50 = 5000 + 2500 = 7500 
 
To find the best possible way to calculate the product, we could simply parenthesize the 
expression in every possible fashion and count each time how many scalar multiplications 
are required. Thus the matrix chain multiplication problem can be stated as “find the 
optimal parenthesisation of a chain of matrices to be multiplied such that the number of 
scalar multiplications is minimized”. 

Dynamic Programming Approach for Matrix Chain Multiplication 

Let us consider a chain of n matrices A1, A2……….An, where the matrix Ai has dimensions 
P[i-1] x P[i]. Let the parenthesisation at k results two sub chains A1…….Ak and 
Ak+1……..An. These two sub chains must each be optimal for A1……An to be optimal. 
The cost of matrix chain (A1….An) is calculated as cost(A1……Ak) + cost(Ak+1…...An) + 
cost of multiplying two resultant matrices together i.e. 

cost(A1……An)= cost(A1……Ak) + cost(Ak+1…...An) + cost of multiplying two resultant 
matrices together. 

 
 
Here, the cost represents the number of scalar multiplications. The sub chain (A1….Ak) has 
a dimension P[0] x P[k] and the sub chain (Ak+1……An) has a dimension P[k] x P[n]. 
The number of scalar multiplications required to multiply two resultant matrices is P[0] x 
P[k] x P[n]. 

Let m[i, j] be the minimum number of scalar multiplications required to multiply the 



 

 

matrix chain (Ai………..Aj). Then 

(i) m[i, j] = 0  if  i = j 
(ii) m[i, j] = minimum number of scalar multiplications required to multiply (Ai….Ak) 

+ minimum number of scalar multiplications required to multiply 
(Ak+1….An) +  cost  of multiplying two resultant matrices i.e. 
m[i, j] m[i, k ] m[k, j] P[i 1]P[k ]P[ j] 

 

Therefore, the minimum number of scalar multiplications required to multiply n matrices A1  
A2……An  is 

m[1, n] minm[1, k ] m[k , n] P[0]P[k ]P[n]
1k n 

 
 

The dynamic programming approach for matrix chain multiplication is presented in Algorithm  
 
 
 
 
 
 
 
 
 
 
 

Algorithm MATRIX-CHAIN-MULTIPLICATION  (P) 
 

// P is an array of length n+1 i.e. from P[0] to P[n]. It is assumed that the matrix Ai has the 
dimension P[i- 1] ×P[i]. 

{ 
 

for(i = 1; i<=n; 

i++) m[i, i] = 

0; 

for(l = 2; l<=n; l++){ 
 

for(i = 1; i<=n-(l-1); 

i++){ j = i + (l-

1); 

m[i, j] = ∞; 

for(k = i; k<=j-1; k++) 
 

q = m[i, k] + m[k+1, j] + P[i-1] P[k] P[j] ; 
 

if (q<m [i, j]){ 

m[i, j] = q; 



 

 

 
s[i, j] = k; 

 

} 
 

} 
 

} 
 

} 
 

return m and s. 
 

} 
 
. 
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Now let us discuss the procedure and pseudo code of the matrix chain multiplication. 
Suppose, we are given the number of matrices in the chain is n i.e. A1, A2………An and the 
dimension of matrix Ai is P[i- 1] ×P[i]. The input to the matrix-chain-order algorithm is a 
sequenceP[n+1] = {P[0], P[1], …….P[n]}. The algorithm first computes m[i, i] = 0 for i = 1, 
2, …….n in lines 2-3. Then, the algorithm computes m[i, j] for j– i = 1 in the first step to the 
calculation of m[i, j] for j – i = n -1 in the last step. In lines 3 – 11, the value of m[i, j] is 
calculated for j – i = 1 to j –i = n – 1 recursively. At each step of the calculation of m[i, j], a 
calculation on m[i, k] and m[k+1, j] for ik<j, are required, which are already calculated in 
the previous steps. 

To find the optimal placement of parenthesis for matrix chain multiplication Ai, Ai+1, …..Aj, 

we should test the value of ik<j for which m[i, j] is minimum. Then the matrix chain can be 
divided from (A1 ……Ak) and (Ak+1  ……. Aj). 

Let us consider matrices A1,A2……A5 to illustrate MATRIX-CHAIN-MULTIPLICATION 
algorithm. The matrix chain order P = {P0, P1, P2, P3, P4, P5} = {5, 10, 3, 12, 5, 50}. The 
objective is to find the minimum number of scalar multiplications required to multiply the 5 
matrices and also find the optimal sequence of multiplications. 

The solution can be obtained by using a bottom up approach that means first we should 
calculate mii for 1i 5. Then mijis calculated for j – i = 1 to j – i = 4. The value of mii  for 
1i 5 can be filled as 0 that means the elements in the first row can be assigned 0. Then 



 

 

For  j – i = 1 
 

m12 = P0 P1 P2 = 5 x 10 x 3 = 150 

m23 = P1 P2 P3 = 10 x 3 x 12 = 360 

m34 = P2 P3 P4 = 3 x 12 x 5 = 180 

m45 = P3 P4 P5 = 12 x 5 x 50 = 3000 

For j – i = 2 
 

m13 = min {m11 + m23 + P0 P1 P3, m12 + m33 + P0 P2 P3} 

= min {0 + 360 + 5 * 10 * 12, 150 + 0 + 5*3*12} 
 

= min {360 + 600, 150 + 180} = min {960, 330} 

= 330 m24 = min {m22 + m34 + P1 P2 P4, m23 + 

m44 + P1 P3 P4} 

= min {0 + 180 + 10*3*5, 360 + 0 +10*12*5} 
 

= min {180 + 150, 360 + 600} = min {330, 960} 

= 330 m35 = min {m33 + m45 + P2 P3 P5, m34 + 

m55 + P2 P4 P5} 

= min {0 + 3000 + 3*12*50, 180 + 0 + 3*5*50} 
 

= min {3000 + 1800 + 180 + 750} = min {4800, 930} = 930 
 

For j – i = 3 
 

m14 = min {m11 + m24 + P0 P1 P4, m12 + m34 + P0 P2 P4, m13+m44+P0 P3 
P4} 

= min {0 + 330 + 5*10*5, 150 + 180 + 5*3*5, 330+0+5*12*5} 
 

= min {330 + 250, 150 + 180 + 75, 330 +300} 
 

= min {580, 405, 630} = 405 
 

m25 = min {m22 + m35 + P1 P2 P5, m23 + m45 + P1 P3 P5, m24+m55+P1 P4 
P5} 

= min {0 + 930 +10*3*50, 360+3000+10*12*50, 330+0+10*5*50} 
 

= min {930 + 1500, 360 +3000+6000, 330+2500} 
 

= min {2430, 9360, 2830} = 2430 
 

For j - i = 4 



 

 



 
m15 = min{m11+ m25+ P0 P1 P5, m12+m35+ P0 P2 P5, m13 + m45 +P0 P3 P5, 
m14+m55+P0 P4 P5 } 

= min{0+2430+5*10*50, 150+930+5*3*50, 

330+3000+5*12*50, 405+0+5*5*50} 

= min {2430+2500, 150+930+750, 330+3000+3000, 405+1250} 
 

= min {4930, 1830, 6330, 1655} = 1655 
 
 

Hence, minimum number of scalar multiplications required to multiply the given five 
matrices is 1655. 

 

To find the optimal parenthesization of A1……….A5, we find the value of k is 4 for 
which m15 is minimum. So the matrices can be splitted to (A1….A4) (A5). Similarly, 
(A1….A4) can be splitted to (A1A2) (A3 A4) because for k = 2, m14 is minimum. No 
further splitting is required as the subchains (A1A2) and (A3  A4) has length 1. So the 
optimal paranthesization of A1 …….A5 in ( (A1 A2) (A3 A4) ) (A5). 

Time complexity of multiplying a chain of n matrices 

Let T(n) be the time complexity of multiplying a chain of n matrices. 

1




 n1 

if n 1 

T (n) 1T (k ) T (n k) 1 if n 1 
 k 1 

n1 
T (n) 1T (k ) T (n k) 1

k 1 
if n 1 

n1 
1n 1T (k ) T (n k )

k 1 
T (n) n2T (1) T (2) T (n 1) (7.1) 

 

Replacing n by n-1, we get 

T (n 1) n 12T (1) T (2) T (n 2) (7.2) 
 

Subtracting equation 7.2 from equation 7.1, we have 

T (n) T (n 1) nn 12T (n 1) 
T (n) 13T (n 1) 

1313T (n 2) 13132 T (n 2) 

113 32  3n2 3n1T (1) 

113 32  3n1 

n 



 

 


3 1 

2n 

2 
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The l o n g e s t  c o m m o n  s u b s e q u e n c e  ( LCS)   

 

The  longest  common  subsequence  (LCS)  problem  can  be  formulated  as  follows  
“Given  two sequences X = x1, x2  ……….xn and Y = y1, y2………yn and the 

objective is to find the LCS   Z = z1, z2 ………znthat is common to x and y” 

 
Given two sequences X and Y, we say Z is a common sub sequence of X and Y if Z is a 
subsequence of both X and Y. For example, X = A, B, C, B, D, A, Band Y = B, D, C, 
A, B, A, the sequence B, C, Ais a common subsequence. Similarly, there are many 
common subsequences in the two sequences X and Y. However, in the longest common 
subsequence problem, we wish to find a maximum length common subsequence of X 
and Y, that is B, C, B, Aor B, D, A, B. This section shows that the LCS problem can 
be solved efficiently using dynamic programming. 

Dynamic programming for LCS problem Theorem (Optimal Structure of an LCS) 

Let X = x1, x2 ……….xnand Y = y1, y2………ynbe sequences and let Z = z1, z2 ………znbe any 
LCS of X and Y. 

 Case 1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1. 

 Case 2. If xmyn, then zkxm implies that Z is an LCS of Xm-1 and Y.  

Case 3. If xmyn, then zkyn implies that Z is an LCS of X and Yn-1. 

Proof The proof of the theorem is presented below for all three cases. 

Case 1. If x = y and we assume that z x or z y then x = y can be added to Z at any 



 

 







Overlapping Sub-problems 

From theorem, it is observed that either one or two cases are to be examined to find an 
LCS of Xmand Yn. If xm = yn, then we must find an LCS of Xm-1 and Yn-1. If xmyn, 
then we must find an LCS of Xm-1 and Yn and LCS of Xm and Yn-1. The LCS of X and Y 
is the longer of these two LCSs. 

Let us define c[m, n] to be the length of an LCS of the sequences Xm and Yn. The optimal 
structure of the LCS problem gives the recursive formula 
 

0 if m 0 or n 0 

c[m,n] 


c[m 1, n 1] 
1 

if  
xm 

y
n 

..............(1) 

maxc[m 1, n], c[m, n 

1] if 
xm  yn 

 

Generalizing equation 7.1, we can formulate 
 

0 if i 0 or j 0 
c[i,j] 




c[i 1, j 1] 1 

maxc[i 1, j], c[i, j 

1]

if  
xi 

if  xi 

y 
j 

y j 

..............(2) 
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Computing the length of an LCS 

Based on equation (1), we could write an exponential recursive algorithm but there are only 
m*n distinct problems. Hence, for the solution of m*n distinct subproblems, we use dynamic 
programming to compute the solution using bottom up approach. 

The algorithm LCS_length (X, Y) takes two sequences X = x1, x2………..xnand Y = y1, 

y2………..ynas inputs and find c[m, n] as the maximum length of the subsequence in X and 
Y. It stores c[i, j] and b[i, j] in tables c[m, n] and b[m, n] respectively, which simplifies the 
construction of optimal solution. 

AlgorithmLCS_LENGTH (X, Y) 
 

{ 
 

m=length [X] 
 

n=length [Y] 
 

for( i =1; i<=m; 

i++) c[i,0] = 

0; 



 

                

 

for(j=0; j<n; 

j++) c[0, j]= 

0; 

for(i=1;  i< m; i++){ 
 

for(j = 1; j <= n;  j++){ 
 

if(x[i] = = y[j]) { 
 

c[i, j] = 1 + c[i-1, j-

1]; b[i,j] = ‘    ’; 

} 

else{ 
 

if(c[ i-1, j] ≥ c[i, j-1] ) 
 

c[i, j] = c[i-1, j]; 
 

b[i,j] = ‘’; 

else 
 

c[i,j] = c[i, j-

1]; b[i, j] = 

‘’ 

} 
 

return c and b ; 
 

} 
 
 

Constructing an LCS 
 

The algorithm LCS_LENGTH returns c and b tables. The b table can be used to construct the 
LCS of X and Y quickly. 
 
 
Algorithm PRINT_LCS (b, X, i, j) 

 
{if (i == 0 || j == 0) return; 

if (b[i, j  ] = = ‘ ‘) { 
 



 

                

 

PRINT_LCS (b, X, i-1, j-1) 
 

Print xi 

} 

else if (b[i, j] = = ‘’) 

PRINT_LCS (b, X, i-1, j) 
 

else 
 

PRINT_LCS (b, X, i, j-1) 
 

} 
 

Let us consider two sequences X = C, R, O, S, Sand Y = R, O, A, D, Sand the objective is 
to find the LCS and its length. The longest common subsequence of X and Y is R, O, Sand 
the length of LCS is 3. 
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Greedy Approach  
 

Introduction 

Greedy algorithms are typically used to solve an optimization problem. An Optimization problem 
is one in which, we are given a set of input values, which are required to be either maximized or 
minimized w. r. t. some constraints or conditions. Generally an optimization problem has n inputs 
(call this set as input domain or Candidate set, C), we are required to obtain a subset of C (call it 
solution set, S where CS  ) that satisfies the given constraints or conditions. Any subset S,

CS  , which satisfies the given constraints, is called a feasible solution. We need to find a 
feasible solution that maximizes or minimizes a given objective function. The feasible solution 
that does this is called an optimal solution. 

 

A greedy algorithm proceeds step–by-step, by considering one input at a time. At each stage, the 
decision is made regarding whether a particular input (say x) chosen gives an optimal solution or 
not. Our choice of selecting input x is being guided by the selection function (say select). If the 
inclusion of x gives an optimal solution, then this input x is added into the partial solution set. On 
the other hand, if the inclusion of that input x results in an infeasible solution, then this input x is 
not added to the partial solution. The input we tried and rejected is never considered again. When 
a greedy algorithm works correctly, the first solution found in this way is always optimal. 

In brief, at each stage, the following activities are performed in greedy method: 
 

1. First we select an element, say X , from input domain C. 

2. Then we check whether the solution set S is feasible or not. That is we check whether x can 



 

                

 

be included into the solution set S or not. If yes, then solution set }{XSS  . If no, then 

this input x is discarded and not added to the partial solution set S. Initially S is set to 
empty. 

3. Continue until S is filled up (i.e. optimal solution found) or C is exhausted whichever is 
earlier.  

(Note: From the set of feasible solutions, particular solution that satisfies or nearly satisfies the 
objective of the function (either maximize or minimize, as the case may be), is called optimal 
solution. 
 

In this Chapter, we will discuss those problems for which greedy algorithm gives an optimal 
solution such as Knapsack problem, Minimum cost spanning tree (MCST) problem and Single 
source shortest path problem. 

 

 Objective 

After going through this Unit, you will be able to: 

1.  Understand the basic concept about Greedy approach to solve Optimization problem.    

2. Understand how Greedy method is applied to solve any optimization problem such as 
Knapsack problem, Minimum-spanning tree problem, Shortest path problem etc. 

Fractional Knapsack Problem 

 

Let there are n number of objects and each object is having a weight and contribution to profit. 
The knapsack of capacity M is given. The objective is to fill the knapsack in such a way that 
profit shall be maximum. We allow a fraction of item to be added to the knapsack. 
 
Mathematically, we can write 
 

 
 
 

Where pi   and wi   are the profit and weight of ith   object and xi   is the fraction of  ith   object to 
be selected. Note that the value of xi will be any value between 0 and 1 (inclusive). If any object    
is completely placed into a knapsack then its value is 1 (i.e. xi=1) , if we do not pick (or select) 
that object to fill into a knapsack then its value is 0 (i.e. xi=0). Otherwise if we take a fraction of 
any object then its value will be any value between 0 and 1. 

For example 

Given n = 3, (p1, p2, p3) = {25, 24, 15} 



 

                

 

(w1, w2, w3) = {18, 15, 10} M = 20 

Solution 

Some of the feasible solutions are shown in the following table. 

 

Solution No x1 x2 x3 ∑wi xi ∑pi xi 

1 1 2/15 0 20 28.2 

2 0 2/3 1 20 31.0 

3 0 1 1/2 20 31.5 

 

These solutions are obtained by different greedy strategies. 

 

Greedy strategy I: In this case, the items are arranged by their profit values. Here the item with 
maximum profit is selected first. If the weight of the object is less than the remaining capacity of 
the knapsack then the object is selected full and the profit associated with the object is added to 
the total profit. Otherwise, a fraction of the object is selected so that the knapsack can be filled 
exactly. This process continues from selecting the highest profitable object to the lowest 
profitable object till the knapsack is exactly full. 

Greedy strategy II: In this case, the items are arranged by fair weights. Here the item with 
minimum weight in selected first and the process continues like greedy strategy-I till the 
knapsack is exactly full. 

 

Greedy strategy III: In this case, the items are arranged by profit/weight ratio and the item  with 
maximum profit/weight ratio is selected first and the process continues like greedy strategy-I till 
the knapsack is exactly full. 

 

Therefore, it is clear from the above strategies that the Greedy method generates optimal solution 
if we select the objects with respect to their profit to weight ratios that means the object with 
maximum profit to weight ratio will be selected first. Let there are n objects and the object i is 
associated with 

 
 



 

                

 
 

Running time of Knapsack (fractional) problem: 

Sorting of n items (or objects) in decreasing order of the ratio profit/weight

Since this is the lower bound for any comparison based 
Fractional-Knapsack takes )(n time. Therefore, the total time including sort is 

Example: 1: Find an optimal solution for the knapsack instance n=7 and M=15,
 

 
 

Solution: 
 

Greedy algorithm gives a optimal solution for knapsack problem if you elect the object in 
decreasing of the ratio profit/weight. That is we select those object first 

which has maximum value of the ratio 

weight . Since 
object, then 3rd (or 7th ) object, and so on.

 
 
 
 
 

: 

Greedy Fractional-Knapsack
/* P[1..n]and W[1..n]contains 
such that X[1..n]is a 

{              For i← 1to n do
X[i]← 0 

profit← 0 
weight← 
0i←1 

 

While(Weight<M)//M 
Capacity 
{ 

if(weight +
X[i]
weight

else 
                       X[i]= (M-
wright)/w[i]weight= M 

Profit =profit+ p[i]*X[i]i++;
}//end of while 
}//end of Algorithm 

Running time of Knapsack (fractional) problem:  

Sorting of n items (or objects) in decreasing order of the ratio profit/weight takes 

Since this is the lower bound for any comparison based sorting algorithm. Line 6 of Greedy 
time. Therefore, the total time including sort is (

Example: 1: Find an optimal solution for the knapsack instance n=7 and M=15, 

Greedy algorithm gives a optimal solution for knapsack problem if you elect the object in 
decreasing of the ratio profit/weight. That is we select those object first  

which has maximum value of the ratio                              This ratio is also called profit per unit 

. Thus we select 5th object first , then 1st 
object, then 3rd (or 7th ) object, and so on. 

Knapsack (P[1..n],W[1..n],X[1..n], M) 
W[1..n]contains the profit and weight of then-objects ordered 

is a solution set and M is the capacity of KnapSack*/
← 1to n do 

 //Total profit of item filled in Knapsack 
//Total weight of items packed in 
KnapSack 

<M)//M is the Knap sack 

+W[i]≤M) 
X[i]= 1 
weight= weight+ W[i] 

[i]*X[i]i++; 

 

)log( nn time. 

sorting algorithm. Line 6 of Greedy 
)log( nn . 

Greedy algorithm gives a optimal solution for knapsack problem if you elect the object in 

This ratio is also called profit per unit 

ect 5th object first , then 1st 

objects ordered 
KnapSack*/ 



 

                

Approach 

Selection 
of 

 
Object in 
decreasing 
order of the 
ratio 

 
Kruskal's Algorithm 

This minimum spanning tree algorithm was first described by Kruskal in 1956 in the same paper 
where he rediscovered Jarnik's algorithm. This algorithm was also rediscovered in 1957 by 
Loberman and Weinberger, but somehow avoided being renamed after them. The basic idea of 
the Kruskal's algorithms is as follows: scan all edges in increasing weight order; if an edge is 
safe, keep it (i.e. add it to the set A).

  

Overall Strategy 

Kruskal's Algorithm, as described in CLRS, is directly based on the generic MST algorithm. It 
builds the MST in forest. Initially, each vertex is in its own tree in forest. Then, algorithm 
consider each edge in turn, order by increasing weight. If an edge (
trees, then (u, v) is added to the set of edges of the MST, and two trees
(u, v) are merged into a single tree on the other hand, if an edge (
the same tree, then edge (u, v) is discarded.

A little more formally, given a connected, undirected, weighted graph with a function
R. 

 Starts with each vertex being its own component.

 Repeatedly merges two components into one by choosing the light edge that connects 
them (i.e., the light edge crossing the cut between them).

 Scans the set of edges in monotonically increasing order 

 Uses a disjoint-set data structure to determine whether an edge connects vertices in 
different components. 

  

Data Structure 

Before formalizing the above idea, lets quickly review the disjoint
Chapter 21. 

 
 

 
 
 
1+2+4+5+1+2 

 
6+10+18+15+3+3.33
=55.33 

=15 

tree algorithm was first described by Kruskal in 1956 in the same paper 
where he rediscovered Jarnik's algorithm. This algorithm was also rediscovered in 1957 by 
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Starts with each vertex being its own component. 

Repeatedly merges two components into one by choosing the light edge that connects 
them (i.e., the light edge crossing the cut between them). 

Scans the set of edges in monotonically increasing order by weight. 

set data structure to determine whether an edge connects vertices in 
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set data structure to determine whether an edge connects vertices in 

set data structure from 



 

                

 

Make_SET(v):    Create a new set whose only member is pointed to by v. Note that for this 
operation v must already be in a set. 

FIND_SET(v):    Returns a pointer to the set containing v. 

UNION(u, v):     Unites the dynamic sets that contain u and v into a new set that is union of these 
two sets. 

 

 Algorithm 

Start with an empty set A, and select at every stage the shortest edge that has not been chosen or 
rejected, regardless of where this edge is situated in the graph. 

KRUSKAL(V, E, w) 

A ← { }           // Set A will ultimately contains the edges of the MST 
for each vertex v in V 
    do MAKE-SET(v) 
sort E into nondecreasing order by weight w 
for each (u, v) taken from the sorted list 
    do if FIND-SET(u) = FIND-SET(v) 
        then A ∪← A  {(u, v)} 
            UNION(u, v) 
return A 

  

Illustrative Examples 

Lets run through the following graph quickly to see how Kruskal's algorithm works on it: 

 

We get the shaded edges shown in the above figure. 

Edge (c, f) : safe 
Edge (g, i) : safe 



 

                

 

Edge (e, f) : safe 
Edge (c, e) : reject 
Edge (d, h) : safe 
Edge (f, h) : safe 
Edge (e, d) : reject 
Edge (b, d) : safe 
Edge (d, g) : safe 
Edge (b, c) : reject 
Edge (g, h) : reject 
Edge (a, b) : safe 

At this point, we have only one component, so all other edges will be rejected. [We could add a 
test to the main loop of KRUSKAL to stop once |V| − 1 edges have been added to A.] 

Note Carefully: Suppose we had examined (c, e) before (e, f ). Then would have found (c, e) 
safe and would have rejected (e, f ). 

  

Example (CLRS)    Step-by-Step Operation of Kurskal's Algorithm. 

Step 1. In the graph, the Edge(g, h) is shortest. Either vertex g or vertex h could be 
representative. Lets choose vertex g arbitrarily. 

 

Step 2. The edge (c, i) creates the second tree. Choose vertex c as representative for second tree. 

 

Step 3. Edge (g, g) is the next shortest edge. Add this edge and choose vertex g as representative. 



 

                

 

 

Step 4. Edge (a, b) creates a third tree. 

 

Step 5. Add edge (c, f) and merge two trees. Vertex c is chosen as the representative. 

 

Step 6. Edge (g, i) is the next next cheapest, but if we add this edge a cycle would be created. 
Vertex c is the representative of both. 

 

Step 7. Instead, add edge (c, d). 

 



 

                

 

Step 8. If we add edge (h, i), edge(h, i) would make a cycle. 

 

Step 9. Instead of adding edge (h, i) add edge (a, h). 

 

Step 10. Again, if we add edge (b, c), it would create a cycle. Add edge (d, e) instead to 
complete the spanning tree. In this spanning tree all trees joined and vertex c is a sole 
representative. 

 

  

Analysis 

Initialize the set A:          O(1) 

First for loop:                 |V| MAKE-SETs 

Sort E:                          O(E lg E) 

Second for loop:            O(E) FIND-SETs and UNIONs 

Assuming the implementation of disjoint-set data structure, already seen in Chapter 21, that uses 
union by rank and path compression: O((V + E) α(V)) + O(E lg E) 

Since G is connected, |E| ≥ |V| ⇒− 1  O(E α(V)) + O(E lg E). 



 

                

 

α(|V|) = O(lg V) = O(lg E). 

Therefore, total time is O(E lg E). 

|E| ≤ |V|2 ⇒lg |E| = O(2 lg V) = O(lg V). 

Therefore, O(E lg V) time. (If edges are already sorted, O(E α(V)), which is almost linear.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

                

 

 
 
 
 
MODULE 2:  Algorithm Design Techniques:[12] 
 
Backtracking  
 
 
                                                   
 A backtracking algorithm tries to build a solution to a computational problem incrementally. 
Whenever the algorithm needs to decide between multiple alternatives to the next component of 
the solution, it simply tries all possible options recursively. 
 

 
 It is one of the most general algorithm design techniques.  
 
 Many problems which deal with searching for a set of solutions or for a optimal solution 

satisfying some constraints can be solved using the backtracking formulation. 
 
 To apply backtracking method, tne desired solution must be expressible as an n-tuple 

(x1…xn) where xi is chosen from some finite set Si. 
 
 The problem is to find a vector, which maximizes or minimizes a criterion function 

P(x1….xn). 
 
 The major advantage of this method is, once we know that a partial vector (x1,…xi)  will 

not lead to an optimal solution that (mi+1………..mn) possible test vectors may be 
ignored entirely. 

 
 Many problems solved using backtracking require that all the solutions satisfy a complex 

set of constraints. 
 

 These constraints are classified as:       
      

                                      i) Explicit constraints.                                
                                     ii) Implicit constraints. 
 

Explicit constraints: 
             Explicit constraints are rules that restrict each Xi to take values only from a given 
set. 
                      Some examples are, 
Xi 0 or Si = {all non-negative real nos.} 
Xi =0 or 1 or Si={0,1}. 
LiXiUi or Si= {a: Li  aUi} 

 
 All tupules that satisfy the explicit constraint define a possible solution space for I. 
 

Implicit constraints: 



 

                

 

                   The implicit constraint determines which of the tuples in the solution space I can 
actually satisfy the criterion functions. 
 
 
 
Algorithm: 
 
Algorithm I Backtracking (n) 
// This schema describes the backtracking procedure .All solutions are generated in X[1:n]  
//and printed as soon as they are determined. 
 { 
    k=1; 
    While (k  0) do 
    { 
       if (there remains all untried 
       X[k]   T (X[1],[2],…..X[k-1]) and Bk (X[1],…..X[k])) is true ) then 
      { 
         if(X[1],……X[k] )is the path to the answer node) 
        Then write(X[1:k]); 
        k=k+1;                 //consider the next step. 
     } 
  else k=k-1;                      //consider backtracking to the previous set. 
 } 
} 
 

 All solutions are generated in X[1:n] and printed as soon as they are determined. 
 
 T(X[1]…..X[k-1]) is all possible values of X[k] gives that X[1],……..X[k-1] have 

already been chosen. 
 

 Bk(X[1]………X[k]) is a boundary function which determines the elements of X[k] 
which satisfies the implicit constraint. 

 
 Certain problems which are solved using backtracking method are, 

                                        
                     1. Sum of subsets. 
                     2. Graph coloring. 
                     3. Hamiltonian cycle. 
                     4. N-Queens problem.     
 
Sum of subsets: 
 

 We are given ‘n’ positive numbers called weights and we have to find all combinations 
of these numbers whose sum is M. this is called sum of subsets problem. 

 If we consider backtracking procedure using fixed tuple strategy , the elements X(i) of 
the solution vector is either 1 or 0 depending on if the weight W(i) is included or not. 

 
 If the state space tree of the solution, for a node at level I, the left child corresponds to 

X(i)=1 and right to X(i)=0. 



 

                

 

   
Example: 
 
 Given n=6,M=30 and W(1…6)=(5,10,12,13,15,18).We have to generate all possible 

combinations of subsets whose sum is equal to the given value M=30. 
 
 In state space tree of the solution the rectangular node lists the values of s, k, r, where s is 

the sum of subsets,’k’ is the iteration and ‘r’ is the sum of elements after ‘k’ in the 
original set. 

 
 The state space tree for the given problem is, 

 
 

 
   Ist    solution is  A  -> 1  1  0  0  1  0 
    IInd  solution is  B  -> 1  0  1  1  0  0 
    III rd solution is C  -> 0  0  1  0  0  1 
 

 In the state space tree, edges from level ‘i’ nodes to ‘i+1’ nodes are labeled with the 
values of Xi, which is either 0 or 1. 

 
 The left sub tree of the root defines all subsets containing Wi. 

 
 The right subtree of the root defines all subsets, which does not include Wi. 

 
Generation of state space tree: 



 

                

 

 
 Maintain an array X to represent all elements in the set. 
 
 The value of Xi indicates whether the weight Wi is included or not. 

 
 Sum is initialized to 0 i.e., s=0. 

 
 We have to check starting from the first node. 

 
 Assign X(k)<-  1. 
 
 If S+X(k)=M then we print the subset b’coz the sum is the required output. 

 
 If the above condition is not satisfied then we have to check S+X(k)+W(k+1)<=M. If so, 

we have to generate the left sub tree. It means W(t) can be included so the sum will be 
incremented and we have to check for the next k. 

 
 After generating the left sub tree we have to generate the right sub tree, for this we have 

to check S+W(k+1)<=M.B’coz W(k) is omitted and W(k+1) has to be selected. 
 

 Repeat the process and find all the possible combinations of the subset. 
 
 Algorithm: 
  
Algorithm sumofsubset(s,k,r) 
{ 
//generate the left child. note s+w(k)<=M since Bk-1 is true. 
X{k]=1; 
If (S+W[k]=m) then write(X[1:k]); // there is no recursive call here as W[j]>0,1<=j<=n. 
Else if (S+W[k]+W[k+1]<=m) then sum of sub (S+W[k], k+1,r- W[k]); 
//generate right child and evaluate Bk. 
If ((S+ r- W[k]>=m)and(S+ W[k+1]<=m)) then 
{ 
   X{k]=0; 
   sum of sub (S, k+1, r- W[k]); 
} 
} 
 
Hamiltonian cycles: 
 

 Let G=(V,E) be a connected graph with ‘n’ vertices. A HAMILTONIAN CYCLE is a 
round trip path along ‘n’ edges of G which every vertex once and returns to its starting 
position. 

 
 If the Hamiltonian cycle begins at some vertex V1 belongs to G and the vertex are visited 

in the order of V1,V2…….Vn+1,then the edges are in E,1<=I<=n and the Vi are distinct 
except V1 and Vn+1 which are equal. 

 
 Consider an example graph G1. 

 



 

                

 

 
 
 
 
 
 
 

 
 
   Figure 2. 6 The graph G1 has Hamiltonian cycles: 
 
->1, 3, 4,5,6,7,8,2,1 and 
->1, 2, 8,7,6,5,4,3,1. 
 
The backtracking algorithm helps to find Hamiltonian cycle for any type of graph. 

 
Procedure: 
 
1. Define a solution vector X(Xi……..Xn) where Xi represents the I th  visited vertex of the 
proposed cycle. 
 
2. Create a cost adjacency matrix for the given graph. 
 
3. The solution array initialized to all zeros except X(1)=1,b’coz the cycle should start at 
vertex ‘1’. 
 
4. Now we have to find the second vertex to be visited in the cycle. 
5. The vertex from 1 to n are included in the cycle one by one by checking 2 conditions, 
          1.There should be a path from previous visited vertex to current vertex. 
            2.The current vertex must be distinct and should not have been visited earlier. 
 
6.  When these two conditions are satisfied the current vertex is included in the cycle, else 
the  next vertex is tried. 
 
7. When the nth vertex is visited we have to check, is there any path from nth vertex to first  
8 vertex. if no path, the go back one step and after the previous visited node. 
 
8. Repeat the above steps to generate possible Hamiltonian cycle. 
 
Algorithm: (Finding all Hamiltonian cycle) 
 
Algorithm Hamiltonian (k) 



 

                

 

{ 
 Loop 
      Next value (k) 
If (x (k)=0) then return; 
{ 
  If k=n then 
      Print (x) 
Else 
Hamiltonian (k+1); 
End if 
 
} 
Repeat 
} 
 
Algorithm Nextvalue (k) 
{ 
 Repeat 
{ 
  X [k]=(X [k]+1) mod (n+1); //next vertex 
  If (X [k]=0) then return; 
  If (G [X [k-1], X [k]]  0) then 
{ 
  For j=1 to k-1 do if (X [j]=X [k]) then break; 
  // Check for distinction. 
  If (j=k) then          //if true then the vertex is distinct. 
    If ((k<n) or ((k=n) and G [X [n], X [1]]   0)) then return; 
} 
} Until (false); 
} 
 
8-queens problem: 
 

This 8 queens problem is to place n-queens in an ‘N*N’ matrix in such a way that no two 
queens attack each otherwise no two queens should be in the same row, column, diagonal. 
 
Solution: 
 

 The solution vector X (X1…Xn) represents a solution in which Xi is the column of the  th 
row where I th queen is placed. 

 
 First, we have to check no two queens are in same row. 

 
 Second, we have to check no two queens are in same column. 

 
 The function, which is used to check these two conditions, is [I, X (j)], which gives 

position of the I th queen, where I represents the row and X (j) represents the column 
position. 

 
 Third, we have to check no two queens are in it diagonal. 



 

                

 

 
 Consider two dimensional array A[1:n,1:n] in which we  observe that every element on 

the same diagonal that runs from upper left to lower right has the same value. 
 

 Also, every element on the same diagonal that runs from lower right to upper left has the 
same value. 

 
 Suppose two queens are in same position (i,j) and (k,l) then two queens lie on the same 

diagonal , if and only if |j-l|=|I-k|. 
 
Steps to generate the solution: 
 
 Initialize x array to zero and start by placing the first queen in k=1 in the first row. 
 To find the column position start from value 1 to n, where ‘n’ is the no. Of columns or 

no. Of queens. 
 If k=1 then x (k)=1.so (k,x(k)) will give the position of the k th queen. Here we have to 

check whether there is any queen in the same column or diagonal. 
 For this considers the previous position, which had already, been found out. Check 

whether  
      X (I)=X(k) for column |X(i)-X(k)|=(I-k) for the same diagonal. 
 If any one of the conditions is true then return false indicating that k th queen can’t be 

placed in position X (k). 
 For not possible condition increment X (k) value by one and precede   d until the position 

is found. 
 If the position X (k)  n and k=n then the solution is generated completely. 
 If k<n, then increment the ‘k’ value and find position of the next queen. 
 If the position X (k)>n then k th queen cannot be placed as the size of the matrix is 

‘N*N’. 
 So decrement the ‘k’ value by one i.e. we have to back track and after the position of the 

previous queen. 
 
Algorithm: 
Algorithm place (k,I) 
//return true if a queen can be placed in k th row and I th column. otherwise it returns // 
//false .X[] is a global array whose first k-1 values have been set. Abs® returns the //absolute 
value of r. 
{ 
  For j=1 to k-1 do 
     If ((X [j]=I)              //two in same column. 
     Or (abs (X [j]-I)=Abs (j-k))) 
Then return false; 
Return true; 
} 
 
 n-Queens: 
 
The prototypical backtracking problem is the classical n Queens Problem, first proposed by 
German chess enthusiast Max Bezzel in 1848 (under his pseudonym “Schachfreund”) for the 
standard 8× 8 board and by François-Joseph Eustache Lionnet in 1869 for the more general n n 
board. The problem is to place n queens on an n n chessboard, so that no two queens can attack 



 

                

 

each other. For readers not familiar with the rules of chess, this means that no two queens are in 
the same row, column, or diagonal. 
 
Obviously, in any solution to the n-Queens problem, there is exactly one queen in each row. So 
we will represent our possible solutions using an array Q[1 .. n], where Q[i ] indicates which 
square in row i contains a queen, or 0 if no queen has yet been placed in row i. To find a 
solution, we put queens on the board row by row, starting at the top. A partial solution is an 
array Q[1 .. n] whose first r 1 entries are positive and whose last n r + 1 entries are all zeros, for 
some integer r. 

  
The following recursive algorithm, essentially due to Gauss (who called it “methodical 

groping”), recursively enumerates all complete n-queens solutions that are consistent with a 

given partial solution. The input parameter r is the first empty row. Thus, to compute all n-
queens solutions with no restrictions, we would call RecursiveNQueens(Q[1 .. n],1). 
 
 
Algorithm Nqueen (k,n) 
//using backtracking it prints all possible positions of n queens in ‘n*n’ chessboard. So 
 //that they are non-tracking. 
{ 
     For I=1 to n do 
         { 
            If place (k,I) then 
              { 
                 X [k]=I; 
                  If (k=n) then write (X [1:n]); 
                   Else nquenns(k+1,n)    ; 
           } 
      } 
} 
 
Example: 4 queens. 
Two possible solutions are 
 
 
 
 
 
 
 
 
 

 
Solutin-1                                                 Solution 2 

                        (2 4 1 3)                                                    (3 1 4 2) 
 
Graph coloring: 
 

 Q   

   Q 

Q    

  Q  

  Q  

Q    

   Q 

 Q   



 

                

 

 Let ‘G’ be a graph and ‘m’ be a given positive integer. If the nodes of ‘G’ can be colored 
in such a way that no two adjacent nodes have the same color. Yet only ‘M’ colors are 
used. So it’s called M-color ability decision problem. 

 The graph G can be colored using the smallest integer ‘m’. This integer is referred to as 
chromatic number of the graph. 

 A graph is said to be planar iff it can be drawn on plane in such a way that no two edges 
cross each other. 

 Suppose we are given a map then, we have to convert it into planar. Consider each and 
every region as a node. If two regions are adjacent then the corresponding nodes are 
joined by an edge. 

 
 
Consider a map with five regions and its graph. 
 
 4 5 
 
 2 
 
 
 3 
 
 
1 is adjacent to 2, 3, 4. 
2 is adjacent to 1, 3, 4, 5 
3 is adjacent to  1, 2, 4 
4 is adjacent to   1, 2, 3, 5 
5 is adjacent to   2, 4 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
Steps to color the Graph: 
 

 First create the adjacency matrix graph(1:m,1:n) for a graph, if there is an edge between 
i,j then C(i,j) = 1 otherwise C(i,j) =0. 

 
 The Colors will be represented by the integers 1,2,…..m and the solutions will be stored 

in the array X(1),X(2),………..,X(n) ,X(index) is the color, index is the node. 

1 

1 

3 

5 4 
A

2 



 

                

 

 
 He formula is used to set the color is, 

 X(k) = (X(k)+1) % (m+1) 

 
 First one chromatic number is assigned ,after assigning a number for ‘k’ node, we have 

to check whether the adjacent nodes has got the same values if so then we have to assign 
the next value. 

 
 Repeat the procedure until all possible combinations of colors are found. 

 
 The function which is used to check the adjacent nodes and same color is, 

 If(( Graph (k,j) == 1) and X(k) = X(j)) 

 
Example: 

     
 N= 4 
 M= 3 
 
Adjacency Matrix: 
 
 0   1   0   1 
 1   0   1   0 
  0   1   0   1 
 1   0   1   0 
 
 Problem is to color the given graph of 4 nodes using 3 colors. 
 
Node-1 can take the given graph of 4 nodes using 3 colors. 
 
 The state space tree will give all possible colors in that ,the numbers which are inside the 
circles are nodes ,and the branch with a number is the colors of the nodes. 
 
State Space Tree:  

1 

3 

2 

4 



 

                

 

 
 
 
Algorithm: 
 
Algorithm mColoring(k) 
// the graph is represented by its Boolean adjacency matrix G[1:n,1:n]  .All assignments //of 
1,2,……….,m to the vertices of the graph such that adjacent vertices are assigned //distinct 
integers are printed. ’k’ is the index of the next vertex to color. 
 
{ 
repeat 
{ 
    // generate all legal assignment for X[k]. 
  Nextvalue(k);    // Assign to X[k] a legal color. 
         If (X[k]=0) then return;           // No new color possible. 
        If (k=n) then                  // Almost ‘m’ colors have been used to color the ‘n’ vertices 
                  Write(x[1:n]);      
      Else mcoloring(k+1); 
}until(false); 
} 
 
Algorithm Nextvalue(k) 
 
// X[1],……X[k-1] have been assigned integer values in the range[1,m] such that //adjacent 
values have distinct integers. A value for X[k] is determined in the //range[0,m].X[k] is assigned 
the next highest numbers color while maintaining //distinctness form the adjacent vertices of 
vertex K. If no such color exists, then X[k] is 0. 
{ 
 
   repeat 
    {    
            X[k] = (X[k]+1)mod(m+1);    // next highest color. 
           If(X[k]=0) then return;             //All colors have been used. 
              For j=1 to n do 
             { 



 

                

 

                 // Check if this color is distinct from adjacent color. 
             If((G[k,j]  0)and(X[k] = X[j])) 
                 // If (k,j) is an edge and if adjacent vertices have the same color. 
             Then break; 
             } 
 
         if(j=n+1) then return;     //new color found. 
    } until(false);    //otherwise try to find another color. 
} 
  
 The time spent by Nextvalue to determine the children is  (mn) 
 
Total time is =  (mn n). 
 
Knapsack Problem using Backtracking: 
 

 The problem is similar to the zero-one (0/1) knapsack optimization problem is dynamic 
programming algorithm. 

 
 We are given ‘n’ positive weights Wi and ’n’ positive profits Pi, and a positive number 

‘m’ that is the knapsack capacity, the is problem calls for choosing a subset of the 
weights such that, 

 
 

 ni

WiXi
1

  m  and 
 ni

PiXi
1

 is Maximized. 

 
 Xi Constitute Zero-one valued Vector. 
 

 The Solution space is the same as that for the sum of subset’s problem. 
 

 Bounding functions are needed to help kill some live nodes without expanding them. A 
good bounding function for this problem is obtained by using an upper bound on the 
value of the best feasible solution obtainable by expanding the given live node. 

 
 The profits and weights are assigned in descending order depend upon the ratio. 

 
 (i.e.) Pi/Wi   P(I+1) / W(I+1) 
 
Solution : 
 

 After assigning the profit and weights, we have to take the first object weights and check 
if the first weight is less than or equal to the capacity, if so then we include that object 
(i.e.) the unit is 1.(i.e.) K 1. 

 
 Then We are going to the next object, if the object weight is exceeded that object does 

not fit. So unit of that object is ‘0’.(i.e.) K=0. 
 Then We are going to the bounding function, this function determines an upper bound on 

the best solution obtainable at level K+1. 
 
 Repeat the process until we reach the optimal solution. 



 

                

 

 
Algorithm: 
 
Algorithm Bknap(k,cp,cw) 
 
// ‘m’ is the size of the knapsack;  ‘n’  no.of weights & profits. W[]&P[] are the //weights & 
weights. P[I]/W[I]   P[I+1]/W[I+1]. 
//fwFinal weights of knapsack. 
//fp final max.profit. 
//x[k] = 0 if W[k] is not the knapsack,else X[k]=1. 
 
{ 
       // Generate left child. 
        If((W+W[k] m) then 
        { 
               Y[k] =1; 
                If(k<n) then Bnap(k+1,cp+P[k],Cw +W[k]) 
                   If((Cp + p[w] > fp) and (k=n)) then  
 
                     { 
                        fp = cp + P[k]; 
                        fw = Cw+W[k]; 
                       for j=1 to k do X[j] = Y[j]; 
                   } 
    } 
 
  if(Bound(cp,cw,k)  fp) then 
  { 
        y[k] = 0; 
      if(k<n) then Bnap (K+1,cp,cw); 
    if((cp>fp) and (k=n)) then 
       { 
            fp = cp; 
             fw = cw; 
               for j=1 to k do X[j] = Y[j]; 
         } 
    } 
} 
 
Algorithm for Bounding function: 
 
Algorithm Bound(cp,cw,k) 
// cp current profit total. 
//cw current weight total. 
//kthe index of the last removed item. 
//mthe knapsack size. 
 
{ 
     b=cp; 
     c=cw; 



 

                

 

     for I =- k+1 to n do 
  { 
          c= c+w[I]; 
        if (c<m) then b=b+p[I]; 
             else return b+ (1-(c-m)/W[I]) * P[I]; 
} 
return b; 
} 
Example: 
 
 M= 6 Wi = 2,3,4   4   2   2 
 
N= 3  Pi  = 1,2,5             Pi/Wi (i.e.)     5   2   1 
 
Xi = 1  0   1 
The maximum weight is 6 
 
The Maximum profit is (1*5) + (0*2) + (1*1) 
                               5+1 
                               6. 
 
  Fp = (-1) 

 1 3 & 0+4   6 
          cw = 4,cp = 5,y(1) =1 
             k = k+2 
 

 2 3  but 7>6 
           so y(2) = 0 
 

 So bound(5,4,2,6) 
 
B=5 
C=4 
I=3 to 3 
C=6 
6 6 
So return 5+(1-(6-6))/(2*1) 
                  

 5.5 is not less than fp. 
            So, k=k+1 (i.e.) 3. 
           3=3 & 4+2  6 
           cw= 6,cp = 6, y(3)=1. 
           K=4. 

 If 4> 3 then 
  Fp =6,fw=6,k=3 ,x(1) 1  0  1 
 The solution Xi  1  0  1 
 
   Profit  6 
   Weight 6. 
 



 

                

 

MODULE: 02 MCQ and Short type Problem 
MCQ:  
 
 
1. For 0/1 KNAPSACK problem, the algorithm takes amount of time for 

memory table, and time to determine the optimal load, for N objects and 
W as the capacity of KNAPSACK. 

 
a .  O(N+W), O(NW) (b) O(NW),O(N+W) (c)O(N),O(NW) (d) O(NW),O(N)  

Ans :(b) O(NW),O(N+W) 

2. .The divide and conquer merge sort algorithm’s time complexity can be defined as 
a. O(long n) 
b. O(n) 
c. Ω (n log n) 
d. O(n log n) 
 Ans: O(n log n) 

 
3. Sorting is not possible by using which of the following methods? 
Insertion (b) Selection (c) Deletion (d) Exchange 
 Ans :Deletion 
4. What is the type of the algorithm used in solving the 8 Queens problem? 
Backtracking (b) Dynamic (c) Branch and Bound (d) D and C  
Ans :Backtracking 
5. The following are the statements regarding the NP problems. Chose the right option from the 
following options: 
All NP-complete problems are not NP-hard. 
SomeNP-hard problems are not known to be NP-complete. 
Both (I) and (II) are true 
Both (I) and (II) are false 
Only (I) is true 
Only (II) is true 
 
Ans :Only (II) is true 
 
6. Let G be a graph with ‘n’ nodes and let ‘m’ be the chromatic number of the graph. 
Then the time taken by the backtracking algorithm to color it is 
a.   O(nm)  (b) O(n+m) (c) O(mnm) (d) O(nmn). 
Ans :O(nmn). 
7. The time complexity of the shortest path algorithm can be bounded by 

a. O(n2)     (b)    O(n4) (c)  O(n3) (d) O(n) 
Ans : O(n3) 
8. Read the following statements carefully and pick the correct option: 

I. The worst time complexity of the Floyd’s algorithm is O(n3). 
      II. The worst time complexity of the Warshall’s algorithm is O(n3). 



 

                

 

(a) (I) is false but (II) is true 
(b) (I) is true but (II) is false 
(c)Both (I) and (II) are true 
(d) (I) is true and (II) is not true always 
(e) Both (I) and (II) are false. 
 Ans :Both (I) and (II) are true 
9. For the bubble sort algorithm, what is the time complexity of the best/worst case?(assume 
that the computation stops as soon as no more swaps in one pass) 

a. best case: O(n) worst case: O(n*n) 
b. best case: O(n) worst case: O(n*log(n)) 
c. best case: O(n*log(n)) worst case: O(n*log(n)) 
d. best case: O(n*log(n)) worst case: O(n*n) 

 Ans : best case: O(n) worst case: O(n*n) 
10. For the quick sort algorithm, what is the time complexity of the best/worst case? 

a. best case: O(n) worst case: O(n*n) 
b. best case: O(n) worst case: O(n*log(n)) 
c. best case: O(n*log(n)) worst case: O(n*log(n)) 
d. best case: O(n*log(n)) worst case: O(n*n) 

 
Ans :best case: O(n*log(n)) worst case: O(n*n) 
 
11. In an arbitrary tree ( not a search tree) of order M. Its size is N, and its height is K. 
The computation time needed to find a data item on T is 

a. O(K*K) 
b. O(M*M) 
c. O(N) 
d. O(K) 

 Ans : O(N) 
12. Which of the following belongs to the algorithm paradigm? 

a. Minimum & Maximum problem 
b. Knapsack problem 
c. Selection problem 
d. Merge sort 
e. Quick sort. 

 
Ans : Knapsack problem 
 
13. The time taken by NP-class sorting algorithm is 

a. O(1) 
b. O(log n) 
c. O(n2) 
d. O(n) 

Ans :O(n) 



 

                

 

14. Find the odd one out from the following categories of algorithms. 
a. TVSP 
b. N-Queens 
c. 15-Puzzle 
d. Bin-Packing.  

Ans : Bin-Packing. 
15. The time complexity of binary search in best, worst cases for an array of size N is 

a. N, N2 
b. 1, Log N 
c. Log N, N2 
d. 1, N log N  

Ans : 1, Log N 
16. Which of following algorithm scans the list by swapping the entries whenever pair of 
adjacent keys are out of desired order? 

a. Insertion sort 
b. Quick sort 
c. Shell sort 
d. Bubble sort  

Ans : Bubble sort 
 
Sample Questions 
 

1 What is Tower of Hanoi Problem? 
 

2 Write a recursive algorithm to solve the problem and find out the time complexity. 
 

3 Find time complexity of merge sort. State its best case, worst case complexity. 

4 State the general greedy algorithm in problem solving. 
 

5 Write a Greedy Algorithm to find the optimal solution of the Knapsack Problem. What is the 
time complexity? 

6 What do you mean by recursion tree? Derive the worst case complexity of quick sort using 
recursion tree. 

7 What is difference between Dynamic Programming and Greedy Algorithm? 

8 Explain the effect of negative weight edges in finding the shortest path from a source vertex 
to all the other vertices reachable from the source vertex. 
 

9 Write any Algorithm for single source shortest path problem of a directed graph. 
 

10 Show the working of the algorithm on the graph. Consider A as the source vertex. Find the 
single pair shortest path?  
 

11 Explain the Backtracking approach with an example. 
 

12 Distinguish between backtracking approach and branch and bound technique.   
 



 

                

 

13 Write an algorithm for N-Queen problem. Explain 4-Queen problem 

14 Write an algorithm to find out longest common subsequence 

15 Find time complexity of merge sort. State its best case, worst case complexity. 

16 Write an algorithm to find fibonacci series which running time is linear. 

17 Explain the Backtracking approach with an example. 
 

18 Write an algorithm for N-Queen problem. Explain 4-Queen problem. 
 

19 Find time complexity of merge sort. State its best case, worst case complexity. 

20 Find an optimal solution of parenthesization of a matrix-chain product whose sequence of 
dimension <3,5,4,5,4>, also show the m-table and s-table and the parse tree. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

                

 

          
MODULE 03: Network Flow: [3L] 
 
 
 
When we concerned ourselves with shortest paths and minimum spanning trees, we interpreted 

the edge weights of an undirected graph as distances. In this lecture, we will ask a question of a 

different sort. We start with a directed weighted graph G with two distinguished vertices s (the 

source) and t (the sink). We interpret the edges as unidirectional liquid pipes, communication 

channel, with an edge’s capacity indicated by its weight. The maximum flow problem then asks, 

how to maximize the flow of  liquid as possible from s to t. 
 
Definition. A flow network is a directed graph G=(V , E) with distinguished vertices s (the 

source) and t (the sink), in which each edge (u, v)  E has a nonnegative capacity c(u, v). We 

require that E never contain both (u, v) and (v, u) for any pair of vertices u, v (so in particular, 

there are no loops). Also, if u, v  V with (u, v)  E, then we define c(u, v) to be zero. (See 

Figure .3.1). 
 

In these notes, we will always assume that our flow networks are finite. Otherwise, it would 

be quite difficult to run computer algorithms on them. 
 
Definition. Given a flow network G= (V , E), a flow in G is a function f : V×V  R satisfying 
 

1. Capacity constraint: 0 ·<f (u, v) <= c(u, v) for each u, v   V 
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Figure 3.1. A flow network 
 
 



 

                

 

Network Flow: 
Flow network is a directed graph G=(V,E) such that each edge has a non-negative capacity 
c(u,v)≥0.   Flow in a network is an integer-valued function f defined on the edges of G satisfying 
0≤f(u,v)≤c(u,v), for every   edge (u,v) in E. 

• Each edge (u,v) has a non-negative capacity c(u,v). 

•  If (u,v) is not in E assume c(u,v)=0. 

•  We have source s and sink t. 

•  Assume that every vertex v in V is on some path from s to t. 

• For each edge (u,v) in E, the flow f(u,v) is a real valued function 

• that must satisfy following  three conditions : 

Capacity Constraint : u,v V,  f(u,v)  c(u,v 
Skew Symmetry :       u,v V,  f(u,v)= -f(v,u)  
Flow Conservation:    u V – {s,t}    f(s,v)=0 
                                                        vV  
The Value of a Flow: 
The value of a flow is given by 




VvVv

tvfvsff ),(),(||  

The flow into the node is same as flow going out from the node and thus the flow is conserved. 
Also the total amount of flow from source s = total amount of flow into the sink t. 
The Maximum Flow Problem 
Given a Graph G (V,E) such that: 
xi,j = flow on edge (i,j) 
ui,j= capacity of edge (i,j) 
s  = source node 
t   = sink node 
Maximize           v 
Subject To         Σjxij - Σjxji = 0 for each i ≠s,t  
                          Σjxsj = v 
                          0 ≤ xij ≤ uij for all (i,j)  E.                    
 
 
 
 
 
The Ford–Fulkerson Algorithm  
 
The Ford–Fulkerson algorithm is an elegant solution to the maximum flow problem. 

Fundamen-tally, it works like this: 
 
The Ford-Fulkerson’s Algorithm 
Ford-Fulkerson (G,s,t) 

1. For each edge e  E  



 

                

 

2. initialize  f(e)  0 

3. Gf  residual graph  
4. WHILE (there exists augmenting path P) 

5.  f  augment(f, P) 
6. update Gf  
7. RETURN f 

 
 
Residual Networks and Augmenting Paths  
 
The Ford–Fulkerson algorithm begins with a flow f (initially the zero flow) and successively 
improves  
f by pushing more water along some path p from s to t. Thus, given the current flow f , we need  
 
Augmenting Paths: 
Definition: 
An augmenting path p is a simple path from s to t on a residual network that is an alternating 
sequence of vertices and edges of the form s,e1,v1,e2,v2,...,ek,t in which no vertex is repeated and 
no forward edge is saturated and no backward edge is free. 
Characteristics of augmenting paths 
More flow from s to t through p is possible. The edges of residual network are the edges on 
which residual capacity is positive. The maximum capacity by which we can increase the flow 
on p the residual capacity of p is defined as  }on  is ),( :),(min{)( pvuvucpc ff  . 

 
 
 
  



 

                

 

Illustration: 
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 Augmented Flow       
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Figure 3.2. We begin with a flow network G and a flow f : the label of an edge (u, v) is “a/b,” 
where a = f (u, v) is the flow through the edge and b = c(u, v) is the capacity of the edge. Next, 
we highlight an augmenting path p of capacity 4 in the residual network G f . Next, we augment f 
by the augmenting path p. Finally, we obtain a new residual network in which there happen to be 
no more augmenting paths. Thus, our new flow is a maximum flow. 



 

                

 

The Max Flow–Min Cut Equivalence  
 
Definition. A cut (S, T Æ V \ S) of a flow network G is just like a cut (S, T) of the graph G  

except that we require s S and t T. Thus, any path from s to t must cross the cut (S, T). Given 

a flow f in G, the net flow f (S, T) across the cut (S, T) is defined as 

Cuts of Flow Networks: 
A Cut in a network is a partition of V into S and T (T=V-S) such that  s (source) is in S and t 
(target) is in T and Capacity of Cut (S,T) is defined as 
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Theorem: (Max Flow–Min Cut Equivalence). Given a flow network G and a flow f , the 

following are equivalent: 
 

(i) f is a maximum flow in G.  
 

(ii) The residual network G f contains no augmenting paths.  
 
(iii) jf j = c(S, T) for some cut (S, T) of G.  

 
If one (and therefore all) of the above conditions hold, then (S, T) is a minimum cut. 
 

MCQ: 

1. Which one is called capacity constrain 
a.  u,v V,  f(u,v)  c(u,v 
b.  u,v V,  f(u,v)= -f(v,u)  
c.   u V – {s,t}    f(s,v)=0 
d. None of these 

2. Which one is called skew symmetry constrain 
e.  u,v V,  f(u,v)  c(u,v 
f.   u,v V,  f(u,v)= -f(v,u)  
g.  u V – {s,t}    f(s,v)=0 
h. None of these 

3. Which one is called flow constrain 
i.  u,v V,  f(u,v)  c(u,v 
j.   u,v V,  f(u,v)= -f(v,u)  
k.  u V – {s,t}    f(s,v)=0 
l. None of these 

 

Question: 

1. What is Network Flow ? What do mean by residual capacity? Explain the Ford-Fulkerson 

Algorithm. Define CUT(S,T). Explain augmenting path and augmenting network. 

 



 

                

 

MODULE 03: Disjoint set manipulation: [2L]
 
 
When implementing Kruskal’s algorithm i
one edge at a time. Along the way, we needed to keep track of the connected components of T; 
this was achieved using a disjoint
structures in more detail.  

A  disjoint-set data structure
= {S1,..., Sr}. Given an element u, we denote by S
with a representative element rep. This way, checking whether two elements u and v are in the 
same set amounts to checking whether rep[S
the following operations: 
 
MAKE-SET(u): Creates a new set containing the single element u. 
 

– u must not belong to any already existing set
 

– of course, u will be the representative element initially
 
FIND-SET(u): Returns the representative rep[S
 
UNION(u, v): Replaces Su and S
propriate.  
 
In Lecture 4, we looked at two different implementations of disjoint sets: doubly

trees. In this lecture we’ll improve each of these two implementations,

very efficient tree-based solution.

 
Linked-List Implementation  
 
Linked-lists for two sets are as follows:
Simple linked-list implementation of disjoint sets :

Another  linked-list implementation of disjoint sets :

Disjoint set manipulation: [2L] 

When implementing Kruskal’s algorithm i, we built up a minimum spanning tree
one edge at a time. Along the way, we needed to keep track of the connected components of T; 
this was achieved using a disjoint-set data structure. In this lecture we explore disjoint

set data structure is a data structure representing a dynamic collection of sets 
}. Given an element u, we denote by Su the set containing u. We will equip each set S

with a representative element rep. This way, checking whether two elements u and v are in the 
same set amounts to checking whether rep[Su] = rep[Sv]. The disjoint-set data structure supports 

SET(u): Creates a new set containing the single element u.  

must not belong to any already existing set  

will be the representative element initially  

SET(u): Returns the representative rep[Su].  

and Sv with Su [ Sv in S. Updates representative elements as ap

In Lecture 4, we looked at two different implementations of disjoint sets: doubly

trees. In this lecture we’ll improve each of these two implementations, ultimately obtaining a 

based solution. 

lists for two sets are as follows: 
list implementation of disjoint sets : Set {c,h,e} 

 
list implementation of disjoint sets : Set {f, g} 

, we built up a minimum spanning tree T by adding in 
one edge at a time. Along the way, we needed to keep track of the connected components of T; 

t data structure. In this lecture we explore disjoint-set data 

is a data structure representing a dynamic collection of sets S 
the set containing u. We will equip each set Si 

with a representative element rep. This way, checking whether two elements u and v are in the 
set data structure supports 

. Updates representative elements as ap-

In Lecture 4, we looked at two different implementations of disjoint sets: doubly-linked lists and 

ultimately obtaining a 



 

                

 

MAKE 
SET(S,u) – initialize as a lone node
FIND-SET(S, u)  
– walk left from u until you reach the head of S
UNION(S, u, v)   
– walk right (towards the tail) from u and left (towards
 the head) from v. 
 Su and the head of S
 sentative is updated automatically.

 
 
 
 
 
An Application of Disjoint-Set 
Algorithms ddetermine the connected components of an undirected graph.
 
CONNECTED-COMPONENTS(G)

1. for each vertex v V[G] 
2.      do MAKE-SET(v) 
3. for each edge (u,v) E[G]
4.      do if FIND-SET(u)  
5.           then UNION(u,v)  

 
SAME-COMPONENT(u,v) 

1. if FIND-SET(u)=FIND-SET(
2.    then return TRUE 
3.    else return FALSE 

 
Each set as a linked-list, with head and tail, and each node contains value, next node pointer and 
back-to-representative pointer 
 
UNION Implementation 

• A simple implementation: UNION(
representative pointers in 

• Each UNION takes time linear in the 
• Suppose n MAKE-SET(x

–  UNION(x1, x2), O
– UNION(x2, x3), O
– ….. 
– UNION(xn-1, xn), O

• The UNIONs cost 1+2+…+
• So 2n-1 operations cost 

 

initialize as a lone node O(1)

walk left from u until you reach the head of Su 
O(n) worst
case

walk right (towards the tail) from u and left (towards 
O(n) worst
case

the head) from v. Reassign pointers so that the tail of  
and the head of Sv become neighbors. The repre-  

sentative is updated automatically.  

 
Algorithms ddetermine the connected components of an undirected graph. 

COMPONENTS(G) 
 

E[G] 
 FIND-SET(v) 
 

SET(v) 

list, with head and tail, and each node contains value, next node pointer and 

A simple implementation: UNION(x,y) just appends x to the end of y, updates all back
in x to the head of y. 

Each UNION takes time linear in the x’s length. 
xi) operations (O(1) each) followed by n-1 UNION
O(1),  

O(2), 

O(n-1) 
The UNIONs cost 1+2+…+n-1=(n2) 

(n2), average (n) each. 

O(1) 
O(n) worst-
case 
O(n) worst-
case 

list, with head and tail, and each node contains value, next node pointer and 

, updates all back-to-

1 UNION 



 

                

 

 

 
MAKE-SET(u) 
– initialize new tree with root node u Θ(1) 

FIND-SET(u)  – walk up tree from u to root 
Θ(height) = Θ(lg n) best-
case 

UNION(u, v)   – change rep[Sv]’s parent to rep[Su] 
O(1)  

 
The efficiency of the basic implementation hinges completely on the height of the tree: the 

shorter the tree, the more efficient the operations. As the implementation currently stands, the 

trees could 

 
However the following program segment to perform the following set operations. 

MAKE-SET(u): 

void initialize( int Arr[ ], int N) 

{ 

    for(int i = 0;i<N;i++) 

    Arr[ i ] = i ; 
} 

 
FIND-SET(u)  : 
bool find( int Arr[ ], int A, int B)                            

{ 

if(Arr[ A ] == Arr[ B ]) 
return true; 
else 

return false;    
} 
 
UNION(u, v)  :  
void union(int Arr[ ], int N, int A, int B) 

{ 

    int TEMP = Arr[ A ]; 
for(int i = 0; i < N;i++) 

    { 

    if(Arr[ i ] == TEMP) 
    Arr[ i ] = Arr[ B ];  
    } 

} 
 
Weighted-Union Heuristic 
 
Instead appending x to y, appending the shorter list to the longer list. 
Associated a length with each list, which indicates how many elements in the list. 
 



 

                

 

Result: a sequence of m MAKE
SET operations, the running time is O(
Count the number of updates to back
Consider that each time, the UNION will at least double the length of  united set, it will take at 
most lg n UNIONS to unite n
updated at most lg n times. 
Union by rank  
 
Union by Rank: Each node is associated with a rank, which is the upper bound on the height of 
the node (i.e., the height of subtree rooted at the node), then when UNION, let the root with 
smaller rank point to the root with larger rank. 
 
 
Path compression  
 
Path Compression: used in FIND
root  directly point to the root. Thus reduce the tree height.
The easiest kind of tree to walk up is a 

the root. The idea of path compression is that, every time we invoke FIND

tree, we should reassign parent pointers to make each node we pass a direct child of the root 

.This locally flattens the tree. With path compression, the pseudocode for FIND

follows: 

 

Figure.3.3 Path Compression  

MAKE-SET, UNION, FIND-SET operations, n of which are MAKE
SET operations, the running time is O(m+nlg n).   

r of updates to back-to-representative pointer for any x in a set of 
Consider that each time, the UNION will at least double the length of  united set, it will take at 

n elements. So each x’s back-to-representative poi

Union by Rank: Each node is associated with a rank, which is the upper bound on the height of 
the node (i.e., the height of subtree rooted at the node), then when UNION, let the root with 

point to the root with larger rank.  

Path Compression: used in FIND-SET(x) operation, make each node in the path from 
root  directly point to the root. Thus reduce the tree height. 
The easiest kind of tree to walk up is a flat tree, where all non-root nodes are direct children of 

the root. The idea of path compression is that, every time we invoke FIND-SET and walk up the 

tree, we should reassign parent pointers to make each node we pass a direct child of the root 

ally flattens the tree. With path compression, the pseudocode for FIND

Path Compression example  

 

 
 
 
 

of which are MAKE-

in a set of n elements. 
Consider that each time, the UNION will at least double the length of  united set, it will take at 

representative pointer can be 

Union by Rank: Each node is associated with a rank, which is the upper bound on the height of 
the node (i.e., the height of subtree rooted at the node), then when UNION, let the root with 

) operation, make each node in the path from x to the 

root nodes are direct children of 

SET and walk up the 

tree, we should reassign parent pointers to make each node we pass a direct child of the root 

ally flattens the tree. With path compression, the pseudocode for FIND-SET is as 



 

                

 

 

  u1   

u4 u2 u5 u6 u3 
 
 

Figure 3.4 In a flat tree, each FIND-SET operation requires us to traverse only one 
edge. 

 
 
 

  u1    u1    

 u2  u3  
u2 u3 u7 u8 

 
      

 u5 u6  u7      
    u4 

u5 u6 u9   

   u9 u8      
 
Figure 3.5. With path compression, calling FIND-SET (u8) will have the side-effect of making 
u8 and all of its ancestors direct children of the root. 

MCQ: 

1. Which one is complexity of find-set 
a. O(1) 
b. O(N) 
c.  O(log(N)) 
d. None of these 

2. Which one is complexity of make-set 
e. O(1) 
f. O(N) 
g.  O(log(N)) 
h. None of these 

3. Which one is complexity of union-set 
i. O(1) 
j. O(N) 
k.  O(log(N)) 
l. None of these 

Question: 
1. What is disjoint set ? Explain with example. 
2. What do mean by union of two disjoint set? 
3.  Explain Algorithm MAKE-SET, FIND-SET and UNION-SET. Explain union by 

rank and path compression 

 



 

                

 

MODULE 03: Lower Bound Theory: [1L] 

In order to determine how good a given algorithm is for solving a problem, it is useful if we 
know lower bounds for the complexity of ANY algorithm solving the problem. Finding good 
lower bounds is a difficult problem, in general. However, in the important examples of sorting 
using comparison-based algorithms, and finding the maximum (minimum) or both the maximum 
and the minimum values in a list, lower bounds can be found, as well as algorithms achieving 
(up to positive multiplicative constants, i.e., asymptotically) these lower bounds (i.e., optimal 
algorithms). For many other important problems, for example, for the NP-complete problems (of 
which there are thousands of examples), good lower bounds have not been found. For example, 
for any given NP-complete problem, we only know polynomial lower bounds typically with low 
degree, whereas the best known algorithms for solving the problem are super-polynomial in 
complexity. Thus, the famous P ≠ NP remains an open question despite over 30 years of 
investigation by the best minds in theoretical computer science.  

We discuss three important methods of establishing lower bounds for algorithm complexity, 
counting arguments, comparison trees, and adversary arguments. We begin with counting 
arguments, and a review of lower bounds for adjacent-key comparison-based sorting.  

Adjacent-Key Comparison-Based Sorting 

Recall that BubbleSort, InsertionSort, and SelectionSort are all examples of ADJACENT-KEY 
comparison-based sorting algorithms. Also recall that adjacent-key comparison sorts only 
remove one inversion per comparison. Using this, we saw that a lower bound for the worst case 
of adjacent-key comparison sorting algorithms is n(n-1)/2, whereas a lower bound for the 
average behavior of such algorithms is n(n-1)/4. Thus, we must look for sorting algorithms that 
sometimes compare nonadjacent list elements in order to achieve better than quadratic 
performance on average. Our old friends ShellSort, MergeSort and QuickSort are examples of 
such sorting algorithms. We also saw that a lower bound for the worst case of any comparison-
based sorting algorithm is log2n! ∈ Ω(nlog n).  

MergeSort and HeapSort are examples of sorting algorithms whose worst-case performance is 
O(nlog n), so that they exhibit optimal worst-case behavor.  

An alternate proof of the nlog n lower bound for comparison-based sorting can be given using 
comparison trees, which we now will introduce for the purpose of establishing lower bounds for 
the average behavior of comparison-based sorting algorithms.  

Comparison Trees 

We now show that MergeSort is also optimal on average, since nlog n is also a lower bound 
(again, up to a constant) for the average behavior of comparison-based sorting. This latter result 
will be established using a comparison tree argument. Given any comparison-based algorithm 
with input list L[0:n-1] = {x1, x2, ..., xn}, (internal) nodes in the comparison tree T associated 
with the algorithm correspond to comparisons performed by the algorithm between list elements. 
For specificity, our convention will be that if the comparison is made between xi and xj, and i < 
j, then we will label the corresponding node xi:xj. If xi < xj, then a left child will be the node 
corresponding to the next comparison made next by the algorithm, or this left child will be a leaf 
node if the algorithm terminates. Similarly, if xi > xj (we can assume distinct list elements for the 



 

                

 

purpose of establishing lower bounds), then the right child will be the node corresponding to the 
next comparison made by the algorithm, or will be a leaf node if the algorithm terminates.  

NOTE: our labeling of the nodes refers to the list elements, not to their positions at the 
time the comparison corresponding to a given node is made.  

The following figure illustrates the comparison-tree associated with InsertionSort for a list 
L[0:2] of 3 distinct elements x1, x2, x3.  

 

Figure 3.6.The comparson tree associated with any comparison-based sorting algorithm has n! 
leaf nodes.  

The Key Fact follows from the fact that there are n! factorial permutations of n symbols, and 
different permutations must end up at different leaf nodes of the comparison tree when input to 
the algorithm. Since the comparison tree associated with a comparison-based sorting algorithm 
is a binary tree, lower bounds for both worst-case and average complexity can be obtained from 
lower bounds for the depth and leaf path length (= sum of the lengths of all paths from the root 
to a leaf), respectively, of a binary tree having L leaf nodes.  

Proposition 1. Let T be any binary tree with L leaf nodes. Then  

Depth(T)≥ ceil(log2L) 

Proposition 1 is clearly true for complete binary trees (verify this!), so it is intuitively evident 
that it holds for arbitrary binary trees since the complete binary tree has the smallest depth for a 
given number L of leaf nodes. The formal proof of Proposition 1 can be found on p. 120 in the 
text. It follows immediately from Proposition 1 that  

W(n) ≥ ceil(log2L) 



 

                

 

for any comparison-based sorting algorithm. Now, ceil(log2L) = ceil(log2n!) ∈ Ω(nlog n), so that 
we have established another proof of the fact that nlog n is a lower bound for the worst-case 
complexity of comparison-based sorting. 

The following Proposition will give us a lower bound of nlog n for the average case as well. 

Proposition 2. Let T be any binary tree having L leaf nodes. Then the leaf path length LPL 
of T satisfies: 

LPT(T) ≥ Lfloor(log2L) ∈ Ω(Llog L) 

Again, Proposition 2 is clearly true for complete binary trees (verify this!), so it is evidently true 
for arbitrary trees. A formal proof of Proposition 2 can be found on p. 124 in the text. Now if T 
is the comparison tree associated with any comparison-based sorting algorithm, we see that A(n) 
= LPT(T)/L, so that Proposition 2 shows that nlog n is a lower bound for the average behavior of 
any comparison-based algorithm. Again, our old friends MergeSort, QuickSort, and TreeSort are 
all optimal average behavior comparison-based sorting algorithms.  

We now illustrate our third technique for establishing lower bounds, namely adversary 
arguments. This technique establishes lower bounds by creating an input instance, based on the 
performance of the algorithm, which guarantees that the algorithm must do a determined amount 
of work on this input in order to be correct for this input. This amount of work then gives a 
lower bound for the worst-case complexity of the algorithm. Another adversary-type technique 
is to construct an input to an algorithm which contradicts the correctness of the algorithm if the 
algorithm performs less than some given number of basic operations. We start with an example 
of this type of adversary argument.  

Finding the Maximum in a List 

The usual linear scan for finding the maximum element in a list L[0:n-1] of size n turns out to be 
optimal, since ANY comparison-based algorithm for solving this problem must make n - 1 
comparsions between list elements. This might seem obvious, since certainly every element 
must participate in at least one comparison. However, only n/2 comparisons are required to 
ensure that each element is involved in a comparison. Just pair the elements up into disjoint pairs 
a make a comparison to the two elements in each pair. Of course, this doesn't yet determine the 
maximum, but it shows the need for further justification that n - 1 comparisons will eventually 
be required. Again, throughout we will assume distinct list elements.  

To get the lower bound of n - 1 comparisons, we consider a comparison between list elements x 
and y to declare as the loser the smaller of the two elements. Thus, each comparison results in 
exactly one loser. We now note that there must be n - 1 losers if the algorithm is to determine the 
maximum element in a list L[0:n-1] correctly. Indeed, assume that there are two elements x and 
y who never lost a comparison, and, for definiteness, assume that x > y. Now we may suppose 
that the algorithm has declared that x is the maximum element (otherwise it is clearly incorrect). 
Now construct a new list L' which agrees with L except that y is replaced by an element y' > x > 
y. Note that the algorithm will perform exactly the same action on L' as it did with L, since y' 
will win every comparison that involved y (and the outcome of all the other comparisons will 
also be the same). Hence, the algorithm will again declare x to be the maximum element, which 
is a contradiction. We state this result as a proposition.  



 

                

 

Proposition 3. Any comparison-based algorithm must make (at least) n - 1 comparisons of 
list elements in order to correctly determine the maximum. 

Proposition 3 shows that the familiar linear scan algorithm for finding the maximum is an 
(exactly) optimal algorithm. It is interesting that there is another algorithm also performing n - 1 
comparisons to find the maximum, but this time it is based on the familiar single elimination 
tournament model so familiar from the sporting world. For simplicity, we assume that n = 2k. 
Divide up the list into disjoint pairs, and determine the n/2 pair-wise winners (1st round of the 
tournament). Then divide up the n/2 first-round winners into pairs and determine the n/4 second 
round winners. After precisely log2n rounds the winner (maximum) will be determined. But how 
many comparisons (matches) were made? Easy, we get, for n = 2k:  

2k-1 + 2k-2 + ... + 1 = 2k - 1 = n - 1.  

Finding the Maximum and the Minimum 

The most naive method MaxMin1 for finding the maximum and minimum elements in a list is to 
make two linear scans (or run winner and loser tournaments), resulting in 2n - 2 comparisons. 
However, one imagines that this can be improved, since information about both elements 
involved in a comparison might be utilized. In fact, the following slightly less naive algorithm 
certainly improves MaxMin1, at least on average.  

function MaxMin2(L[0:n-1]) 
Input:  L[0:n-1] (a list of size n) 
Output: the maximum value in L 
  Max = Min = L[0] 
  for i = 1 to n-1 do 
     if L[i] > Max then Max = L[i] 
     else  
        if L[i] < Min then Min = L[i] 
        endif 
     endif 
  enfor 
end MaxMin1 
Note that in the best case of a strictly increasing list, MaxMin2 only makes n - 1 comparisons, 
whereas in the worst case W(n) of an decreasing list, MaxMin2 makes 2n - 2 comparisons, i.e., 
is just as bad as MaxMin1. The question is, how good is MaxMin2 on average? Well, it turns out 
that it is disappointing, since its average behavior, while improved slightly over W(n), is 
nevertheless strongly asymptotic to W(n). This is because the average number of times that Max 
is updated in MaxMin2 is (guess what!) logarithmic in n, so that the average complexity A(n) of 
MaxMin2 is of the form  
A(n) = W(n) - f(n), where f(n) ∈ O(log n), i.e., A(n) ∈ Θ(W(n)) (actually, A(n) ~ W(n)).  

In order to determine the average behavior A(n) of MaxMin2, we assume, as usual, that the 
inputs are all permutations  
π: {1,2, ..., n} → {1,2, ..., n}, and that each permutation is equally likely. Now if m(π) denotes 
the the number of times Max is updated for input permutation π, then it is clear that  

 
A(n) = 2n - 2 - E[m]. 



 

                

 

 
Let A*(n) = E[m]. Note that π(n) is equally likely to be 1, 2, ..., n. Hence,  

A*(n) = 1/n(E[m| π(n) = 1] + E[m| π(n) = 2] + ... + E[m| π(n) = n]). 
 
 
Now it is clear that E[m| π(n) = n] = A*(n-1) + 1, whereas E[m| π(n) = i ≠ n] = A*(n-1). Hence, 
we have the following recurrence for A*(n):  

 A*(n) = A*(n - 1) + 1/n  
            = A*(n - 2) + 1/n + 1/(n - 1)  
            = 
            ... 
            = A*(1) + 1/n + 1/(n - 1) + ... + 1/2 
 
            = ~ ln n. 
Thus, we see that A(n) ~ W(n) ~ 2n. 
Lower bound for comparison based sorting algorithms 

The problem of sorting can be viewed as following. 

Input: A sequence of n numbers <a1, a2, . . . , an>. 
Output: A permutation (reordering) <a‘1, a‘2, . . . , a‘n> of the input sequence such that a‘1 <= 
a‘2 ….. <= a‘n. 

A sorting algorithm is comparison based if it uses comparison operators to find the order 
between two numbers.  Comparison sorts can be viewed abstractly in terms of decision trees. A 
decision tree is a full binary tree that represents the comparisons between elements that are 
performed by a particular sorting algorithm operating on an input of a given size. The execution 
of the sorting algorithm corresponds to tracing a path from the root of the decision tree to a leaf. 
At each internal node, a comparison ai <= aj is made. The left subtree then dictates subsequent 
comparisons for ai <= aj, and the right subtree dictates subsequent comparisons for ai > aj. When 
we come to a leaf, the sorting algorithm has established the ordering. So we can say following 
about the decison tree. 

1) Each of the n! permutations on n elements must appear as one of the leaves of the decision 
tree for the sorting algorithm to sort properly. 

2) Let x be the maximum number of comparisons in a sorting algorithm. The maximum height 
of the decison tree would be x. A tree with maximum height x has at most 2^x leaves. 

After combining the above two facts, we get following relation. 

   
      n!  <= 2^x 
 
 Taking Log on both sides. 
      log2(n!)  <= x 
 
 Since log2(n!)  = Θ(nLogn),  we can say 
      x = Ω(nLog2n) 



 

                

 

Therefore, any comparison based sorting algorithm must make at least nLog2n comparisons to 
sort the input array, and Heapsort and merge sort are asymptotically optimal comparison sorts. 

References: 
Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and 
Clifford Stein 

MCQ: 
1. If two algorithm for solving the problem where discovered and their times differed by an 

order of magnitude, the one with the smaller order was generally regarded as superior 
 
a. Comparison trees 
b. Oracle and adversary argument 
c. Lower bound through reductions 
d. All of the above 

 
 
 

2. Any comparison-based sorting algorithm can be represented by a decision tree 
a. Number of leaves (outcomes)   n! 

b. Height of binary tree with n! leaves    log2n! 

c. Minimum number of comparisons in the worst case   log2n! for any comparison-ba 

sed sorting algorithm log2n!  n log2n 

d. All of the above 

3. Lower bounds by problem reduction represented  

a. (nlogn))   n! 

b. (nlogn)  log2n! 

c. (nlogn)= nlog2n!  

d. (nlogn) 

Question: 
1. What is meant by lower bound theory?  
2. What is the lower bound of a function? 
3. In algorithms, what is the upper and lower bound? 
4. What is the difference between lower bound and tightest upper bound? 
5. What are some good materials to learn the complexity bound (upper and lower bound) 

for convex optimization? 
6. How is it possible to prove lower bounds in complexity theory? 
7. How can you solve upper and lower bounds in extended mathematics? 
8. What conspiracy theories turned out to be true? 

 



 

                

 

 
 
 
 
 
 

 

MODULE 04: String Matching Algorithms :[3L] 

A string matching algorithm aims to find one or several occurrences of a string within 
another. The algorithm returns the position of the first character of the desired substring 
in the text. There are many different solutions for this problem, this article presents the 
four best-known string matching algorithms: Naive, Knuth-Morris-Pratt, Boyer-Moore and 
Rabin-Karp. The results show that Boyce-Moore is the most effective algorithm to solve 
the string matching problem in usual cases, and Rabin-Karp is a good alternative for some 
specific cases, for example when the pattern and the alphabet are very small. 
 
There are different solutions that allow to solve the string matching problem. First, we have 
The naive algorithm, the simplest one, which tries to match the pattern to each string of the 
same length in the text. From the 1970s, several others algorithms, more sophisticated and more 
effective, have been invented. In 1975, Knuth, Pratt and Morris invented the first algorithm that 
preprocesses the pattern to obtain a better performance, it is the 
Knuth-Morris-Pratt Algorithm 
. 
 
String processing problem 
Input: Two strings T and P. 
Problem: Find if P is a substring of T 
Example (1): 
Input: T = gtgatcagatcact, P = tca 
Output: Yes. gtgatcagatcact, shift=4, 9 
Example (2): 
Input: T = 189342670893,  P = 1673 
Output: No. 
Naïve Algorithm (T, P) 
suppose n = length(T), m = length(P); 
for shift s=0 through n-m do 
 if  (P[1..m] = = T[s+1 .. s+m])  then  // actually a for-loop runs here 
  print shift s; 
End algorithm. 
 
Complexity: O((n-m+1)m) 
A special note: we allow O(k+1) type notation in order to avoid O(0) term, rather, we want to 
have O(1) (constant time) in such a boundary situation. 
 
Note: Too many repetition of matching of characters. 
 
 



 

                

 

Rabin-Karp scheme 
Consider a character as a number in a radix system, e.g., English alphabet as in radix-26.  
Pick up each m-length "number" starting from shift=0 through (n-m). 
So, T = gtgatcagatcact, in radix-4 (a/0, t/1, g/2, c/3) becomes 
gtg = '212' in base-4 = 32+4+2 in decimal, 
tga = '120' in base-4 = 16+8+0 in decimal, 
…. 
Then do the comparison with P - number-wise. 
 
Advantage: Calculating strings can reuse old results. 
Consider decimals: 4359 and 3592 
3592 = (4359 - 4*1000)*10 + 2 
General formula: ts+1 = d (ts - dm-1 T[s+1])  +  T[s+m+1], in radix-d, where ts is the 
corresponding number for the substring T[s..(s+m)]. Note, m is the size of P.  
 
The first-pass scheme: (1) preprocess for (n-m) numbers on T and 1 for P, (2) compare the 
number for P with those computed on T. 
 
Problem: in case each number is too large for comparison 
Solution: Hash, use modular arithmetic, with respect to a prime q. 
 
New recurrence formula: 
ts+1 = (d (ts - h T[s+1])  +  T[s+m+1]) mod q, 
where h = dm-1 mod q. 
q is a prime number so that we do not get a 0 in the mod operation. 
 
Now, the comparison is not perfect, may have spurious hit (see example below).  
So, we need a naïve string matching when the comparison succeeds in modulo math.  
 
 

 
Figure 4.1. A graphical representation of the KMP string searching algorithm 



 

                

 

 
 
Rabin-Karp Algorithm: 
Input: Text string T, Pattern string to search for P, radix to be used d (= ||, for alphabet ), a 
prime q 
Output: Each index over T where P is found  
 
Rabin-Karp-Matcher (T, P, d, q) 
n = length(T); m = length(P); 
h = dm-1 mod q; 
p = 0; t0 = 0; 
for i = 1 through m do  // Preprocessing 
 p = (d*p + P[i]) mod q;  
 t0 = (d* t0 + T[i]) mod q;  
end for; 
for s = 0 through (n-m) do // Matching 
 if  (p = = ts)  then 
  if  (P[1..m] = = T[s+1 .. s+m])  then 
   print the shift value as  s; 
 if  ( s < n-m)  then 
  ts+1 = (d (ts - h*T[s+1])  +  T[s+m+1]) mod q; 
end for; 
End algorithm. 
 
Complexity: 
 
Preprocessing:  O(m) 
 
Matching:  
O(n-m+1)+ O(m) = O(n), considering each number matching is constant time. 
 
However, if the translated numbers are large (i.e., m is large), then even the number matching 
could be O(m). In that case, the complexity for the worst case scenario is when every shift is 
successful ("valid shift"), e.g., T=an and P=am. For that case, the complexity is O(nm) as before. 
But actually, for c  hits, O((n-m+1) + cm) = O(n+m), for a small  c, as is expected in the real life. 
 
THIRD ALGORITHM USING AUTOMATON 
(Efficient with less alphabet ||) 
Finite Automaton: (Q, q0, A, , d), where 
Q is a finite set of states, q0 is one of them - the start state, some states in Q are 'accept' states (A) 
for accepting the input, input is formed out of the alphabet , and d is a binary function mapping 
a state and a character to a state (same or different). 
Matcher scheme: (1) Pre-processing: Build an automaton for the pattern P, (2) Matching: run the 
text on the automaton for finding any match (transition to accept state). 
Example automaton for 'ababaca' : 
 
 



 

                

 

 
Figure 4.2. Example of operation of the KMP string matcher in a DNA string 
 
Algorithm FA-Matcher (T, d, m) 
n = length(T);  q = 0; // '0' is the start state here 

// m is the length(P), and   
// also the 'accept' state's number 

for  i = 1 through n do 
 q = d (q, T[i]); 
 if  (q = = m)  then 
  print (i-m) as the shift; 
end for; 
End algorithm. 
 
Complexity:  O(n) 
However, we need to build the finite-state automaton for P first: 
Input: , and P 
Output: The transition table for the automaton  
Algorithm Compute-Transition-Function(P, ) 
m = length(P); 
for  q = 0 through m  do 
 for each character  x  in  
  k = min(m+1, q+2); // +1 for x, +2 for subsequent repeat loop to decrement 
  repeat  k = k-1 // work backwards from q+1 
  until  Pk 'is-suffix-of' Pqx; 
  d(q, x) = k; // assign transition table 
end for; end for; 
 
return  d; 
End algorithm. 
 
Examples (from the above figure P = 'ababaca'):  
Suppose, q=5, x=c 
Pq = ababa, Pqx = ababac,  
Pk (that is suffix of Pqx) = ababac, for k=6  (note transition in the above figure) 
 
Say, q=5, x=b 



 

                

 

Pq = ababa, Pqx = ababab,  
P6 = ababac  suffix of Pqx    
P5 = ababa  suffix of Pqx , but    
Pk (that is suffix of Pqx) = abab, for k=4   
 
Say, q=5, x=a 
Pq = ababa, Pqx = ababaa,  
Pk (that is suffix of Pqx) = a, for k=1   
 
Complexity of the above automaton-building (preprocessing): 
Outer loops: m|| 
Repeat loop (worst case): m 
Suffix checking (worst case): m 
Total: O(m3||)   
 
Good, when you build automaton once, search many times. 
Bad, when you have build automata for different P many times, or #searches/#keys ratio is low. 
Knuth-Morris-Pratt Algorith 
We do not need the whole transition table as in an automaton. 
An array can keep track of: for each prefix-sub-string S of P, what is its largest prefix-sub-string 
K of S (or of P), such that K is also a suffix of S (kind of a symmetry within P). 
 
Symmetry:  prefix = suffix 
 
Thus, P=ababababca, when S=P6=ababab, largest K is abab, or Pi(6)=4. 
 
An array Pi[1..m] is first developed for the whole set for S, Pi[1] through Pi[10] above. 
 
 

 
Figure 4.3. Example of operation of the KMP string matcher 
 
The array Pi actually holds a chain for transitions, e.g., Pi[8] = 6, Pi[6]=4, …, 
always ending with 0. 
 
Algorithm KMP-Matcher(T, P) 
n = length[T];  m = length[P]; 
Pi = Compute-Prefix-Function(P); 



 

                

 

q = 0;  // how much of P has matched so far, or could match possibly 
 
for  i=1 through n do 
 while  (q>0  &&  P[q+1]  T[i])  do 
  q = Pi[q]; // follow the Pi-chain, to find next smaller available symmetry, 
until 0 
 if  (P[q+1] = = T[i])  then 
  q = q+1; 
 if  (q = = m)  then 
  print valid shift as (i-m); 
  q = Pi[q];  // old matched part is preserved, & reused in the next iteration 

end if; 
end for; 
End algorithm. 
 
 
Algorithm Compute-Prefix-Function (P) 
m = length[P]; 
Pi[1] = 0; 
k = 0; 
 
for  q=2 through m do 
 while  (k>0  &&  P[k+1] =/= P[q])  do  // loop breaks with k=0 or next if succeeding 
  k = Pi[k]; 
 if  (P[k+1] = = P[q])  then // check if the next pointed character extends previously 
identified symmetry 
  k = k+1; 
 Pi[q] = k;  // k=0 or the next character matched 
 
return Pi; 
End algorithm. 
 
Complexity of second algorithm Compute-Prefix-Function: O(m), by amortized analysis (on an 
average). 
Complexity of the first, KMP-Matcher: O(n), by amortized analysis. 

In reality the inner while loop runs only a few times as the symmetry may not be so prevalent. 
Without any symmetry the transition quickly jumps to q=0, e.g., P=acgt, every Pi value is 0!  
 
Exercise: 
 
For P= ababababca, run the Compute-prefix-function to develop the Pi array. 
For T= cabacababababcababababcac, run the KMP algorithm for searching P within T. 
Show the traces of your work, not just the final results. 
 

MCQ: 
1. Brute Force-Complexity of sring/pattern of M characters in length, and a text N 

characters in length matching is  
a. O(N) 



 

                

 

b.  O(M) 
c. O(MN) 
d. O(M/N) 

2. The Rabin-Karp string searching algorithm calculates a……………. for the pattern, and 
for each M-character subsequence of text to be compared 

a. Index value 
b.  Pattern value  
c. Augmenting value 
d. Hash value 

3. Which one string matching algorithm use auxiliary function. 
a. Naïve algorithm 
b. Brute force 
c. KMP algorithm 
d. Robin-Karp 

 

Question: 

2. What is String matching problem ? What do mean by pattern? Explain the Brute-Force 

Algorithm. Define auxiliary function in KMP algorithm. 

3.  Explain The Knuth-Morris-Pratt (KMP) Algorithm. Derive the complexity. 

 

References: 
Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and 
Clifford Stein 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

                

 

MODULE 04: Amortized Analysis [3L] 
 
 
In amortized analysis, the time required to perform a sequence of operations is averaged over all 
the operations performed 
 
Data structures typically support several different types of operations, each with its own cost 
(e.g., time cost or space cost). The idea behind amortized analysis is that, even when expensive 
operations must be performed, it is often possible to get away with performing them rarely, so 
that the aver-age cost per operation is not so high. It is important to realize that these “average 
costs” are not expected values—there needn’t be any random events. 
 
Aggregate Analysis  
Aggregate Method: we determine an upper bound T(n) on the total sequence of n operations. 
The cost of each will then be T(n)/n 
 
 
(possibly with some condition on how many times each type of operation may occur). “Worst-
case” means that no adversary could choose a sequence of n operations that gives a worse 
running time.  

In this lecture we discuss three methods of amortized analysis: aggregate analysis, the 

account-ing method, and the potential method. 

 
In aggregate analysis, one assumes that there is no need to distinguish between the different 

operations on the data structure. One simply asks, what is the cost of performing a sequence of n 

operations, of any (possibly mixed) types? 
 
Example. Imagine a stack S with three operations: 
 

 PUSH(S, x) – Θ(1) – pushes object x onto the stack  
 

 POP(S) – Θ(1) – pops and returns the top object of S  
 

• Accounting Method: we overcharge some operations early and use them to as prepaid 
charge later. Credit can be used later to pay the cost of operations whose actual cost is 
greater than its amortized cost. The total credit stored must always be non-negative at all 
times. 

• Potential Method: we maintain credit as potential energy associated with the structure 
as a whole. 

If we analyze a sequence of n Push, Pop, and Multipop operations, then the stack size is at 
most n and Multipop takes O(n). Therefore, the sequence takes O(n2). However, since an 
object can be only popped once (whether by pop or multipop) for every time it is pushed, the 
total number of Push operations is at most the total number of Push operations (which is at 
most n). 
Accounting Method: Stack 
• Thing about this: when we push a plate onto a stack, we use $1 to pay actual cost of the 

push and we leave $1 on the plate. 



 

                

 

• At any point, every plate on the stack has a dollar on top of it. 

• When we execute a pop operation, we charge it nothing and pay its cost with the dollar 
that is on top of it. 

Potential Method 
• Instead of representing prepaid work as credit stored with specific objects, the potential 

method represents the prepaid work as potential energy than can be released to pay for 
future operations. 

• Potential is associated with the data structure as a whole rather than with specific objects. 

• We start with an initial data structure D0 on which n operations are performed. 

• Let ci be the cost the ith operations and Di be the data structure that results after applying 
the ith operation to data structure Di-1  

• A potential function  maps Di to a real number (Di) which is the potential associated 
with Di 

Dynamic Tables 
• In some applications, we don’t know in advance how many objects will be stored in a 

table. 

• We must re-allocate with a larger or smaller size as data is added or removed. 

• Define load factor  

• When the table becomes full, i.e. load factor = 1, then the next operation triggers an 
expansion. 

• We allocate a new area twice the size of the old and copy all items from the old table to 
the new table. 

• If an operation does not trigger an expansion, its cost is 1. If it does trigger, its cost is 
num [T] + 1.  

 
Example for amortized analysis 

• Stack operations: 

– PUSH(S,x), O(1) 

– POP(S),  O(1) 

– MULTIPOP(S,k), min(s,k) 

• while not STACK-EMPTY(S) and k>0 

•      do POP(S) 



 

                

 

•           k=k-1 

• Let us consider a sequence of n PUSH, POP, MULTIPOP. 

– The worst case cost for MULTIPOP in the sequence is  O(n), since the stack size 
is at most n.  

– thus the cost of the sequence is O(n2). Correct, but not tight. 

Another example: increasing a binary counter 
• Binary counter of length k, A[0..k-1] of bit array. 

• INCREMENT(A) 

1. iß0 

2. while i<k and A[i]=1 

3.        do A[i]ß0 (flip, reset) 

4.              ißi+1 

5. if  i<k 

6. then A[i]ß1  (flip, set) 

 
Accounting analysis 

• Charge $3 per insertion of x. 

–  $1 pays for x’s insertion. 

–  $1 pays for x to be moved in the future. 

–  $1 pays for some other item to be moved. 

• Suppose we’ve just expanded, size = m before next expansion, size = 2m after next 
expansion. 

• Assume that the expansion used up all the credit, so that there’s no credit stored after the 
expansion. 

• Will expand again after another m insertions. 

• Each insertion will put $1 on one of the m items that were in the table just after 
expansion and will put $1 on the item inserted. 

 Have $2m of credit by next expansion, when there are 2m items to move. Just enough to pay for 
the expansion, with no credit. 
Potential method 

 Φ(T ) = 2 ・  num[T ] − size[T ] 



 

                

 

• Initially, num = size = 0Φ = 0. 

• • Just after expansion, size = 2*num Φ  = 0. 

• Just before expansion, size = num  = numΦ=0  have enough potential to pay for 
moving all items. 

• Need Φ≥ 0, always. 

• Always have 

– size ≥ num ≥ ½ size  2 ・  num ≥ size Φ F ≥ 0 . 

Amortized cost of ith operation: 
– numi = num after ith operation , 

– sizei = size after ith operation , 

– Φi = Φ after ith operation . 

• If no expansion: 

– sizei = sizei−1 , 

– numi = numi−1 +1 , 

– ci = 1 . 

• Then we have 

– Ci’ = ci + Φi − Φi−1 = 1 + (2numi −sizei ) − (2numi−1 −sizei−1) =3. 

• If expansion: 

– sizei = 2sizei−1 , 

– sizei−1 = numi−1 = numi −1 , 

– ci = numi−1 +1 = numi. 

• Ci’ = ci + Φi − Φi−1 = numi + (2numi −sizei ) − (2numi−1 −sizei−1) = numi + (2numi −2(numi 
−1)) − (2(numi −1) − (numi −1)) = numi + 2 − (numi −1) = 3 

MCQ: 
1. Which data structures whose operations are analyzed using Amortized Analysis  

a. Hash Tables 
b. Disjoint Sets 
c.  Splay Trees 
d. All of the above 

2. What is the time complexity of n insertions using the dynamic table scheme? 

a.  O(n2) 



 

                

 

b.  O(n) 
c.  Θ(n) 
d.  Θ(1) 

Questions: 
1. What is amortize analysis? Explain with proper example 
2. Define potential function. 
3. Define accounting  function. 
4. Explain aggregate method. 
5. What is stack implementation of array of problem? 
6. How to compare an experimental study with amortized times 
7. Define disjoint set  and analyse the union-find problem. 
8. Define splay tree. Why is maximum size of root is 2n + 1 in Splay trees? 
9. Define live and dead node 

References: 
Introduction to Algorithms, (Cormen, Leiserson, Riveset, and Stein, 2001, ISBN: 0-07-013151-1 
(McGraw Hill), Chapter 32, p906 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

                

 

 
 
MODULE 05:  Notion of NP-completeness: [3L] 
Turing Machine(TM) 
Model of computation 
 ∆ ∆ ∆ ∆ 1 0 1 1 0 ∆ ∆ ∆ ∆ ∆      
                      Tape Head 
       
∆   Represent blank 
The TM performs the following in one move. 

1) Changes state(may remain same state) 
2) Replaces the symbol on tape cell by a new symbol(may be by same symbol) 
3) Move tape head to left or to right by one cell or remain stationary (denoted b L,R,S 

respectively). 
4) Generally the initial state of the machine is denoted by q0. 

Example:Construct a TM that creates a copy of the input string (∑={a,b}) , to the right of the 
input but with a blank (∆) separating the original from the copy. Initially tape head is 
assumed to be placed at the leftmost end of the string. [∑= set of input symbols] 
Initially  ∆abba∆ 
                  ∆ xbba∆a∆                          sequence of action by TM 
                 ∆xyba∆𝑎𝑏∆ 
                 ∆xyya∆𝑎𝑏𝑏∆ 
                ∆xyyx∆𝑎𝑏𝑏𝑎∆ 

Following the TM:        a/a,R       b/b,R               a/a,R       b/b,R 
                                        q1                        ∆/∆ ,R                          q2 

q0                                a/x,R                                                                                                 ∆/𝑎 ,L      a/a,L        b/b,L                       
a/a,L        b/b,L     

                                 a/a,R  b/b,R                       a/a,R    b/b,R           q5                      ∆/∆ ,L                            
q6 
                 b/y,R                     q3                                           q4                  ∆/𝑏 ,L 
∆/∆ ,L                                                ∆/∆ ,R                                                       x/x,R 
         q7                         x/a ,L   y/b.L                                                                                                                            y/y,R 
                                   ∆/∆ ,R                         h 
 
H denote halting state  
Meaning  of transition  X/Y,D 
                                             X Denotes i/p symbol 
                                             Y Denotes o/p symbol 
                                            D direction of head movementFormed definition of TM: 
A TM is a 5 tuple( Q,∑,Г,∂,q0) 
Where, 
Q= A finite set of states not including the halting state ha , hr 
∑= A finite set of input symbols. 
Г= A finite set of tape symbols not including the special tape symbol ∆(blank) ∑ <= Г 
∂=Q x Г (Q U {h}) X(ГU {∆}) X( {L ,R ,S}) 
 q0=Starting state 
Note : ∂ can be undefined for some parameters. 
 

Instantaneous Description (ID) 

Finite 



 

                

 

ID must satisfy 
i) Current state of the machine 
ii) Content of the head. 
iii) Current head position. 

 
--------------x---------------        a       --------------------y------------------- 

     

                                                          q 

                                                                  xqay 

 
This is to describe the status of a TM at some point, we must specify the current state, the 
complete contents of the tape(through the rightmost nonblank symbol), and the current position of 
the tape head. 
 
Therefore the above instance of the TM may be represented by x q a y or by the pair(q, x a y) 
 
Where q ε  Q, x and y are strings over ГU{ ∆}  , a is a symbol in  ГU{ ∆}   and the underlined 
symbol represents the tape head position. 
 

 A move in TM may be represented as bellow 
X q a y  I------- z r b w      or (q ,x a y)  I-------------   (r, z b w) 
                     T                                                  T 

 A sequence of moves may be represented as bellow 
              
X q a y  I---*---- z r b w      or (q, x a y)  I-----*--------   (r, z b w) 
                   T                                                      T 

For example, if T is currently  in the configuration (q ,a a b a ∆ a) 

and  𝛿(𝑞, 𝑎) =
∆

, 𝐿) 𝑤𝑒 𝑤𝑜𝑢𝑙𝑑 𝑤𝑟𝑖𝑡𝑒  

(q ,a a b a ∆ a) I---*---- (r,a a b ∆∆𝑎) 
 
TM as an acceptor: 
If  T= ( Q, ∑,Г,q0, 𝛿)   is a Turing machine , and x ∈∑ * , x is accepted by T, if starting in the 
initial configuration corresponding to input x ,T eventually reaches an accepting configuration. 
In other words, x is accepted if there exist y,Z ∈ ( ∑,U{ ∆ }) *  and a ∈ ( ∑,U{ ∆ }) so that  
(qo,, ∆ 𝑥 )  I---*----( ha,y,a,z) when ha is a halting state. 
 
The language accepted by T is the set L(T) of input strings accepted by T. 
Example: Let L = {aibi 1 i>=0} Construct a TM that accepts L. 
Sol: 
 
 
 



 

                

 

                                         a/a,R   y/y,R                    a/a,L   y/y,L 
      q0                a/x,R              q1                                q2 
 
 
            y/y,R 
                                            y/y,R              x/a,L 
                      q3                                            y/b,L 

                                
∆

∆
, 𝐿                               

                                               q4                           

                                                               
∆

∆
,   R                         ha 

 
 
Assume L=aabb 
Therefore ID at the beginning is    ∆   q0  a a b b  ∆          
Following is the sequence of move 
                                                                    

∆   q0  a a b b  ∆   I-------------    ∆  x q1  a  b b  ∆   I-------------     ∆   x a q1 b b  ∆          
             T    T 
 I-------------   ∆   x q2  a y b  ∆   I-------------    ∆   q2 x  a y b  ∆   I-------------   ∆   x q0  a  y 
b  ∆          
      T                               T             T 
 I-------------   ∆  x x  q1  y  b  ∆  I-------------    ∆   x x y q1  b  ∆   I-------------   ∆   x  x  q2  y  
y  ∆          
      T                              T                T 
I-------------   ∆  x  q2  x y y  ∆   I-------------   ∆   x  x q0 y  y  ∆     I-------------  ∆   x  x  y q3 

y  ∆          
      T                              T            T     
 I-------------   ∆  x x y y  q3  ∆   I-------------  ∆   x x y  q4 y  ∆   I-------------     ∆   x  x  q4 y b  

∆          
      T                             T            T  
 I-------------   ∆   x q4 x b b  ∆  I-------------   ∆   q4 x  a b  b  ∆  I-------------   ∆   q4 ∆ a a b b  

∆          
       T                             T            T 
 I-------------   ∆   ha  a a b b  ∆          
        T 
 

Encoding of Tuning machine, Universal Tuning machine: 
 Tuning machine is created to execute a specific algorithm/ function. If  we have a Tuning 

machine  (TM)  for computing one function, then computing a different function or doing 
some other calculation requires  a different  machine. 

 A universal Tuning machine can simulate the operation of any Tuning machine. It works 
follows. 



 

                

 

 
It is a TM Tu whose input consists essentially of a program and a data set  for the program 
to process. 
The process takes the form of a string specifying  some other (special purpose) TM T1 , 
and the data set is a second string z interpreted as input to T1. 
Tu then simulate the processing of Z by T1. 

 The first step in doing that is to formulate a notational system in which we can encode both 
an arbitrary TM T1 and an input string z over an arbitrary alphabet as strings e(T1)  and 
e(Z)  over some fixed alphabet. The  crucial aspect of the encoding is that it must not 
destroy any information, given the  string e(T1) and e(z), we must be able to reconstruct 
the Tuning machine T1 and the string z. We will use the alphabet {0,1}, although we must 
remember that the TM we are encoding may have a much larger alphabet. We start by 
assigning positive integers to each state, each tape symbol, and each of the three “ 
direction” S, L and R in TM T1, we want to encode. 

  We use the following convention in order to make the encoding function one to one ie to 
guarantee that two different TMs will be encoded with different encoding. 

Convention: We assume from this point on that there are two fixed infinite sets 
Q={q1,q2,….} 
 And S={a1,a2,…} so that for any TM T=(Q, ∑,Г,q0, 𝛿) ,we have Q<=2 and Г <=S. 

 The encoding function e: 
First we associated to each tape symbol (including ∆), to each state ( including ha and hr) 
and to each of the three “ direction” , a string of O’s let 
S(∆) = 𝑂 
S(𝑎𝑖)= O i+1   (for each ai εQ) 
S(ℎ𝑎)=O 
S(ℎ𝑟)=OO 
S(𝑞𝑖)=O i+2   (for each qi εQ) 
S(𝑆) =O 
S(𝐿)=OO 
S(𝑅)=OOO 
Each move m of a TM, described by the formula  
𝛿(p, a)=  (q ,b,,D)           is encoded by the string  

𝑒(𝑚) =  𝑆(𝑃)1𝑆(𝑎)! 𝑠(𝑞)1𝑆(𝑏)1𝑆(𝐷)1 
And  for any TM T, with initial state q, T is encoded by the string  
e(T) = S(q)1 e(m1)1 e(m2) 1----1e(mk)1 
 
Where  ,m1, m2……, mk are the distinct moves of T, arranged in some arbitrary order. Finally, 
any string z=z1, z2….,zk , where each zi ε S is encoded by  
e(z)=1S(z1)1S( z2)1….,1S(zk)1 
 
Decision Problem:  Answer are either yes(True) or no(False) 
 
Example: 
Given x  ε{ 0,∆}* does x contain 101? 



 

                

 

 
Corresponding TM: 
 

 
              0/0,R                           1/1,R                       
      q0                1/1,R              q1     0/0,R                 q2      1/1,R                         ha 
 
 

                                   0/0,R 
 
An algorithm as well as a TM can be completely described by q0  m1  m2  m3….mk  where  
 q0= initial state of TM 
m1  m2  m3….mk   are distinct move of T arranged in some arbitrary order. 
 
Non Deterministic Turing Machine ( NDTM): 
 
 
         qi                x/y,R                                 qj 
 
 
 
                               x/z, L                             qk 
 
 
 
 
Definition:  
A NDTM is a 5 tuple( Q, ∑,Г , 𝛿, q0) 
Where Q= A finite set of states not including the halting state ha, hr 
∑= A finite set of input symbols. 
Г= A finite set of tape symbols not including the special tape symbol  ∆ (blank). ∑<=Г 
q0= Starting state. 
 
𝛿, = Q, * Г<=(Q U {h0 , hr}) *(,Г  U { ∆}) * { R ;L ,S} 
 
Acceptance by NDTM : 
An input string x is deemed accepted by an NDTM , if at least one sequence of move with 
x as input leads to an accepting state. 
i.e, 
A string x ∈ ∑ * is accepted by T if for some a ∈  Г ,U{∆ }   and some y,z  x ∈
(Г , U{∆ } )* , 
 
 
It is clear from above the Instantaneous Description (ID) of NDTM is same as TM. 



 

                

 

Note:    1. Any language can be accepted by a NDTM can be accepted by an ordinary TM 
also 
              2. Also any language that can be accepted by an ordinary TM can be accepted by 
an NDTM 
 
 
Problem classification: 
Problem can be classified into two categories: 
 
1) Easy Problem:  Problem that can be solved in polynomial time. 

1, log n, n, n log n, n2, nk(log n)j, nk+1,…. 
If the running time of the algorithm remains in this series then it is called polynomial 
time algorithm. 
 

2) Hard Problem: Problems that needs exponential time algorithm to solve is called 
Hard Problem. 
That the running time is of the order of Cn or Ln 2n,3n,……kn 
 If the running time of the algorithm remains in this series then it is called exponential 
time algorithm. 
 
[ if t(n) = O(2n) 
 IE t(n) = C.2n and C=1 second and n=30 t(n)=34 years] 
 

Example of some hard Problem: 
Hamiltonian Circuit Problem[HAM]: 
Determine whether a given connected graph, G=(V,E)  has a Hamiltonian Circuit. A 
Hamiltonian Circuit is a path that starts and ends at the same vertex and passes through all the 
other vertices exactly once. 
Example:  Following is one of the Hamiltonian Circuit 1, 5, 8, 4, 3, 7, 6 ,2, 1 

 
 
      

 
   
 
 
 
 
 
There is no Hamiltonian Circuit of the graph. 
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                                                5 
                 

                                  3                                                              4 
 
 
 
For completely connected graph the number of Hamilton Circuit is ½(n-1)! 
Question: What is the necessary and sufficient condition for G to have Hamilton Circuit (1859)? 
Ans: Unsolved till date. 
To find the Hamiltonian Circuit of a connected graph G=(V,E) . We assumed that the vertices 
are numbered 1,2,3,….n 
So a Hamiltonian Circuit may be represented by n,P1,P2,……Pn-1,n 
Where n is the starting vertex and P1 is the permutation of the remaining (n-1) vertices. 
Now there are (n-1)! possible permutation and n number of possible starting vertex. So total time 
should be of the order of  O(n* (n-1)!) which is O(n!). 

1)  Algorithm HAM 

Void HAM (n,E) //  n is the number of vertices numbered 1 to n. 
O((n-1)!)  for (i=1, i<=n-1)! ; i++) 

        {  
          Generate (P1, P2, P3 ,…… Pn-1) a permutation of (1, 2, 3 ,….. (n-1) 
      P0=Pn=n; 
circuit _check=1; 
For (j=0 ;j<n; j++) 
If((Pi,Pj) ∄E) 

O(n)       { circuit _check=0; 
Break; 
}If(circuit_check==1) 
Print(Po,P!,P2,….Pn);} 
} 
Complexity of the algorithm is O(n!) 
2. Travelling salesman Problem [TSP]: 

Find the shortest tour through n cities with known positive integer distances between 
them( i.e. find the shortest Hamiltonian circuit in a complete graph with positive integer 
weight). 

Example :  
                  1      2     3      4      5 
1               0       1     2      7      5 
2              1       0      4      4      3 
3              2       4      0      1      2 
4              7       4      1      0      3 
5             5        3      2      3      0 
 
 
 
 



 

                

 

Tour  1:              5 – 1 – 2 – 3 – 4 – 5       distance travelled= 14 
Tour  2:              5 – 1 – 2 – 4– 3 – 5       distance travelled= 13 

There are (n-1)!  Different tours for a particular starting city. There are n possible starting city. 
So total time should be of the order of O(n!). 

Algorithm:    Void TSP(W[][], n) 
                      {    tour =Ø, min=α; 
O((n-1)!)  for(i=1; i<=(n-1)!; i++) 
                      { 
                       Generate (P1, P2, P3 ,…… Pn-1) a permutation of (1, 2, 3 ,….. (n-1); 
                       Construct tour t=(n,P1,P2,…Pn-1,n); 
O(n)         calculate distance  W[Pi][Pi + 1]    where P0=Pn=n; 
                     If (distance<min) 
                       {       Tour=t; 
                              Min=distance;                      } 
                 Print(min,tour);} 
Complexity= O(n!) 
3. The Clique Problem [CLIQUE]: 
A Clique in an undirected graph G= (V,E) is a subset V’<=V of vertices, each pair of 

which is connected by an edge in E. In other words, a Clique is a complete sub graph of G. The 
size of a Clique is the number of vertices it contains. 

Problem: Find a Clique of size K, if any. 
Example:                   V1 
 
        V2          V3 
        Maximum size Clique is 3 
          (V1,V2,V3),(V2,V3,V5),(V3,V4,V5) 
 
   V5                V4  
 
 
 
 
 
 
 
Algorithm: 
Int  Clique(G,K) 
{  
 flag=0; 
O(nCK)for ( all subset of V’ of V having K elements) 
{ 
O(nC2) if (vertices in V’ from a Clique) 
                {     print(V’); 

        Flag=1; 
       Break; 
} 
} return(flag); 
} 

[  Let n= I V I  
Number of subset with K nodes is (  nK  ) is  n C K ] 



 

                

 

Complexity :   Ω (KV .( n C K)) 
If K is constant  Polynomial time algo. 
If K is Proportional with n  exponential time algo. 
 

3) The SAT_CNF  Problem[SAT_CNF] 
 

 A Boolean variable is a variable that can take a value from the set { TRUE, FALSE } or 
{1,0} 

 A Boolean expression / formula is a Boolean variable or Boolean variable combined by 
the followings: 
 
                                 High  

       Not 
∩    AND            Priority 
 U    OR   
                         Low 
 

 Literal:   A literal is a Boolean variable or negation of Boolean variable. 
Example:    
i)  X 
ii)  X  ( or often written as  X    ) 

 

 Clause: A clause is a literal or disjunction of literals 
Example: 
 L1 V L2 V ……….V Lk is a clause where Li , 1<=i<=k is a literal. 
 

 Boolean expression in CNF: 
A Boolean expression is said to be in CNF if it is a clause or a conjunction of clauses. 
Example: C1 ∩ C2 ∩ 𝐶3 … . .∩ 𝐶𝑚  where Ci, 1 <= I <= m is a clame. 
 
More Example: 
i) Xi ∩ (X2 U X3) U X4   not in CNF 
ii) Xi ∩ (X2 U X3)  ∩ X4   is in CNF 

 

                                       
 
 
The Problem: Find the assignment of the variables for which a given Boolean expression 

in CNF is satisfiable ( i.e. the expression is time). 
Example: 
Consider the Boolean expression is X1 ∩   (X2 U X3) ∩  X4  
Clearly this expression is in CNF. Some assignment for which the above expression is 

true  
i) X1=1,  X2=1, X3=0, X4=1 
ii) X1=1,  X2=0, X3=1 ,X4=1 



 

                

 

 
If the expression has n number of variables, then the total number of different assignment 
to be checked is 2n 

              So the solution of the problem has a complexity of the order of O(2n). 
Recasting of a problem to Decision Problem: 

1. [HAM]:  does the graph G=(V,E) contains a Hamiltonian Circuit? 
2. [CLIQUE]: Is there a clique of size k in G=(V,E) ? 
3. [SAT _ CNF]: Are there assignments that make a Boolean expression in CNF satisfiable? 
4. [TSP]: Is there a tour for travelling salesman with length smaller than or equal to k? 

 
Question :  Does such recasting  reduces the impact of NP completeness? 
Ans:  No (WHY?) 
 

Let P= Optimization version of a problem (say minimization) 
  PD= Decision version of the same problem with imposed bound. 
 
Now, Given some way to solve  P, we can solve PD as follows. 
 

1. Solve P to find optimum value. 
2. If ( Optimum value<= bound) 

         Return True 
Else 
         Return False 
 
Therefore  
(P is easy)  (PD is easy) 
Or (PD is easy)  (P is easy) [ by taking negation] 
Or  PD is Hard   P is hard. 
[Note: Given some way to solve PD ,there is  no general way to solve P although some 
possible care may solve P] 
 
Encoding of problem Instances: 
 Objective:  To write instances of a problem as strings over an arbitrary but fixed finite 
alphabet. [ alphabet= {0,1}]. 
Example:   Let P be a problem whose sole input is an integer K. 
Complexity   O(k)  
 
 

Case 1: When encoded in binary 
IKI=[log 2K] 
Complexity  O(n) where n=[log 2 K] 
Case 2: When encoded  in unary 
iKi=K=n2 
Complexity  O(n2) where n=[ log 2 K] 



 

                

 

Formally, we shall use the encoding e, such that  e: I {0,1}* 
Concrete Problem: 
A concrete decision problem is a language L, the set of all “Yes” instances. 
L= {xi X{0,1}*, P(x)=1} 
Definition 1: Complexity class P: 
The complexity class P is the set of all languages each of which can be recognized by a 

corresponding TM/ Algorithm in Polynomial time.[TM is deterministic]. 
 
Definitions 2: Complexity class NP: 

The complexity class NP is the set of all languages each of which can be recognized by a 
corresponding Non deterministic TM/ Algorithm in Polynomial time.[N stand for Non 
deterministic]. 
A non deterministic TM has the power to “guess” the right choice when faced with several 
options.Exam: X=a or b guess the next vertex. 
Example: 

TSP (Travelling salesman Problem): 
Int  tsp bound) 
{ tour= Ø ;  cost=0; 
V=1; 
Mark the vertex 1 as “visited” and all other as “Unvisited” 
For (K=1;K<n;K++) 
{  
guess the edge (v,w) from v to unlimited 
vertex w; 
e=(u,w); 
tour= tour U {e} 
cost= cost + weight[e]; 
mark w as “visited” 
v=w; 
} 
E=(v,1); 
Tour=tour U{e} 
cost = cost + weight[e]; 
if( cost<= bound) 
return(1); 
else return(0); 
} 
Complexity=O(n) 
Considering guessing takes no time, so that it is in NP. 
 
 

How to show that a problem is in NP? 
Power of Non-determinism is the ability to guess the right option. We think of a TM/ algorithm 
that guesses a ” solution” and then “verifies” that solution is correct. 
[The solution in this case does not mean “Yes” or “No”- Formally a “solution” is called a 
certificate that can be verified] 
For any X ε L ,there is a certificate y that can be used to proved that really X ε L. This proof is 
called verification. For any string X ε L, there should not be any certificate. 
A verification algorithm A is a two argument algorithm, whose one argument is the input string 
X and other is the certificate Y such that A(X, Y) = 1. 



 

                

 

Alternative definition of NP class:  
The problem L ε NP if there exists a verification algorithm  A and a constant K such that  
L ={ X I X ε { 0,1}* and there exists a certificate Y ε {0,1}* with  I Y I ε O( I X IK) such that 
A(X,Y)=1 } 
[Y is the size of the algorithm] 
Example:       Show that TSP ε NP 
Proof: 
 Let y be a certificate consisting of an ordered list of vertices defining a tour with a cost at must 
equal to the bound. 
To verify the certificate, we must check 
O(n2)       i) The given order of the vertices is a permutation of vertices V. 
O(n * e)  ii)Each of the edges in the tour ( including the one from the last to the first) actually 
exists in E. 
O(n*e) iii) Sum of the costs  of the edges is less than or equal to the bound. 
Overall complexity of the algorithm is O(max(n2, n*e)) 
So TSP ε NP 
Theorem: P<=NP 
Some unsolved questions: 
Q1: Is it possible that P = NP? 
Q2: Is it possible that P = NP? 

 
Theorem:  If  X ε P then X ε P 
Since  X ε P 
There must exist a polynomials time algorithm A(x) such that A(x) =1 for x ε X and 

A(x)=0 for x ε X. 
Construct B(x) as  
int B(x) 
{     return      A(x)  ; 
} 
 B(x)=1 for all  x ε X. 
 B(x)=0 for all  x ε X. 
} 
  X  ε P 
Q3: Is the class NP closed under complement? 
In other words 
 If X ε NP can we say  X  ε NP ? 
Observation: The definition of NP is asymmetric. 
Example of some NP problem: 
1. HAM ε NP 

Suppose we have a certificate listing vertices in the order of a Hamiltonian Circuit. 
 
O(nV)     i) The given ordered list of vertices is a permutation of vertices in V. 
n=IVI 
O(n*e)  ii)Each edge defined by the consecutive vertices in the ordered list and the 
e=IEI              edge from last to first, exists in E. 
 
 
Overall complexity = O(max(n2, n*e)) which is polynomial. 
 



 

                

 

  Hence  HAM ε NP 
2. SAT _CNF ε NP 

Proof: 

     Let  Ø be a Boolean expression in CNF and  
     let v1, v2,….,vr   be the distinct variables in Ø. 
Let f((v1, a1), (v2,a2) ,…..,(vr,ar)) be a certificate for Ø where ai ε  {0,1} denotes assignment for 
vi; 
1<=i<=r 
Given Ø and f , the verification can be done in O(n) time where n=length of Ø. 
Hence SAT_CNF ε NP. 
 

3. CLIQUE  ε NP 
Proof: 
Let  v ’ <=v of size k is the certificate.  
To verify that v ‘ is a k-clique check for every ( u,v) ε v ‘ the edge (u,v) exists in E . 
 Complexity of doing that  
(kc2) = k*(k-1)/2 which is O(k2). 
 
Hence CLIQUE ε NP. 

 
     Example of a problem not in NP: 

  The Non Hamilton graph problem is not in NP.  
Proof: 
Decision Problem: 
Does a graph G has no Hemiltonian  Circuit? 
No certificate is possible. 
Hence not in NP. 
Polynomial Reduction: 
A language L1 is polynomial time reducible to a language L2  written as L1<= P  L2 [ is 

L1 no harder than L2] 
If there exists a polynomial time computable function 
F: {0,1}*  {0,1} * such that for all x ε {0,1}*, x ε L1 if f  f(x) ε L2 
[ If a language L1  is polynomial time reducible to a language L2 also written as L1<= T

P 
L2 is polynomial time reduction in the sense of turning machine]. 

 
Theorem: 

1) The relation <=P is transitive i.e. if L1 <=P L2 and L2 <=P L3 then L1<=P L3. 
 
Proof:  
Since L1<=P L2 there is a polynomial time function f such that x ε L1 if f  f(x) ε 
L2. 
Since L2<=P L3 there is a polynomial time function f such that x ε L1 if f  g(f(x)) 
ε L3. 
 
Hence, X  ε L1 if f G(f(x)) ε L3. 
 



 

                

 

 

The algorithm that computes g(f(x)) is 
       
x      f(x)    g(f(x)) 
                              Af                Ag 
A f :    Algorithm for function f 
A g :  Algorithm for function g 
Hence  g(f(x)) is polynomial time , L1<=P L3 
Theorem 2: 
If  L2  ε P and  L1<=P L2 then L1  ε P 
Proof: 
Since L2  ε P , there must be a polynomial time algorithm A2 that recognizes  X  ε L2. 
Let A f be the polynomial time algorithm that computes the reduction function. 
For any X  ε {0,1} * 
X  ε L1 if f f(x)  ε L2 ( as L1<=P L2) 
The algorithm A1,that recognize X  ε L1 is given below. 
x      f(x)                     recognizes X  ε L1 
X  ε L1                     Af                Ag 
Both A f and A 2 are Polynomial time algorithm 
Therefore A1 is also polynomial time algorithm. 
So  L1  ε P 
 
Theorem 3: 
If  L1  ε NP and L1<=P L2 then  L1  ε NP. 
Proof is similar to proof of Theorem 2. It is left as an exercise. 
NP Completeness: 
Definition: 
A problem / language L is NP- complete if  
a)     L ε NP 
b) L ‘<=P L for every L’ ε NP 

[ Note : NPC= Set of all NP- complete problem. If only the condition (b) holds, L is 
called NP-hard.] 

      Theorem: Let  X be an NP Complete problem and Y be another problem in NP such that  
X <=P Y , then Y is also NP Complete. 
Proof: Y ε NP according to statement. 
    Now  we have to show that Y is NP hard. 
Since  X is NP complete, for any Z ε NP we have  Z<=P X 
Since X <=P Y and the relation <=P is transitive we have Z<=P Y  
So, Y is NP hard. 
General Approch for proving NP- completeness: 

a) Prove that the problem Y ε NP 
b) Prove that Y is NP Hard. 

 
Proving of (a) is straightforward. 
To prove (b) we must choose an appropriate problem X already known to be NP- complete. 
Then in some tricky way we must show that X <=P Y. 
Assuming that HAM is in NPC, show that TSP is also in NPC. 



 

                

 

Proof:  TSP ε NP 
Now to prove that TSP is NP – hard is HAM <=P TSP. 
Let, 
G=(V,E) be an instance of HAM. 
We define f(G) as an instance of TSP as follows: 
i) A Complete graph H=(V,V x V). 
ii) The distance matrix ( C u,v)=1  if the edge (u,v)  ε E and ( C u,v)=2  otherwise 
iii) Bound=n where n is the number of vertices in G 

 

If G is an “Yes” instance of HAM; the Hamiltonian circuit in G translates into a tour in TSP 
with distance travelled=n. 
If G is a “No” instance of HAM; the tour in TSP must contain at least one edge with distance 
=Z leading to overall distance travelled>n. 
If G is an “Yes” instance of HAM if f  f(a) is a “yes” instance of TSP 
So, HAM <=P TSP 
Cook’s Theorem (1971): 
If L ε NP then L <=P  SAT_ CNF 
 
Show that CLIQUE ε NPC 
To show that CLIQUE is NP hard, we propose to show that 
SAT_ CNF  <=P CLIQUE 
Let B be a a boolean expression in CNF, from this we construct a graph G and an integer K 
as follows- 
i) K= no. of clauses in B 
ii) Vertices of G are all the occurrences of literals in B . 
iii) There is an edge in G between two such occurrences 

  If they are in different clauses and 

 If the two literals are consistent ie one is not a negation of the other.  
 
Example: 
 
        C1  X2  

                                    X1          X2 
                                                                             C2 
                                                        X1                                                                            X2 

                                                                   X1                C3 
 
 
(X1 U X2) ∩ (X1 U X2) ∩ ( X1 U X2)  
    C1                 C2             C3 
 
We shall now show that G has a K-Clique if f B is satisfiable. 
Let  t^ : { X1,X2…..Xn} {0,1} be a truth assignment satisfying B , where Xi , 
1<=i<=n are the literal. 
There is K number of clauses. 
At least one literal in each clauses must be 1 . 



 

                

Choose one such literals from each clause the vertices of G corresponding to these 
literals must be connected with each other. 
The vertex cover problem (VCOVER): 
A vertex cover of an undirected graph G=(V,E)is a subset V’<=V such that for any edge 
(u,v) ε E either u,v or both are in V’. 
Decision Problem: 
Given G and K , is there a vertex cover of size K? 
Show that VCOVER ε NPC. 
Proof: 
i) VCOVER ε NP 

Given a certificate V’ linear time is required to show whether all vertices in V’ ε 
V 
 

ii) VCOVER is NP Hard 
Now, We propose to show the CLIQUE <=P VCOVER 
Let  G=( V, E) be the given graph with n vertices. 
        
       G = ( V , E ) the complement of G. 

 We claim that a set S<= V is a clique in G If f  V-S is a vertex cover  of   G . 
 

If S is a clique in G , no edge in G  connects two vertices in S. So, the remaining vertices in V-S 
cover all the edges in G. 

 

Alternatively, If  G-S is a vertex cover of  G.o edge in G connects two vertices in S. Therefore, 
every pair of vertices in S is connected. 
S is clique. 

 CLIQUE <=P VCOVER 
 
Hence proved. 
 
Relationships among P, NP and NPC. 
 
 
 
 
 
 
 
 
 
 
 
 

NP

 
NPC 

P 



 

                

 

The above ven diagram shows the relationships among P , NP and NPC that the most theoretical 
computer scientists belive. 

 
 

MODULE 05:  Approximation Algorithm: [2L] 
 Why Approximation Algorithm? 
There are some combinatorial optimization problems such as Travelling salesman problem 
(TSP) , knapsack Problem, the decision version of which are NP- complete but the Optimization 
version are in the class of NP- hard problems(Problems that are at least as hard as NP- complete 
problem).Hence there are no known polynomial time algorithms for these problems and there 
are serious theoretical reasons to believe that such algorithms do not exist. What then are our 
options for handling such problems, many of which are of significant practical importance? 
There is a radically different way of dealing with different optimization problems. Solve them 
approximately by a fast algorithm. This approach is particularly appealing for applications 
where a good but not necessarily optimal solution will suffice. 
Approximation Algorithm: 
An algorithm that produces that produces near–optimal solution to an optimization solution to an 
optimization algorithm. 
In the case of approximation algorithm there must be provable solution quality and provable run 
time bound. 
Performance bounds for Approximation Algorithm: 

1. Ratio Bound: 
C= cost of the solution produced by the Approximation Algorithm 
C*= cost of optimum solution. 
 
We say that an approximation algorithm has a ratio bound of ρ(n)., if for any input of 
size n 
Max( 𝐶/𝐶* , C*/C)<=  ρ(n) 
When ρ(n) is independent of n, we say, the solution of the approximation algorithm is 
within a factor of ρ. 
 

2.  Relative Error Bound: 
Relative Error Bound ε(n) is defined as I C- C*I/C*<= ε(n) 
For any input of size n. 
Example: 
Show that ε(n)<= ρ(n)-1 
For minimization problem 0<=C*<=C 
Therefore , 
C/C*= ρ(n) 
ε(n)= I C- C*I/C*=  C/C* -1 = ρ(n)-1 
For maximization problem  0<C<=C* 

Therefore   C/C*= ρ(n) 
ε(n)= I C- C*I/C* = I C*-CI/C* = 1-1/ ρ(n) = ρ(n)-1/ ρ(n) 
since  
ρ(n)>=1,           ε(n)<= ρ(n)-1 
 



 

                

 

 
3. Approximation Scheme 
An approximation scheme is an Approximation Algorithm that takes  as input not only an 
instance of the problem but also a value  ε>0 such that for only fixed   ε  , the scheme has an 
approximation algorithm with relative error bound ε. 

 
3 a) Polynomial Time Approximation Scheme (PTAS): 
  An approximation scheme for fixed ε>0 that runs in polynomial time in the input size n. 
 
3 b) Fully PTAS: 
An approximation scheme such that its running time is polynomial both in 1/ ε and n where ε is 
relative error bound and n is the input size,[0((1/ ε)2  n3)]. 
Example: 
 Minimum Vertex Cover: 

Set approx vector (V,E) 
{ 
C=Ø; 
While(E!= Ø) 
{ 
E={u,v} where (u,v) is an arbitrary edge in E; 
C=C U e; 
Remove from E any edge incident on either u or v; 
} 
Return( C); 
} 
Runtime complexity 0(e) where e= no of edges. 
The approximation algorithm has a ratio bound of 2 . 
Proof: 

Let A denote the set of edges picked up by the algorithm to include its end points in C 
Therefore,  
ICI =2 IAI 
No two edges in A share the same end points 
Let  
C*= Optimal vertex cover 
C* must contain at least one end point each edge in A, to cover the edges in A. 
Since no two edges in A share the same end points. No vertex cover is incident on more than one 
edge in A. 
Therefore IAI<=I C*I 
ICI = 2IAI <=  2 I C*I 
So, the ratio bound is 2. 
TSP with Triangle Inequality 
Triangle Inequality:   

                   u 
 
U w 

C(u,w) 
C(u,v
) 

C(v,w) 



 

                

 

v 
 

C(u,w)<=C(u,v)+C(v,w) for all u and v and w. 
U is the distance between nodes u and w cannot exceed the distance of two leg path from u to 
some intermediate node v to w. 

 
Hamiltonian Circuit approx –TSP (V,E,C) 
 
Select a vertex r ε v to be the root vertex; 
Grow a minimum spanning tree T for the graph from r using Prim’s algorithm; 
Let L=list of vertices visited in a preorder tree walk of T; 
Return Hamiltonian circuit H that visits the vertices in the order of L; 
 
The Approx-TSP algorithm has a ratio bound of 2. 
Proof: 
Let, H* = Optimal Tour 
       H=Tour return by Approx TSP. 
 
To show that C(H)<=2C(H*) 
We delete an edge from H*  
Let T* be the resulting spanning tree. 
If T* is a minimum spanning tree 
 
                 C(T)<=C(T*) <=C(H*) 
Or            C(T)<= C(H*)   ………………..(1) 
A full walk of T lists the vertices when they are first visited and whenever they are returned to 
after a visit to a sub tree. 
Let this full walk be denoted by W. 
 
 
 
 
 
 
         
 
 
Now, 
         Every edge in T is traversed twice. Therefore  
C(W)<=2.C(T)   …………………(2) 
 
From (1) and (2)  
C(W)<=2.C(H*)   ………………(3) 
 



 

                

 

By triangle inequality, we can delete a visit from W and the cost does not increase. By 
repeatedly applying the delete operation, we remove from W all but the first visit to each vertex. 
This ordering is same as the preorder walk. 
Now, 
C(H)<=C(W)………………….(4) 
From (3) and (4) 
C(H) <=2C(H*). 
 
 
 
 
 
 
 

0/1 Knapsack Problem: 
 

Consider the Knapsack instance n=3, m=100, {P1,P2,P3}={20,10,19} and {W1, 
W2,W3}={65,20,35} X1,X2,X3)=(1,1,1) is not a feasible solution as ∑WiXi>M. the solution 
(X1,X2,X3)=(1,0,1) is an optimal solution. It value ∑PiXi is 39, hence F*(I)=39 for this instance. 
The solution (X1,X2,X3)=(1,1,0) is  suboptimal. Its value is ∑PiXi=30. 
This is a candidate for a possible output from an approximation algorithm.In fact every feasible 
solution is a candidate for output by an approximation algorithm .If the solution(1,1,0) is 
generated by an approximation algorithm on this instance then F^(I)=30 

I F*(I) - F^(I) I=9 and I F*(I) - F^(I) I/F*(I)=0.3 
Now consider the following approximation algorithm for the 0/1 knapsack problem. Assure that 
the objects are in non increasing order of Pi/Xi .If object i fits then set Xi=1, 
Otherwise set Xi=0. When this algorithm is used on the instance of the above problem, the 
objects are considered in the order 1,3,2. The result is  (X1,X2,X3) =(1,0,1).The optimal solution 
is obtained. Now, consider the following instance n=2, (P1,P2)=(2,r), 
(W1, W2)=(1,r) and M=r. When r>1 the optimal solution is (X1,X2)=(0,1). Its value F*(I) is r. 
The solution generated by the approximation algorithm is (X1,X2)=(1,0).  
Its value  F^(I) is 2. 
Hence , I F*(I) - F^(I) I=r-2. This approximation algorithm is not an absolute approximation 
algorithm as there exists no constant k such that I F*(I) - F^(I) I<=k              for all instances I. 
Furthermore, note that I F*(I) - F^(I) I/F*(I)=1- 2/r .This approaches 1 as r becomes large . I 
F*(I) - F^(I) I/F*(I)<=1  for every feasible solution to every knapsack instance. Since the above 
algorithm always generates a feasible solution, it is a 1- approximation algorithm. It is, however 
not an ε approximation algorithm for any approximation algorithm ε, ε<1. 
Following is the ε approximation algorithm for 0/1 knapsack problem for any ε, 0<ε<1. 

Procedure ε-Approx (P,W,M,N,K) 
// The size of a combination is the number of objects in it. 
// The weight of a combination is the sum of weights of the objects in that combination 
// k is a non-negative integer which defines the order of the algorithm. 
1. PMAX <- 0; 
2. For all combination I of size <=k and weight <=M do 



 

                

 

3. PI<-∑ Pi∈  
4. PMAX<-Max(PMAX, PI+L(I,P,W,M,N) 
5. Repeat 
6. End  ε-Approx 

 
Procedure L(I,P,W,M,N) 
 
S<-0 
I<-1 
T<-M- ∑ Wi∈  
For I <- 1 to n do 
If i ∄ I and Wi <=T 
S <-S<-S+ Pi; 

T <- T- Wi ; 
End if  
Repeat 
Return(S) ; 
End L; 
ni 

 
 
 

In this procedure P and W are sets of profits and weights respectively .It is assumed that 
Pi/Wi>= Pi+1/Wi+1, 1<=i<N. 
M is the Knapsack capacity and K a non-negative integer. In the loop of lines 2-5, all   

∑ Ni , different subsets, I consisting of at most K of the n objects and generated. If the 
currently generated subset I is such that ∑ Wi∈ >M. It is discarded (as it is 
infeasible).Otherwise, the space remaining in the knapsack ( i<M-∑ Wi∈  is filled using the 
procedure L. 
Consider the Knapsack Problem instance with n=8 objects. 
Size of Knapsack = m=110, P={11,21,31,33,43,53,55,65} and W={1,11,21,23,33,43,45,55}. 
 
The optimal solution is obtained by putting objects 1,2,3,5 and 6 into the knapsack. This results 
in an optimal profit P*, of 159 and weight of 109 
 
We obtain the following approximations for different K: 
K=0, PMAX  is just the lower bound solution L(∅,P,W,M,N ); 
PMAX=139; X=(1,1,1,1,1,0,0,0); W=∑ Xi Wi=89; 
(P*-PMAX)/P*=20/159=126 
 
 K=1, PMAX =151;   X=(1,1,1,1,,0,0,1,0); W=101; 
(P*-PMAX)/P*=8/159=.05 
 
K=2, PMAX =P*=159;   X=(1,1,1,0,1,1,0,);w=109; 



 

                

 

The following table gives the details for K=1. It is interesting to note that the combinations I= 
{1},{2},{3},{4}.{5}  need not be tried since for 1={∅}, X6 is the first Xi which is 0 and so there 
combinations will yield the same . 
 
PMAX as I ={∅} .This will be true for all combinations I that include only objects for which Xi 
was 1 in the solution I={∅}. 
 

 
 

    PMAX              PI           RI           L            PMAX=MAX{PMAX, PI+L}                 
Xoptional  

 

Ø         0                 11            1         128                        139                              
(1,1,1,1,1,0,0,0) 
 
6         139              53            43          96                        149                              
(1,1,1,1,0,1,0,0)   
 
7         149              55            45           9                          151                             
(1,1,1,1,0,0,1,0) 
 
8         151              65            55          63                         151                              
(1,1,1,1,0,0,1,0)  

 
 
 QUESTIONS:  
 

1.   A boolean formula is in disjunctive normal form (or DNF) if it consists of a disjunction (Or) 
or several terms, each of which is the conjunction (And) of one or more literals.  For 
example, the formula 

 (x ∧ y ∧ z) ∨ ( y ∧ z) ∨ (x ∧ y ∧ z) 
  

is in disjunctive normal form. DNF-SAT asks, given a boolean formula in disjunctive normal 
form, whether that formula is satisfiable. 

 
(a) Describe a polynomial-time algorithm to solve DNF-SAT. 

(b) What is the error in the following argument that P=NP? 

Suppose we are given a boolean formula in conjunctive normal form 
with at most three literals per clause, and we want to know if it is 
satisfiable. We can use the distributive law to construct an equivalent 
formula in disjunctive normal form. For example, 

 

(x ∨ y ∨ z) ∧ (x ∨ y) ⇐⇒ (x ∧ y) ∨ ( y ∧ x ) ∨ (z ∧ x ) ∨ (z ∧ y) 



 

                

 

Now we can use the algorithm from part (a) to determine, in 
polynomial time, whether the resulting DNF formula is satisfiable. We 
have just solved 3SAT in polynomial time. Since 3SAT is NP-hard, we 
must conclude that P=NP! 

 
 

2. (a)  Describe a polynomial-time reduction from Partition to Sub set Sum. 

(b)  Describe a polynomial-time reduction from Sub set Sum to Partition. 
 

3. (a)  Describe a  polynomial-time  reduction  from  Undirected Hamiltonian Cycle  
to Directed Hamiltonian Cycle. 

(b) Describe a polynomial-time reduction from Directed Hamiltonian Cycle to 
Undirected- Hamiltonian Cycle. 

 
4. (a)   Describe a polynomial-time reduction from Hamiltonian Path to Hamiltonian 

Cycle. 

(b)   Describe a polynomial-time reduction from Hamiltonian Cycle to Hamiltonian 
Path. 

[Hint: A polynomial-time reduction may call the black-box subroutine more than once.] 
 

5. (a) Prove that Planar Circuit Sat is NP-hard.  [Hint: Construct a gadget for 
crossing wires.] 

(b) Prove that Not All Equal 3SAT is NP-hard. 

(c) Prove that the following variant of 3SAT is NP-hard: Given a boolean formula 
Φ in conjunctive normal form where each clause contains at most 3 literals and 
each variable appears in at most 3 clauses, does Φ have a satisfying assignment? 

 
6. (a) Using the gadget on the right below, prove that deciding whether a given 

planar graph is 3-colorable is NP-hard. [Hint: Show that the gadget can be 3-
colored, and then replace any crossings in a planar embedding with the gadget 
appropriately.] 

(b) Using part (a) and the middle gadget below, prove that deciding whether a 
planar graph with maximum degree 4 is 3-colorable is NP-hard. [Hint: Replace any 
vertex with degree greater than 4 with a collection of gadgets connected so that no 
degree is greater than four.] 
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