
Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

1

Paper: Formal Languages and Automata Theory

Code: CS403

Contacts: 3L

Credits: 3

Total Lectures: 35

Objective(s)

 Be able to construct finite state machines and the equivalent regular expressions.

 Be able to prove the equivalence of languages described by finite state machines and

regular expressions.

 Be able to construct pushdown automata and the equivalent context free grammars.

 Be able to prove the equivalence of languages described by pushdown automata and

context free grammars.

 Be able to construct Turing machines and Post machines.

 Be able to prove the equivalence of languages described by Turing machines and Post

machines

Outcome(s)

 To acquire the knowledge of the basics of state machines with or without output and its

different classifications

 To understand synchronous sequential circuits as the foundation of digital system.

 To apply techniques of designing grammars and recognizers for several programming

languages.

 To analyze Turing’s Hypothesis as a foreword to algorithms.

 To perceive the power and limitation of a computer, and take decisions on computability.

Prerequisites:

1. Digital Logic

2. Computer organization

3. Computer Fundamentals

Module-1: [9 L]

Fundamentals: Basic definition of sequential circuit, block diagram, mathematical representation,

concept of transition table and transition diagram (Related to Automata concept of sequential

circuit concept) Design of sequence detector [2L]

Introduction to Finite State Model (FSM), Finite State Machine, Finite Automata, Deterministic

Finite Automation (DFA) and Non-deterministic Finite Automation (NFA), Transition diagrams,

Transition tables and Language recognizers. [2L]

NFA with empty transitions, Equivalence between NFA with and without empty transitions.

NFA to DFA conversion. [2L]

Minimization of FSM: Minimization Algorithm for DFA, Myhill-Nerode Theorem (proof not

required) [2L]

Limitations of FSM, Application of Finite Automata [1L]

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

2

Module-2: [7 L]

Finite Automata with output − Moore & Mealy machine. Representation of Moore & Mealy

Machine, Processing of the String through Moore & Mealy Machine, Equivalence of Moore &

Mealy Machine – Inter-conversion. [2L]

Equivalent states and Distinguishable States, Equivalence and k-equivalence, Minimization of

Mealy Machine [1L]

Minimization of incompletely specified machine − Merger Graph, Merger Table, Compatibility

Graph [2L]

Lossless and Lossy Machine – Testing Table, Testing Graph [2L]

Module-3: [5 L]

Regular Languages, Regular Sets, Regular Expressions, Algebraic Rules for Regular

Expressions, Arden’s Theorem statement and proof [1L]

Constructing Finite Automata (FA) for given regular expressions, Regular string accepted by FA

[2L]

Constructing Regular Expression for a given Finite Automata [1L]

Pumping Lemma of Regular Sets. Closure properties of regular sets (proofs not required). [1L]

Module-4: [9 L]

Grammar Formalism - Context Free Grammars, Derivation trees, sentential forms. Right most

and leftmost derivation of strings, Parse Tree, Ambiguity in context free grammars. [1L]

Minimization of Context Free Grammars. [1L]

Chomsky normal form and Greibach normal form. [1L]

Pumping Lemma for Context Free Languages. [1L]

Enumeration of properties of CFL (proofs omitted). Closure property of CFL, Ogden’s lemma &

its applications [1L]

Regular grammars − right linear and left linear grammars [1L]

Push down Automata: Push down automata, definition. Introduction to DCFL, DPDA, NCFL,

NPDA [1L]

Acceptance of CFL, Acceptance by final state and acceptance by empty state and its equivalence.

[1L]

Equivalence of CFL and PDA, inter-conversion. (Proofs not required) [1L]

Module-5: [5 L]

Turing Machine: Turing Machine, definition, model [1L]

Design of TM, Computable functions [1L]

Church’s hypothesis, counter machine [1L]

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

3

Types of Turing machines [1L]

Universal Turing Machine, Halting problem [1L]

TEXT BOOKS:

1. “Introduction to Automata Theory Language and Computation”, Hopcroft H.E. and

Ullman J. D., Pearson Education.

REFERENCES:

1. “Formal Languages and Automata Theory”, C.K.Nagpal, Oxford

2. “Switching & Finite Automata”, ZVI Kohavi, 2nd Edition., Tata McGraw Hill

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

4

Lesson Plan for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper: Formal Languages and Automata Theory

Code: CS403

Contacts: 3L

Credits: 3

Total Lectures: 35

Module No. Course Content Lecture

Required

Reference / Text Books

1 Module – 1: [9 L]

Fundamentals: Basic definition of

sequential circuit, block diagram,

mathematical representation, concept of

transition table and transition diagram

(Related to Automata concept of

sequential circuit concept) Design of

sequence detector [2L]

Introduction to Finite State Model

(FSM), Finite State Machine, Finite

Automata, Deterministic Finite

Automation (DFA) and Non-

deterministic Finite Automation (NFA),

Transition diagrams, Transition tables

and Language recognizers. [2L]

NFA with empty transitions,

Equivalence between NFA with and

without empty transitions. NFA to DFA

conversion. [2L]

Minimization of FSM: Minimization

Algorithm for DFA, Myhill-Nerode

Theorem (proof not required) [2L]

Limitations of FSM, Application of

Finite Automata [1L]

9 L

Text Book:

1. “Introduction to Automata

Theory Language and

Computation”, Hopcroft H.E.

and Ullman J. D., Pearson

Education.

Reference Book:

1. “Formal Languages and

Automata Theory”,

C.K.Nagpal, Oxford

2 Module – 2: [7 L]

Finite Automata with output − Moore &

Mealy machine. Representation of

Moore & Mealy Machine, Processing

of the String through Moore & Mealy

7 L

Text Book:

1. “Introduction to Automata

Theory Language and

Computation”, Hopcroft H.E.

and Ullman J. D., Pearson

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

5

Machine, Equivalence of Moore &

Mealy Machine – Inter-conversion.

[2L]
Equivalent states and Distinguishable

States, Equivalence and k-equivalence,

Minimization of Mealy Machine [1L]

Minimization of incompletely specified

machine − Merger Graph, Merger

Table, Compatibility Graph [2L]

Lossless and Lossy Machine – Testing

Table, Testing Graph [2L]

Education.

Reference Book:

1. Switching & Finite

Automata”, ZVI Kohavi, 2nd

Edition., Tata McGraw Hill

3 Module – 3: [5 L]

Regular Languages, Regular Sets,

Regular Expressions, Algebraic Rules

for Regular Expressions, Arden’s

Theorem statement and proof [1L]

Constructing Finite Automata (FA) for

given regular expressions, Regular

string accepted by FA [2L]

Constructing Regular Expression for a

given Finite Automata [1L]

Pumping Lemma of Regular Sets.

Closure properties of regular sets

(proofs not required). [1L]

5 L

Text Book:

1. “Introduction to Automata

Theory Language and

Computation”, Hopcroft H.E.

and Ullman J. D., Pearson

Education.

Reference Book:

1. “Formal Languages and

Automata Theory”,

C.K.Nagpal, Oxford

4 Module – 4: [9 L]

Grammar Formalism - Context Free

Grammars, Derivation trees, sentential

forms. Right most and leftmost

derivation of strings, Parse Tree,

Ambiguity in context free grammars.

[1L]
Minimization of Context Free

Grammars. [1L]

Chomsky normal form and Greibach

normal form. [1L]

Pumping Lemma for Context Free

Languages. [1L]

Enumeration of properties of CFL

(proofs omitted). Closure property of

CFL, Ogden’s lemma & its applications

[1L]

Regular grammars − right linear and

9 L

Text Book:

1. “Introduction to Automata

Theory Language and

Computation”, Hopcroft H.E.

and Ullman J. D., Pearson

Education.

Reference Book:

1. “Formal Languages and

Automata Theory”,

C.K.Nagpal, Oxford

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

6

left linear grammars [1L]

Push down Automata: Push down

automata, definition. Introduction to

DCFL, DPDA, NCFL, NPDA [1L]

Acceptance of CFL, Acceptance by

final state and acceptance by empty

state and its equivalence. [1L]

Equivalence of CFL and PDA, inter-

conversion. (Proofs not required) [1L]

5 Module – 5: [5 L]

Turing Machine: Turing Machine,

definition, model [1L]

Design of TM, Computable functions

[1L]
Church’s hypothesis, counter machine

[1L]
Types of Turing machines [1L]

Universal Turing Machine, Halting

problem [1L]

5 L

Text Book:

1. “Introduction to Automata

Theory Language and

Computation”, Hopcroft H.E.

and Ullman J. D., Pearson

Education.

Reference Book:

1. “Formal Languages and

Automata Theory”,

C.K.Nagpal, Oxford

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

7

MODULE 1: FINITE AUTOMATA

LECTURE 1: INTREODUCTION TO FINITE AUTOMATA

 FINITE AUTOMATA:

A finite automaton can be represented as a 5-tuple structure:

M = (Q, Σ, δ, q0, F)

where,

 Q is set of states of the system

 Σ is input alphabet of the system

 δ is transition function of the system defined as δ : Q × Σ → Q

 q0 is the initial or start state of the system

 F is the set of final states of the system

Finite Automata are of two types: Non-deterministic Finite Automata (NFA/NDFA) and

Deterministic Finite Automata (DFA).

1.1. NON-DETERMINISTIC FINITE AUTOMATA:

A FA is said to be non-deterministic if for a particular input is applied to a current state it is not

sure about the next state.

A non-deterministic finite automaton can be represented as a 5-tuple structure:

M = (Q, Σ, δ, q0, F)

where,

 Q is set of states of the finite automata

 Σ is input alphabet of the finite automata

 δ is transition function of the finite automata defined as δ : Q × Σ → 2Q

 q0 is the initial or start state of the finite automata

 F is the set of final states of the finite automata

A non-deterministic finite automaton can be denoted by transition diagram or by transition table

or by transition function.

 Let us take an example of a non-deterministic finite automaton

q0 q1

0

1

0

1

0 0

 q2

Figure 1.1: Transition Diagram of

NFA M1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

8

We can represent the above NFA by a transition table as follows:

PS
NS

x=0 x=1

q0 {q0,q1} {q2}

q1 {q1} {q2}

*q2 {q0} -

* Final state

We can represent NFA M1 by 5-tuple structure as follows:

Q = {q0,q1,q2}

Σ = {0,1}

δ(q0,0)={q0,q1}, δ(q0,1)={q2}, δ(q1,0)={q1}, δ(q1,1)={q2}, δ(q2,0)={q0}, δ(q2,1)=Φ

q0 = q0

F={q2}

1.2. DETERMINISTIC FINITE AUTOMATA:

A FA is said to be non-deterministic if for a particular input is applied to a current state it is very

sure about the next state.

A deterministic finite automaton can be represented as a 5-tuple structure:

M = (Q, Σ, δ, q0, F)

where,

 Q is set of states of the finite automata

 Σ is input alphabet of the finite automata

 δ is transition function of the finite automata defined as δ : Q × Σ → Q

 q0 is the initial or start state of the finite automata

 F is the set of final states of the finite automata

Let us take an example of a deterministic finite automaton

q0 q1

0

1

0

1

1 1

 q2

Figure 1.2: Transition Diagram of

DFA M2

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

9

We can represent the above DFA by a transition table as follows:

PS
NS

x=0 x=1

q0 {q0} {q1}

q1 {q1} {q2}

*q2 {q0} -

* Final state

We can represent DFA M2 by 5-tuple structure as follows:

Q = {q0,q1,q2}

Σ = {0,1}

δ(q0,0)={q0}, δ(q0,1)={q1}, δ(q1,0)={q1}, δ(q1,1)={q2}, δ(q2,0)={q0}, δ(q2,1)=Φ

q0 = q0

F={q2}

1.3. NON-DETERMINISTIC FINITE AUTOMATA WITH empty-Transition

If a FA is modified to permit transition without input symbols, along with zero, one or more

transition on input symbols, then we get a NFA with ε-transitions, because the transition made

without symbols are called as ε-transitions.

Let us take an example of a non-deterministic finite automaton with empty transitions.

Figure 1.3: Transition Diagram of an NFA with empty transitions M3

Here we define two definitions:

ε-closure of a state, i.e., ε-closure(q), where q is a state, and

ε-closure of a set of states, i.e., ε-closure(q1∪q∪2…∪n) , where q1, q2, …, qn are states.

𝑞0 𝑞1 𝑞2

0 1 0

Є

Є

Є

Є

Є

Є

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

10

The function ε-closure(q) is defined as follows:

ε-closure(q) = set of all those states of the automata (NFA with ε-transitions) which can be

reached from q on a path labeled by ε, i.e., without consuming any input symbol.

The function ε-closure(q1∪q∪2…∪n) is defined as follows:

ε-closure(q1∪q∪2…∪n) = ε-closure(q1) ∪ε-closure(q2)∪… ∪ε-closure(qn)

2. ACCEPTANCE OF STRING BY A FINITE AUTOMATA

2.1. ACCEPTANCE OF STRING BY A DFA

Let us assume the following DFA:

Figure 1.4: Transition Diagram of a DFA M4

 For the input string 01001, the transition of states is given by

q0 q1 q1 q3 q2 q3

After processing of entire input string, final state q3 has been reached. So, 01001 is

accepted.

q0

q2

q1

 q3

0

1

0

1 0

1

0

1

0 1 0 0 1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

11

 For the input string 0100, the transition of states is given by

q0 q1 q1 q3 q2

After processing of entire input string, state q2 has been reached. But q2 is NOT a final

state. Hence, 0100 is NOT accepted.

2.2. ACCEPTANCE OF STRING BY AN NFA

Let us assume the following NFA:

Figure 1.5: Transition Diagram of a NFA M5

 For the input string 0010, the transition of states is given by

q0 q0 q0 q2 q3

 q1 q2 q3

 q1 q3 q3 q2

0 1 0 0

q0

q2

q1

 q3

1

0

0

1 0

0

0

1

0 0 1 0

1

0

0
1 0

0 1 0

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

12

After processing of entire input string, we find at least one path such that final state q3

has been reached. So, 0010 is accepted.

 For the input string 011, the transition of states is given by

q0 q0 q2 q0

 q1 q2 q0

After processing of entire input string, final state is NOT reached. Hence, 011 is NOT

accepted.

3. EXTENDED TRANSITION FUNCTIONS:

3.1. EXTENDED TRANSITION FUNCTIONS FOR DFA:

The extended transition function is the function that takes a state q and a string w and returns a

state P, the state that automation reaches when starting in state q and processing the sequence of

inputs w. We define δ̂ by induction on the length of the input string as follows:

Basis: δ̂ (q,ε) = q. That is, if we are in state q and read no input, then we are still in state q.

Induction: Let us suppose w is a string of the form xa, that is a is the last symbol of w and x is

the substring of w, consisting of all except the last symbol ‘a’.

For example,

w = 1101 is broken into x= 110 and a=1 then,

δ̂ (q,w)=δ(δ̂ (q,x),a)

i.e., to compute δ̂ (q,w), first we compute δ̂ (q,x), the state that the automation is in after

processing all but the last symbol of w. Let us suppose this state is Ṕ ; that is δ̂ (q,x) = P ́. Then δ̂

(q,w) is what we get by making a transition from state P ́on input a, the last symbol of w.

δ̂ (q,w) = δ(P ́, a) = P

Let us see this concept through an example.

0 1 1

0 1 1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

13

Let us assume the following DFA:

Figure 1.6: Transition Diagram of a DFA M6

 For the input string 01001, the transition of states is given by

δ̂ (q0, ε) = q0

δ̂ (q0, 0) = δ (δ̂ (q0, ε), 0) = δ (q0, 0) = q1

δ̂ (q0, 01) = δ (δ̂ (q0, 0), 1) = δ (q1, 1) = q1

δ̂ (q0, 010) = δ (δ̂ (q0, 01), 0) = δ (q1, 0) = q3

δ̂ (q0, 0100) = δ (δ̂ (q0, 010), 0) = δ (q3,0) = q2

δ̂ (q0, 01001) = δ (δ̂ (q0, 0100), 1) = δ (q2, 1) = q3

Final state q3 has been reached. So, 01001 is accepted.

3.2. EXTENDED TRANSITION FUNCTIONS FOR NFA:

The extended transition function is the function that takes a state q and a string w and returns a

set of states that automation reaches when starting in state q and processing the sequence of

inputs w. We define δ̂ by induction on the length of the input string as follows:

Basis: δ̂ (q,ε) = {q}. That is, if we are in state q and read no input, then we are still in state q.

Induction: Let us suppose w is a string of the form xa, that is a is the last symbol of w and x is

the substring of w, consisting of all except the last symbol ‘a’.

Let us suppose that

q0

q2

q1

 q3

0

1

0

1 0

1

0

1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

14

δ̂ (q,x) = {p1, p2, …, pk},

Let,

⋃ 𝛿(𝑝𝑖, 𝑎)𝑘
𝑖=1 = {r1, r2, r3, …, rm}

Then,

δ̂ (q,x) = {r1, r2, r3, …, rm}.

Less formally, we compute δ̂ (q, w) by first computing δ̂ (q, x), and by then following any

transition from any of these states that is labeled a. Let us see an example for better

understanding of the concept.

Let us see this concept through an example.

Let us assume the following NFA:

Figure 1.7: Transition Diagram of a NFA M7

 For the input string 0010, the transition of states is given by

δ̂ (q0, ε) = {q0}

δ̂ (q0, 0) = {q0,q1}

δ̂ (q0, 00) = δ (q0, 0) ∪ δ (q1, 0) = {q0,q1}∪{q3} = {q0,q1,q3}

δ̂ (q0, 001) = δ (q0, 1) ∪δ (q1, 1) ∪δ (q3, 1) = {q2} ∪{q2}∪{q3} = {q2,q3}

δ̂ (q0, 0010) = δ (q2,0) ∪ δ (q3,0) = {q3,q2}

Final state q3 may be reached. So, 0010 is accepted.

q0

q2

q1

 q3

1

0

0

1 0

0

0

1

1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

15

LECTURE 2: EQUIVALENCE BETWEEN NFA AND DFA

4. CONVERSION:

4.1. CONVERSION: NFA WITH ε-TRANSITIONS TO NFA WITHOUT ε-

TRANSITIONS (REMOVING ε-TRANSITIONS)

Let us consider the following NFA M8 with ε-transitions. We have to find an equivalent NFA

without ε-transitions.

Figure 1.8a: Transition Diagram of a NFA M8

First, we calculate ε-closure of each state. And those will be states of new system.

ε-closure(q0) = {q0,q1}= A

ε-closure(q1) = {q1} = B

ε-closure(q2) = {q2,q3} = C

ε-closure(q3) = {q3} = D

Initial state of NFA without ε-transition will be ε-closure of initial state of NFA with ε-transition.

So, A is start state.

The final states of NFA without ε-transition are all those new states which contains final state of

NFA with ε-transition as member

So, C and D are final states.

So if NFA without ε-transition is

Ḿ = (Q́ , Σ, δ ́,q0 ́, F́), where

Q́ = {A,B,C}

q0́ = A

F́ = {C, D}

Now, we have to decide δ́ to find out the transitions as follows:

𝑞0 𝑞2 𝑞3

0 0 1

1

Є

Є

Є

Є

Є
𝑞1

Є

Є

Є

1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

16

So, equivalent NFA will be as follows:

 1

δ́ (A,0)

= ε-closure (δ(A,0))

= ε-closure (δ({q0,q1},0))

= ε-closure (δ(q0,0) ∪ δ(q1,0))

= ε-closure ({q0} ∪ Φ)

= ε-closure ({q0} ∪ Φ)

= ε-closure ({q0})

= ε-closure (q0)

= {q0,q1}

= A

δ ́(A,1)

= ε-closure (δ(A,1))

= ε-closure (δ({q0,q1},1))

= ε-closure (δ(q0,1) ∪ δ(q1,1))

= ε-closure (Φ ∪{q1,q2})

= ε-closure ({q1,q2})

= ε-closure (q1) ∪ ε-closure (q2)

= {q1} ∪{q2,q3}

= B∪C

= {B,C}

δ ́(B,0)

= ε-closure (δ(B,0))

= ε-closure (δ({q1},0))

= ε-closure (δ(q1,0))

= ε-closure (Φ)

= Φ

δ ́(B,1)

= ε-closure (δ(B,1))

= ε-closure (δ({q1},1))

= ε-closure (δ(q1,1))

= ε-closure ({q1,q2})

= ε-closure (q1) ∪ ε-closure (q2)

= {q1} ∪{q2,q3}

= B∪C

= {B,C}

δ́ (C,0)

= ε-closure (δ(C,0))

= ε-closure (δ({q2,q3},0))

= ε-closure (δ(q2,0) ∪ δ(q3,0))

= ε-closure ({q2} ∪ Φ)

= ε-closure ({q2})

= ε-closure (q2)

= {q2,q3}

= C

δ́ (C,1)

= ε-closure (δ(C,1))

= ε-closure (δ({q2,q3},1))

= ε-closure (δ(q2,1) ∪ δ(q3,1))

= ε-closure (Φ∪{q3})

= ε-closure ({q3})

= ε-closure (q3)

= {q3}

= D

δ́ (D,0)

= ε-closure (δ(D,0))

= ε-closure (δ({q3},0))

= ε-closure (δ(q3,0))

= ε-closure (Φ)

= Φ

δ́ (D,1)

= ε-closure (δ(D,1))

= ε-closure (δ({q3},1))

= ε-closure (δ(q3,1))

= ε-closure ({q3})

= ε-closure (q3)

= {q3}

= D

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

17

Now, we can draw the transition diagram of equivalent NFA without ε-transitions as follows:

Figure 1.8b: Transition Diagram of an equivalent NFA M8́ of NFA M8

4.2. CONVERSION: NFA WITHOUT ε-TRANSITIONS TO DFA

First we remove Multiple Transitions (if any):

Let M be an NFA denoted by (Q, Σ, δ, q0, F) which accepts L.

To obtain an equivalent DFA Ḿ = (Q́, Σ, δ,́ q0, F́) which accepts the same language as given

NFA M = (Q, Σ, δ, q0, F) does, we may proceed as follows:

Step 1: Initially Q́ = Φ.

Step 2: We put [q0] into Q́. [q0] is the initial state of DFA Ḿ.

Step 3: We add every new state q to Q́, where δ ́(q, a) = ∪P Є Q δ(P, a)

Step 4: We repeat step 3 till new states are there to add in Q́, if there is no further new state

found to add in Q́, the process terminates. All states in Q́ that contain final states of M are

accepting state of Ḿ.

Note: The states which are not reachable from the initial state should not be included in Q́. Thus

the set of states (Q́) is not necessarily equal to 2Q.

Then we remove Undefined Transitions (if any):

If (A,a) is undefined then we incorporate a new state I (known as Idle state or Dead state or Trap

state) such that

δ(A,a) = I

and

δ(I,x) = I for all xЄΣ

1

Є

Є

1

Є

Є

1

Є

Є

𝐶 𝐴 𝐷 𝐵

1 0 0 1

1

1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

18

Example:

Let us consider the following NFA M9 without ε-transitions. We have to find an equivalent

DFA.

Solution:

First we draw the transition table of given NFA M9.

PS NS, z

x=0 x=1

A {A} {B,C}

B - {B,C}

C {C} {D}

*D - {D}

First we remove Multiple Transitions:

Step 1: We denote start state A by [A]. We seek all the transition from starting state [A] for

every symbol in Σ i.e. (0, 1). If we get a set of states for same input then we consider that set as

new single state as:

δ([A],0) = δ([A],0) = {A}

δ([A],1) = δ([A],1) = {B,C}

We denote {A} by [A] and {B,C} by [B,C] in the DFA.

Step 2: In step 1 we are getting a new state [B, C]. Now we repeat step 12 for this new state

only, i.e., we check all transitions of 0 and 1 (that is Σ) from [B, C] as:

δ([B,C],0) = δ(B,0) ∪ δ (C,0) = Φ ∪{C} = {C}

δ([B,C],1) = δ(B,1) ∪ δ (C,1) = {B,C} ∪{D} = {B,C,D}

We denote {C} by [C] and {B,C,D} by [B,C,D] in the DFA.

1

Є

Є

1

Є

Є

1

Є

Є

𝐶 𝐴 𝐷

1 0 0

B

1

1 1 1

1

Figure 1.9a: Transition Diagram of

NFA M9

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

19

Step 3: We repeat step 2 till we are getting any new state. All those states which consists at least

one accepting state of given NFA as member state will be considered as final states.

[C] is new state.

δ([C],0) = δ(C,0) = {C}

δ([C],1) = δ(C,1) = {D}

We denote {C} by [C] and {D} by [D] in the DFA.

[B,C,D] is new state.

δ([B,C,D],0) = δ(B,0) ∪δ(C,0) ∪δ(D,0) = Φ∪{C} ∪Φ = {C}

δ([B,C,D],1) = δ(B,1) ∪δ(C,1) ∪δ(D,1) = {B,C}∪{D}∪{D} = {B,C,D}

We denote {C} by [C] and {B,C,D} by [B,C,D] in the DFA.

[D] is new state.

δ([D],0) = δ(D,0) = Φ

δ([D],1) = δ(D,1) = {D}

We denote {C} by [C] and {D} by [D] in the DFA.

Here, [B,C,D] and [d] are final states.

Let us draw the transition table:

PS NS, z

x=0 x=1

[A] [A] [B,C]

[B,C] [C] [B,C,D]

[C] [C] [D]

* [B,C,D] [C] [B,C,D]

* [D] - [D]

Let us replace,

[A] by Q0,

[B,C] by Q1

[C] by Q2

[B,C,D] by Q3

[D] by Q4

Hence the transition table is as follows:

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

20

PS NS, z

x=0 x=1

Q0 Q0 Q1

Q1 Q2 Q3

Q2 Q2 Q4

*Q3 Q2 Q3

*Q4 - Q4

Now we remove Undefined Transition:

Here, δ(Q4,0) is undefined.

Hence we incorporate a new state I such that

δ(Q4,0) = I

and

δ(I, 0) = I and δ(I, 1) = I

Hence the transition table of equivalent DFA is as follows:

PS NS, z

x=0 x=1

Q0 Q0 Q1

Q1 Q2 Q3

Q2 Q2 Q4

*Q3 Q2 Q3

*Q4 I Q4

I I I

And, the transition diagram of equivalent DFA is as follows:

 1

1

Є

Є

1

Є

Є

1

Є

Є

𝑄2 𝑄0 𝑄3

0

0

1 0 0
𝑄1

1

𝑄4

I

1

1

0
0,1

0

Figure 1.9b: Transition Diagram of

an equivalent DFA M9́ of given

NFA M9

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

21

LECTURE 3: MINIMIZATION TO FINITE AUTOMATA

Definitions of Dead State and Inaccessible State:

Dead State: All those non-final states which transit to itself for all input symbols in Σ, are called

Dead state.

Inaccessible State or Unreachable State: All those states which can never be reached from

initial states are called inaccessible states or unreachable states.

5. MINIMIZATION OF DFA

5.1. MINIMIZATION OF DFA USING SUBSET CONSTRUCTION METHOD

For any DFA with more number of states we can construct its equivalent DFA with minimum

number of states.

Equivalent states: Two states q1 and q2 are said to be equivalent if both δ(q1,x) and δ(q2,x) are

final states, or both of them are non-final states for all x ϵ Σ*.

As it is difficult to construct δ(q1,x) and δ(q2,x) for all x ϵ Σ* (there are an infinite number of

strings in Σ*), we give one alternate definition.

Two states q1 and q2 are k-equivalent (k≥0) if both δ(q1,x) and δ(q2,x) are final states or both

non-final states for all strings x of length k or less. In particular, any two final states are 0-

equivalent and any two non-final states are also 0-equivalent.

We mention some of the properties of these relations.

Property 1: The relations we have defined, i.e. equivalence and k-equivalence, are equivalence

relations, i.e., they are reflexive, symmetric and transitive.

Property 2: These induce partitions of Q. These partitions can be denoted by P and PK,

respectively. The elements of PK are k-equivalence classes.

Property 3: If q1 and q2 are k-equivalent for all k≥0, then they are equivalent.

Property 4: If q1 and q2 are (k+1)-equivalent for all k≥0, then they are k-equivalent.

Property 5: Πn = Πn+1 for some n. (Πn denotes the set of equivalence classes under n-

equivalence.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

22

The following result is the key to the construction of minimum state automation.

Result:

 Two states q1 and q2 are (k+1)-equivalent if

(i) they are k-equivalent

(ii) δ(q1,x) and δ(q2,x) are also k-equivalent for every a ε Σ

Construction of Minimum Automation:

0. Removal of all unreachable states: First we remove all unreachable states.

1. Construction of P0: Initially we construct 0-equivalence class as P0 = {Q1
0, Q2

0} where

Q1
0 is set of final states and Q2

0 = Q – Q1
0 is the set of non-final states.

2. Construction of PK+1 from PK:

(a) Let Q1
K be any subset in PK. If q1 and q2 are in Q1

K they are (K+1) equivalent

provided δ(q1,a) and δ(q2,a) are K-equivalent.

(b) We find out whether δ(q1,a) and δ(q2,a) are in same equivalence class in PK for every

a ϵ Σ. If so, q1 and q2 are (k+1) equivalent. This way Q1
K is further divided into

(K+1) equivalence classes. This is repeated for every QK in PK to get all the elements

of PK+1.

Putting in another way, two states are placed in the same block of PK+1 if and only if

they are in the same block of PK, and for each possible x ε Σ their x-successors are

also contained in a same block of PK. This step is carried out by splitting blocks of

Pi. In general, the PK+1 Partition is obtained from PK by placing in the same block of

PK+1 those states which are in the SAME BLOCK of PK and whose x-successors for

every possible x ε Σ are also in a COMMON BLOCK of PK.

3. Construction of Pn for n = 1,2,3, … : We construct Pn for n = 1,2,3,….. until Pn = Pn+1.

4. Construction of minimized DFA: For the required minimum state automation, states are

equivalent classes obtained in step 3, i.e., the elements of Pn.

Example:

Find minimum state automation for the following DFA:

PS NS

x=0 x=1

q0 q1 q2

q1 q2 q4

q2 q3 q2

q3 q2 q4

*q4 q1 q4

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

23

(a) Initially we identify 0-equivalence as P0 = {Q1
0, Q2

0} where Q1
0 is set of final states and

Q2
0 = Q - Q1

0 is set of non-final states.

Q2
0 = {q4}

Q2
0 = {q0, q1, q2, q3}

(b) We construct P1 from P0 identifying the equivalent states in {Q1
0, Q2

0}

Q1
0 cannot be divided as it has only one state.

Q2
0 has four states, we need to identify whether they are 1-equivalent.

We compare q0 and q1 on input 0 and 1

δ(q0,0) = q1

δ(q1,0) = q2 both resultant states belong to Q2
0

δ(q0,1) = q2

δ(q1,1) = q4 both resultant states belong to different sets in P0

=> q0 is not 1-equivalent to q1

We compare q0,q2 on input 0 and 1

δ(q0,0) = q1

δ(q2,0) = q3 both resultant states belong to Q2
0

δ(q0,1) = q2

δ(q2,1) = q1 both resultant states belong to different sets in Q2
0

=> q0 is not 1-equivalent to q2

We compare q0,q3 on input 0 and 1

δ(q0,0) = q1

δ(q3,0) = q2 both resultant states belong to Q2
0

δ(q0,1) = q2

δ(q3,1) = q4 both resultant states belong to different sets P0

=> q0 is not 1-equivalent to q3

Hence,

P1 = { Q1
1 ,Q2

1 ,Q3
1}

where,

 Q1
1 = {q4}

 Q2
1 = {q0,q2}

 Q3
1 = {q1,q3}

(c) We construct P2 from P1 identifying the equivalent states in {Q1
1, Q2

1, Q3
1}

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

24

Q1
1 cannot be divided as it has only one state.

Q2
1 and Q3

1 has two states each, we need to identify whether they are equivalent.

 We compare q0, q2 on input 0 and 1

δ(q0,0) = q1

δ(q2,0) = q3 both resultant states belong to Q3
1

δ(q0,1) = q2

δ(q2,1) = q1 both resultant states belong to different sets in Q2
1

=> q0 is 1-equivalent to q2

We compare q1, q3 on input 0 and 1

δ(q1,0) = q2

δ(q3,0) = q2 both resultant states belong to Q2
1

δ(q1,1) = q4

δ(q3,1) = q4 both resultant states belong to different sets in Q1
1

=> q0 is not 1-equivalent to q3

Hence,

P2 = { Q1
2 ,Q2

2 ,Q3
2}

where,

 Q1
2 = {q4}

 Q2
2 = {q0,q2}

 Q3
2 = {q1,q3}

(d) Here, we are presenting all Partitions as follows:

P0 = {{q4},{q0,q1,q2,q3}}

P1 = {{q4},{q0,q2},{q1,q3}}

P2 = {{q4},{q0,q2},{q1,q3}}

We see that P2 is equal to P1. The states q0 and q2 are considered as a single state q02,

and q1 and q3 as a single state q13. Minimized DFA is:

PS NS

x=0 x=1

q02 q13 q02

q13 q02 q4

*q4 q13 q4

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

25

5.2. MINIMIZATION OF DFA USING MYHILL NERODE THEOREM:

Let us think of an equivalence relation as being true or false for a specific pair of strings x and y.

Thus xRy is true for some set of pairs x and y. We will use a relation R such that xRy yRx, x

has a relation to y if and only if y has the same relation to x. This is known as symmetric.

xRy and yRz => xRz. This is known as transitive.

xRx is true. This is known as reflexive.

The notation RL means an equivalence relation ‘R’ over the language L. The notation RM means

an equivalence relation R over machine M. We know for every regular language L there is a

machine M that exactly accepts the strings in L.

Our RL is defined xRLY for all z in Σ*

(xz in L yz in L)

Our RM is defined xRMY xzRMyz for all z in Σ*

In other words,

δ(q0, xz) = δ(δ(q0,x),z))

 = δ(δ(q0,y),z))

 = δ(q0, yz)

For x,y, z strings in Σ*.

RM divides the set Σ* into equivalence classes, one class for each state reachable in that

particular state of M from the starting state q0. To get RL from this we have to consider

only the final reachable states of M.

Statement of Myhill-Nerode Thoerem:

The Myhill-Nerode theorem states the following three statements are equivalent:

1. The set L, a subset of Σ*, is accepted by a DFA. (We know this means L is regular

language).

2. L is the union of some of the equivalence classes of a right invariant (with respect to

concatenation) equivalence relation of finite index.

3. Let equivalence relation RL be defined by: xRLy if and only if for all z in Σ*, xz is in L

exactly when yz is in L. Then RL is of finite index.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

26

Implementation of Myhill-Nerode Theorem

Step 1: Let us start with a FA = (Q, Σ, δ, q0, F) as usual remove from Q, F and δ all states that

cannot be reached from q0.

Step 2: Let us build a two dimensional matrix labeling the right side q0, q1, q2, … running down

and denote this as the “p” first subscript. Label the top as q0, q1, q2, … and denote this as “q”

second subscript.

Let us put dashes in the major diagonal and the lower triangular part of the matrix (every

thing below the diagonal) we will always use the upper triangular part because xRMy = yRMx is

symmetric. We will also use (p, q) to index into the matrix with the subscript of the state called

“p” always less than the subscript of the state called “q”.

Step 3: We can have one of three things in a matrix location where there is no dash.

A “X” indicates a distinct state from our initialization, “x”, at the location (p, q) indicate that

state p is distinguishable from q.

We will level all empty matrix location with “0”. The “0” location means the p and q are

equivalent and will be the same state in the minimum machine.

Step 4: We begin for every pair of distinct states (p, q) in F×(Q−F) such that subscript of p <

subscript of q. We do not write over dashes. If (p,q) has a dash, we put X in (q, p).

Step 5: We begin for every pair of distinct states (p, q) in F×F and for every pair of distinct state

(p, q) in (Q−F)×(Q−F) we do

 If for any input symbol, (r, s) has X or x then we put x in (p, q), we check (s, r) if (r, s)

has a dash. (where r = δ(p, a) and s = δ(q, a) where a ε Σ.)

 If (p, q) has a dash then we mark x at (q, p)

 We do not have to write another “x” if one is there already.

Step 6: We mark all the empty position “0” in upper triangle.

Step 7: To find out the states in minimized DFA, we check all the rows of final matrix. The

minimized machine will contain the states equal to the number of rows contains “0” entries

(including the initial state if row starts with initial state does not contain any “0” entry).

 If a row start with qx is having “0” at qy and qz positions then {qx, qy, qz} will a state in

minimum machine.

 Initial state will be that set which contains initial state as member state. (If there is no “0”

entry at the row, starts with the initial state, then initial state of new minimized machine will be

same as in old machine). Final states of minimized machine are all these sets which contains the

any accepting state of old machine as member state.

Step 8: For finding the transition between the states of new machine, we will adopt the same

strategy as we adopt in the minimization process discussed earlier, we start with the initial state

of M and check transition of it for all input symbols in Σ. We repeat this process till we are

getting any new state.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

27

Example:

Minimize the given DFA by using Myhill-Nerode Theorem:

State a b

q0 q1 q4

q1 q2 q3

*q2 q7 q8

*q3 q8 q7

q4 q5 q6

*q5 q7 q8

*q6 q7 q8

q7 q7 q7

q8 q8 q8

Q = {q0,q1,q2,q3,q4,q5,q6,q7,q8}

Σ = {a,b}

Initial state = q0

F = {q2,q3,q5,q6}

Q − F = {q0,q1,q4,q7,q8}

We use an ordered F×F = {(q2,q3),(q2,q5),(q2,q6),(q3,q5),(q3,q6),(q5,q6)}

And (Q−F)×(Q−F) = {(q0,q1),(q0,q4),(q0,q7),(q0,q8),(q1,q4),(q1,q7),

{(q1,q8),(q4,q7),(q4,q8),(q7,q8)}

Step 1: Now we build the matrix labeling the “p” rows q0,q1,q2, … and labeling the “q”

columns q0,q1, … and we put the dashes (the symbol “−”) below the principal diagonal

 q0 q1 q2 q3 q4 q5 q6 q7 q8

q0

q1 −

q2 − −

q3 − − −

q4 − − − −

q5 − − − − −

q6 − − − − − −

q7 − − − − − − −

q8 − − − − − − − −

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

28

Step 2: Now we mark X at (p,q) in upper triangle such that p in F and q in (Q−F) as subscript of

p is lower than the subscript of q or p in (Q−F) and q in F and q is lower than q.

F = {q2,q3,q5,q6}

Q − F = {q0,q1,q4,q7,q8}

F×(Q−F) or (Q−F)×F such that p is lower than q.

= {(q2,q4),(q2,q7),(q2,q8),(q3,q4),(q3,q7),

(q3,q8),(q5,q7),(q5,q8),(q6,q8),(q6,q7),(q0,q2),(q0,q3),(q0,q5),(q0,q6),(q1,q2),(q1,q3),(q1,q5),(q

1,q6),(q4,q5),(q4,q6)}

Now we mark × in the matrix given in following figure

 q0 q1 q2 q3 q4 q5 q6 q7 q8

q0 X X X X

q1 − X X X X

q2 − − X X X

q3 − − − X X X

q4 − − − − X X

q5 − − − − − X X

q6 − − − − − − X X

q7 − − − − − − −

q8 − − − − − − − −

Step 3:

We mark “x” and “0” in the matrix:

First we consider Q−F

 Q−F = {q0,q1,q4,q7,q8}, so ordered pair of

(Q−F) × (Q−F) = {(q0,q1),(q0,q4),(q0,q7),(q0,q8),(q1,q4),(q1,q7),

{(q1,q8),(q4,q7),(q4,q8),(q7,q8)}

Now we will select (p,q) from (Q−F) × (Q−F) and

find (ra,sa) as ra = δ(p,a) and sa = δ(q,a) and

find (rb,sb) as rb = δ(p,b) and sb = δ(q,b)

Now

If subscript of r is less than subscript of s we check (r,s)

If subscript of r is greater than subscript of s, the we check (s,r)

If at least of (ra,sa) [or (sa,ra)] and (rb,sb) [or (sb,rb)] is either X or x, then (p,q) will be x.

If both of (ra,sa) [or (sa,ra)] and (rb,sb) [or (sb,rb)] is neither X nor x then (p,q) will be “0”.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

29

i. For (q0,q1),

ra = δ(q0,a) = q1 and sa = δ(q1,a) = q2, so next state pair (q1,q2)

rb = δ(q0,b) = q4 and sb = δ(q1,b) = q3, so next state pair (q4,q2) i.e. (q2,q4)

It can be checked from the matrix that (q1,q2) is X

so (q0,q1) will be x.

ii. For (q0,q4),

ra = δ(q0,a) = q1 and sa = δ(q4,a) = q5, so next state pair (q1,q5)

rb = δ(q0,b) = q4 and sb = δ(q4,b) = q6, so next state pair (q4,q6)

It can be checked from the matrix that (q1,q5) is X

so (q0,q4) will be x.

iii. For (q0,q7),

ra = δ(q0,a) = q1 and sa = δ(q7,a) = q7, so next state pair (q1,q7)

rb = δ(q0,b) = q4 and sb = δ(q7,b) = q7, so next state pair (q4,q7)

It can be checked from the matrix that (q1,q7) is neither X nor x

so (q0,q7) will be 0.

iv. For (q0,q8),

ra = δ(q0,a) = q1 and sa = δ(q8,a) = q8, so next state pair (q1,q8)

rb = δ(q0,b) = q4 and sb = δ(q8,b) = q8, so next state pair (q4,q8)

It can be checked from the matrix that (q1,q8) is neither X nor x

so (q0,q8) will be x.

v. For (q1,q4),

ra = δ(q1,a) = q2 and sb = δ(q4,a) = q5, so next state pair (q2,q5)

rb = δ(q1,b) = q3 and sb = δ(q4,b) = q6, so next state pair (q3,q6)

It can be checked from the matrix that (q2,q5) and (q3,q6) is neither X nor x

so (q0,q1) will be 0.

vi. For (q1,q7),

ra = δ(q1,a) = q2 and sa = δ(q7,a) = q7, so next state pair (q2,q7)

rb = δ(q1,b) = q3 and sb = δ(q7,b) = q7, so next state pair (q3,q7)

It can be checked from the matrix that (q2,q7) is X

so (q1,q7) will be x.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

30

vii. For (q1,q8),

ra = δ(q1,a) = q2 and sa = δ(q8,a) = q8, so next state pair (q2,q8)

rb = δ(q1,b) = q3 and sb = δ(q8,b) = q8, so next state pair (q3,q8)

It can be checked from the matrix that (q2,q8) is X

so (q1,q8) will be x.

viii. For (q4,q7),

ra = δ(q4,a) = q5 and sa = δ(q7,a) = q7, so next state pair (q5,q7)

rb = δ(q4,b) = q6 and sb = δ(q7,b) = q7, so next state pair (q6,q7)

It can be checked from the matrix that (q5,q7) is X

so (q4,q7) will be x.

ix. For (q4,q8),

ra = δ(q4,a) = q5 and sa = δ(q8,a) = q8, so next state pair (q5,q8)

rb = δ(q4,b) = q6 and sb = δ(q8,b) = q8, so next state pair (q6,q8)

It can be checked from the matrix that (q5,q8) is X

so (q4,q8) will be x.

x. For (q7,q8),

ra = δ(q7,a) = q7 and sa = δ(q8,a) = q8, so next state pair (q7,q8)

rb = δ(q7,b) = q7 and sb = δ(q8,b) = q8, so next state pair (q7,q8)

It can be checked from the matrix that (q7,q8) is neither X nor x

so (q7,q8) will be 0.

Now we consider F

F = {q2,q3,q5,q6}

so ordered pair of

F×F = {(q2,q3),(q2,q5),(q2,q6),(q3,q5),(q3,q6),(q5,q6)}

xi. For (q2,q3),

ra = δ(q2,a) = q7 and sa = δ(q3,a) = q8, so next state pair (q7,q8)

rb = δ(q2,b) = q8 and sb = δ(q3,b) = q7, so next state pair (q8,q7) i.e. (q7,q8)

It can be checked from the matrix that (q7,q8) is neither X nor x so (q2,q3) will be 0.

xii. For (q2,q5),

ra = δ(q2,a) = q7 and sb = δ(q5,a) = q7 so next state pair (q7,q7)

rb = δ(q2,b) = q8 and sb = δ(q5,b) = q8, so next state pair (q8,q8)

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

31

It can be checked from the matrix that both (q7,q7) and (q8,q8) is neither X nor x so

(q2,q5) will be 0.

xiii. For (q2,q6),

ra = δ(q2,a) = q7 and sb = δ(q6,a) = q7 so next state pair (q7,q7)

rb = δ(q2,b) = q8 and sb = δ(q5,b) = q8, so next state pair (q8,q8)

It can be checked from the matrix that (q7,q7) is neither X nor x and (q8,q8) is neither X

nor x so (q2,q6) will be “0”.

xiv. For (q3,q5),

ra = δ(q3,a) = q8 and sb = δ(q5,a) = q7 so next state pair (q8,q7) i.e. (q7,q8)

rb = δ(q3,b) = q7 and sb = δ(q5,b) = q8, so next state pair (q7,q8)

It can be checked from the matrix that it is checked (q7,q8), it is neither X nor x so

(q3,q5) will be “0”.

xv. For (q3,q6),

ra = δ(q3,a) = q8 and sb = δ(q6,a) = q7 so next state pair (q8,q7) i.e. (q7,q8)

rb = δ(q3,b) = q7 and sb = δ(q6,b) = q8, so next state pair (q7,q8)

It can be checked from the matrix that it is checked (q7,q8), it is neither X nor x so

(q3,q6) will be “0”.

xvi. For (q5,q6),

ra = δ(q5,a) = q7 and sb = δ(q6,a) = q7 so next state pair (q7,q7)

rb = δ(q5,b) = q8 and sb = δ(q6,b) = q8, so next state pair (q8,q8)

It can be checked from the matrix that both of (q7,q7) and (q8,q8) are neither X nor x so

(q5,q6) is “0”.

 q0 q1 q2 q3 q4 q5 q6 q7 q8

q0 x X X x X X 0 0

q1 − X X 0 X X x x

q2 − − 0 X 0 0 X X

q3 − − − X 0 0 X X

q4 − − − − X X x x

q5 − − − − − 0 X X

q6 − − − − − − X X

q7 − − − − − − − 0

q8 − − − − − − − −

We are repeating Step 3 and we can find new marking for the following two cases only:

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

32

iii. For (q0,q7),

ra = δ(q0,a) = q1 and sa = δ(q7,a) = q7, so next state pair (q1,q7)

rb = δ(q0,b) = q4 and sb = δ(q7,b) = q7, so next state pair (q4,q7)

It can be checked from the matrix that (q1,q7) is now x

so (q0,q7) will be x instead of 0.

iv. For (q0,q8),

ra = δ(q0,a) = q1 and sa = δ(q8,a) = q8, so next state pair (q1,q8)

rb = δ(q0,b) = q4 and sb = δ(q8,b) = q8, so next state pair (q4,q8)

It can be checked from the matrix that (q1,q8) is now x

so (q0,q8) will be x instead of 0.

 q0 q1 q2 q3 q4 q5 q6 q7 q8

q0 x X X x X X x x

q1 − X X 0 X X x x

q2 − − 0 X 0 0 X X

q3 − − − X 0 0 X X

q4 − − − − X X x x

q5 − − − − − 0 X X

q6 − − − − − − X X

q7 − − − − − − − 0

q8 − − − − − − − −

Step 4:

The “0” at (x,y) means (x,y) belongs to a same class, so they make a single state.

So if resulting minimum machine is Ḿ = (Q, Σ, δ,́ q0́, F́)

Q́ = {{q0}, {q1,q4}, {q2,q3,q5,q6}, {q7,q8}}

F́ = {{q2,q3,q5,q6}}

q0́ = q0

Replacing q0 by A

Replacing q1 and q4 by B

Replacing q2, q3, q5 and q6 by C

Replacing q7 and q8 by D,

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

33

We get

 a b

A B B

B C C

*C D D

*C D D

B C C

*C D D

*C D D

D D D

D D D

In this particular transition table, a number of rows are redundant.

So the minimized DFA is as follows:

 a b

A B B

B C C

*C D D

D D D

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

34

MODULE 2: FINITE AUTOMATA WITH OUTPUT

LECTURE 1: MOORE MACHINE AND MEALY MACHINE

1. MOORE MACHINE AND MEALY MACHINE

1.1. MOORE MACHINE

Moore Machine can be represented as a 6-tuple structure:

M = (Q, Σ, Δ, δ, λ, q0)

where,

 Q is set of states of the system

 Σ is input alphabet of the system

 Δ is output alphabet of the system

 δ is transition function of the system defined as δ : Q × Σ → Q

 λ is output function of the system defined as λ : Q → Δ

 q0 is the initial or start state of the system

A Moore machine can be denoted by transition diagram or by transition table or by transition

function.

Let us take an example of a Moore machine

We can represent the above Moore machine by a transition table as follows:

PS
NS Output

z x=0 x=1

A B C 0

B A C 1

C B C 1

A/0 B/1

1

0

1

0
Figure 2.1: Transition Diagram of a

Moore machine M1
 C/1 0

0

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

35

We can represent Moore machine M1 by 6-tuple structure as follows:

Q = {A,B,C}

Σ = {0,1}

Δ = {0,1}

δ(A,0)=B δ(A,1)=C δ(B,0)=A δ(B,1)=C δ(C,0)=B δ(C,1)=C

λ(A) = 0 λ(B) = 1 λ(C) = 0

q0 = A

Processing an entire string by Moore machine:

For the input string 010, the transition of states is given by

A → B → C → B

 The output string is 0101.

 For the input string ε, the output is λ(A) = 0

1.2. MEALY MACHINE

Mealy Machine can be represented as a 6-tuple structure:

M = (Q, Σ, Δ, δ, λ, q0)

where,

 Q is set of states of the system

 Σ is input alphabet of the system

 Δ is output alphabet of the system

 δ is transition function of the system defined as δ : Q × Σ → Q

 λ is output function of the system defined as λ : Q × Σ → Δ

 q0 is the initial or start state of the system

A Moore machine can be denoted by transition diagram or by transition table or by transition

function.

Let us take an example of a Mealy machine

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

36

We can represent the above Mealy machine by a transition table as follows:

PS
NS, z

x=0 x=1

A A,0 B,1

B C,2 B,1

C A,0 B,1

We can represent Mealy machine M2 by 6-tuple structure as follows:

Q = {A,B,C}

Σ = {0,1}

Δ = {0,1,2}

δ(A,0)=A δ(A,1)=B δ(B,0)=C δ(B,1)=B δ(C,0)=A δ(C,1)=B

λ(A,0)=0 λ(A,1)=1 λ(B,0)=2 λ(B,1)=1 λ(C,0)=0 λ(C,1)=1

q0 = A

Processing an input string by Mealy machine:

 For the input string 101, the transition of states is given by

A → B → C → B

 The output string is 121

 For the input string ε, the output is ε

A B

0/2

1/1

Figure 2.1: Transition Diagram of a

Mealy machine M2

 C

0/0

0/0
1/1

1/1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

37

REMARKS:

 A finite automata can be converted into a Moore Machine by introducing Δ = {0,1} and

defining λ(q) = 1 if and only if q Є F and λ(q) = 0 if q does not belong to F.

 In case of a Moore machine if the input string is of length n, the output string is of length

n+1; whereas in case of a Mealy machine if the input string is of length n, the output

string is of also length n.

2. EQUIVALENCE OF MOORE MACHINE AND MEALY MACHINE

2.1. CONVERSION - MOORE MACHINE TO MEALY MACHIN

Let M = (Q, Σ, Δ, δ, λ, q0) be a given Moore machine, then M = (Q, Σ, Δ, δ, λ′, q0) is

Mealy machine equivalent to M where λ′ (q,a) = λ(δ(q,a))

Example:

 Let a Moore machine is given as follows:

PS
NS Output

z x=0 x=1

A A B 0

B C B 1

C A B 2

 Now to get equivalent Mealy machine, we proceed as follows:

 λ′ (A,0) = λ(δ(A,0)) = λ(A) = 0

λ′ (A,1) = λ(δ(A,1)) = λ(B) = 1

λ′ (B,0) = λ(δ(B,0)) = λ(C) = 2

 λ′ (B,1) = λ(δ(B,1)) = λ(B) = 1

 λ′ (C,0) = λ(δ(C,0)) = λ(A) = 0

 λ′ (C,1) = λ(δ(C,1)) = λ(B) = 1

 The equivalent Mealy machine is given as follows:

PS
NS, z

x=0 x=1

A A,0 B,1

B C,2 B,1

C A,0 B,1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

38

2.2. CONVERSION - MEALY MACHINE TO MOORE MACHINE

 Let us consider the following Mealy machine.

PS
NS, z

x=0 x=1

q1 q3,0 q2,0

q2 q1,1 q4,0

q3 q3,1 q1,1

q4 q4,1 q3,0

 We have to construct a Moore machine equivalent to that Mealy machine.

 We look into the next state column for any state, say qi, and determine the number of

different outputs associated with qi in that column.

 We split qi into several different states, the number of such states being equal to the

number of different outputs associated with qi. For example, in this problem, q1 is associated

with one output 1 and q2 is associated with one output 0. But, q3 is associated with two outputs 0

& 1 and q4 is associated with two outputs 0 & 1. So we split q3 into q30 and q31. Similarly, q4 is

split into q40 and q41. Now table given in the example can be reconstructed for the new states as

given by following table.

PS
NS, z

x=0 x=1

q1 q30,0 q2,0

q2 q1,1 q40,0

q30 q31,1 q1,1

q31 q31,1 q1,1

q40 q41,1 q30,0

q41 q41,1 q30,0

 The pair of states and outputs which gives the Moore machine can be rearranged as given

by following table.

PS
NS

z
x=0 x=1

q1 q30 q2 1

q2 q1 q40 0

q30 q31 q1 0

q31 q31 q1 1

q40 q41 q30 0

q41 q41 q30 1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

39

LECTURE 2: SIMPLIFICATION OF MEALY MACHINE

3. SIMPLIFICATION OF MEALY MACHINE

3.1. DISTINGUISHABLE STATES AND EQUIVALENT STATES OF A (MEALY)

MACHINE

Definitions of Distinguishable States and Equivalent States of a Machine:

 Two states q1 and q2 of machine M are distinguishable if and only if there exists at

least one finite input sequence, when applied to M, causes different output sequences,

depending on whether q1 and q2 is the initial state. The input sequence which distinguishes

these states is called a distinguishable sequence of the pair (q1 and q2). If there exists for pair

(q1,q2) a distinguishing sequence of length k, the states in (q1,q2) are said to be k-

distinguishable.

 As an example let us consider the pair (A,B) of machine M3, whose state table is shown

in following table.

PS
NS, z

x=0 x=1

A E,0 D,1

B F,0 D,0

C E,0 B,1

D F,0 B,0

E C,0 F,1

F B,0 C,0

The pair (A,B) is 1- distinguishable, since an input 1 applied to M3 when initially in A yields an

output 1, versus an output 0 when it is initially in B. On the other hand, the pair (A,E) is 3-

distinguishable, since there is no input sequence of length 2 which distinguishes A from E. The

only sequence of length 3 which is a distinguishing sequence for the pair (A,E) is X = 111, and

the output sequences corresponding to initial states A and E are 100 and 101, respectively. [We

can note that 1101 is also a sequence which distinguishes A from E, although it is not the

shortest such sequence. An all-zero sequence, on the other hand, will produce identical output

sequences independently of whether the initial state is A or E.]

 The concept of k-distinguishability leads directly to the definition of k-equivalence and

equivalence. States that are not k-distinguishable are said to be k-equivalent. For example,

states A and E of M3 are 2-equivanent (but they are not 3-equivalent). States which are k-

equivalent are also r-equivalent, for all r < k. states that are k-equivalent for all k are said to be

equivalent. Thus we arrive at the following definition.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

40

 Two States q1 and q2 of machine M are said to be equivalent if and only if, for every

possible input sequence, the same (i.e. identical) output sequence will be produced

regardless of whether q1 and q2 is the initial state. [This is normal Definition of equivalent

states of a machine.]

Definition of equivalence can be generalized to the case where q1 is a possible initial

state of in machine M1, while q2 is an initial state in machine M2, where both M1 and M2

have the same input alphabet.

If q1 and q2 are equivalent states, their corresponding x-successors for all x are

either the same or also equivalent.

Hence, we can say that two states q1 and q2 of machine M are said to be equivalent if

and only if they produce the same (i.e. identical) output for every possible input x, and

their x-successors, for all possible x, are either the same or also equivalent. [This is recursive

Definition of equivalent states of a machine.]

Procedure of finding Distinguishable States and Equivalent States of a Machine:

State equivalence is an equivalence relation and in consequence of this characteristic, the

set of states of the machine can be partitioned into disjoint subsets, known as equivalence

classes, so that two states are in the same equivalence class if and only if they are equivalent, and

are in different classes if and only if they are distinguishable.

The first step is to partition the states of machine M into subsets such that all states in the

same subset are 1-equivalent. This is accomplished by placing states having identical outputs

under all possible inputs in the same subset. Clearly, two states which are in different subsets are

1-distinguishable.

As an example, we consider machine M3 given in table. The first partition P0 corresponds

to 0-distinguishability, and it defines our initial “ignorance” regarding the response of the various

states, prior to the application of any input. P1 is obtained simply by inspecting the table and

placing those states having the same outputs, under all inputs, in the same block. Thus A,C,E are

in the same block, since their outputs under inputs 0 and 1 are 0 and 1, respectively. A similar

argument places B,D,F in the other block. Clearly, P1 establishes the subsets (or classes or

blocks) where states which are in a same or common subset are 1-equivalent but states which are

in two different subsets are 1-distinguishable.

The next step is to obtain the partition P2 where states which are in a same or common

subset are 2-equivalent but states which are in two different subsets are 2-distinguishable. This is

accomplished by observing that two states are 2-equivalent if and only if they are 1-

equivalent and their x-successors, for all possible x, are also same or 1-equivalent.

Consequently, two states are placed in the same (or common) block of P2 if and only if they are

in the same (or common) block of P1, as well as, for each possible x, their x-successors are also

contained in a same (or common) block of P1. This step is carried out by splitting blocks of P1

whenever their successors are NOT contained in a COMMON block of P1. The 0-successor of

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

41

(A,C,E) is (C,E) and 1- successors of (A,C,E) is (B,D,F), and since both (C,E) is contained

within a common block of P1 as well as (B,D,F) is contained within a common block of P1, the

states in the subset (A,C,E) are 2-equivalent; and therefore (A,C,E) constitutes a block or subset

in P2. The 1-successor of (B,D,F) is (D,B,C); but since (D,B) and (C) are NOT contained in a

single block of P1, the block (B,D,F) must be split into (B,D) and (F) to obtain P2.

In general, the Pk+1 partition is obtained from Pk by placing in the same (or common)

block of Pk+1 those states which are in the same (or common) block of Pk, as well as, for each

possible x, their x-successors are also contained in a same (or common) block of Pk.

 Two states are (k+1)-equivalent if and only if they are k-equivalent and their x-

successors, for all possible x, are also same or k-equivalent.

If for some k, Pk+1 = Pk the process terminates and Pk defines the sets of equivalent states

of the machine; that is, all states contained in a same block of Pk are equivalent, where states

belonging to different blocks are distinguishable. Pk is thus called the equivalence partition, and

the foregoing procedure is referred to as Moore reduction procedure. For machine M3, P3 is

equivalence partition, and therefore states A & C are equivalent, and so are states B & D.

P0 = {A,B,C,D,E,F}

P1 = {{A,C,E},{B,D,F}}

P2 = {{A,C,E},{B,D},{F}}

P3 = {{A,C},{E},{B,D},{F}}

P4 = {{A,C},{E},{B,D},{F}}

Equivalence partition for machine M3

3.2. Minimization of (Mealy) Machine

 If we denote the blocks of the equivalence partition P3 of M3 by α, β, γ and δ,

respectively, to (A,C), (E), (B,D) and (F), we obtain the minimized machine M1′

PS
NS, z

x=0 x=1

α β,0 γ,1

β α,0 δ,1

γ δ,0 γ,0

δ γ,0 α,0

Replacing α, β, γ and δ, respectively, by A, B, C and D, we get

PS
NS, z

x=0 x=1

A B,0 C,1

B A,0 D,1

C D,0 C,0

D C,0 A,0

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

42

LECTURE 3: SIMPLIFICATION INCOMPLETELY SPECIFIED

MACHINE

4. SIMPLIFICATION OF INCOMPLETELY SPECIFIED MACHINES:

Definition of Compatible States of a Machine:

Two States q1 and q2 of machine M are said to be compatible if and only if, for every

possible input sequence applicable to both q1 and q2, the same (i.e. identical) output

sequence will be produced whenever both outputs are specified and regardless of whether

q1 and q2 is the initial state. [This is normal Definition of compatible states of a machine.]

If q1 and q2 are compatible states, their corresponding x-successors for all x are

either the same or also compatible.

Hence, we can say that two states q1 and q2 of machine M are said to be compatible if

and only if they produce outputs which are not conflicting (i.e. same or identical when

specified) for every possible input x, and their x-successors, for all possible x, are either the

same or also compatible. [This is recursive Definition of compatible states of a machine.]

In general, three or more states, q1, q2, q3, . . . , are compatible if and only if , for

every possible applicable input sequence, no two conflicting output sequences will be

produced, without regard as to which of the above states is the initial states. Thus a set of

states (q1, q2, q3, . . .) is called a compatible if all its members are compatible.

A compatible Ci is said to be larger than, or to cover, another compatible Cj if and only if

every state contained in Cj is also contained in Ci. A compatible is maximal if it is not covered by

any other compatible. (Let us note that a single state that is not compatible with any other state is

a maximal compatible). Thus, if we find the set of all the maximal compatibles, that in effect is

equivalent to finding all compatibles, since every subset of a compatible is also a compatible.

Compatibility relation is not an equivalence relation. It thus follows that a set of states is

a compatible if and only if every pair of states in that set is compatible. For example states q1, q2,

q3 of a machine M will form the compatible (q1q2q3) if and only if (q1q2), (q1q3) and (q2q3) are

compatibles. While the equivalence partition consists of disjoint blocks, the subsets of

compatibles may be overlapped.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

43

The merger graph:

 It is desirable first to generate the entire set of compatibles, and then to select an

appropriate subset, which will form the basis for a state reduction leading to a minimal machine.

 Since a set of states is compatible if and only if every pair of states in that set is

compatible, it is sufficient to consider only pair of states and to use them to generate the entire

set. We shall refer to a compatible pair of states as a compatible pair. Let the x-successors of A

and B are C and D, respectively; then (AB) implies (CD), or (CD) is said to be implied by (AB).

Thus, if (AB) is a compatible pair, then (CD) is referred to as its implied pair. The merger graph

presented subsequently serves as the major tool in the determination of the set of all compatibles.

 The merger graph of an n-state machine M is an undirected graph defined as follows:

1. It consists of n vertices, each of which corresponds to a state of M.

2. For each pair of states (AB) in M whose next-states and output entries are not conflicting,

an undirected arc is drawn between vertices A and B.

3. If for a pair of states (AB) the corresponding outputs under all inputs are not conflicting,

but next-states are not the same, an interrupted arc is drawn between A and B, and the

implied pairs are entered in the space.

Let us consider a machine M4.

PS
NS, z

I1 I2 I3 I4

A − C,1 E,1 B,1

B E,0 − − −

C F,0 F,1 − −

D − − B,1 −

E − F,0 A,0 D,1

F C,0 − B,0 C,1

Its merger graph is shown in figure below:

 A

 B

 F (CE)

 (AB) (EF)

 (CD) (CF)

 C

 E (BE)

 D

Figure 2.1a: Merger graph for machine M4

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

44

 A

 B

 F

 C

 E

 D

Figure 2.1b: Modified or final merger graph for machine M4

For machine M4 the merger graph reveals the existence of nine compatible pairs:

(AB),(AC),(AD),(BC),(BD),(BE),(CD),(CF),(EF)

Moreover, since (AB), (AC) and (BC) are compatibles, then (ABC) is also a compatible, and so

on. In this manner the entire set of compatibles of M4 can be generated from its compatible

pairs.

In order to find a minimal set of compatibles, which covers the original machine and

can be used as a basis for the construction of a minimal machine, it is often useful to find the set

of maximal compatibles. [A compatible is maximal if it is not contained in any other

compatible.]

In terms of the merger graph, we are looking for complete polygons which are not

contained within any higher-order complete polygons. [A complete polygon is one in which all

possible diagonals exist.] Since the states covered by a complete polygon are all pair wise

compatible, they constitute a compatible; and if the polygon is not contained in ant higher-order

complete polygon, they constitute a maximal compatible.

In the figure of merger graph the set of highest-order polygons are the tetragon (ABCD)

and the arcs (CF), (BE) and (EF). Thus the following set of maximal compatibles for machine

M4 results:

{(ABCD),(BE),(CF),(EF)}

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

45

The closed sets of compatibles

 A set of compatibles (for machine M) is said to be closed if, for every compatible

contained in the set, all its implied compatibles are also contained in the set. A closed set of

compatibles which contains all the states of M is called a closed covering.

Examples (for Machine M4):

{(BE),(CF),(EF)} neither closed nor covering

{(AD),(BE),(CD)} closed but not covering

{(ABCD),(EF)} covering but not closed

{(ABCD),(BE),(CF),(EF)} closed and covering

{(AD),(BE),(CF)} {(AB),(CD),(EF)} minimal closed covering

Merger graph itself gives set of maximal compatibles which must implicitly be a closed

covering but not necessarily minimal.

Now, it is desirable to look for a closed covering which yields a simpler machine.

Unfortunately, there is no simple, precise procedure leading to the selection of the

minimal closed covering, and “trial-and-error” technique cannot be avoided

The preceding minimal closed coverings have been obtained by inspecting the merger

graph and employing a “trail-and-error” procedure.

It should be pointed out that NO straightforward systematic procedure to find a

minimal closed covering is known as yet, and a certain amount of search is unavoidable.

The compatibility graph

 Let us consider the machine M5.

PS
NS, z

I1 I2 I3 I4

A − − E,1 −

B C,0 A,1 B,0 −

C C,0 D,1 − A,0

D − E,1 B,− −

E B,0 − C,− B,0

 The merger graph is constructed in the usual manner. The set of maximal compatibles

derived from the merger graph contains four members and is given by

 {(ACD),(BC),(BE),(DE)}

 A

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

46

 (CE)

 E

 (BC) B

 (BC) (AE)

 (BE)

 (AD)

 D (BC)

 (DE) (AB)

 C

 Figure 2.2a: Merger graph for machine M5

 A

 E

 (BC) B

 (BC)

 (BE)

 (AD)

 D

 (DE)

 C

 Figure 2.2b: Modified or final merger graph for machine M5

The compatibility graph is a directed graph whose vertices correspond to all compatible

pairs, and an edge leads from vertex (AB) to vertex (CD) if and only if (AB) implies (CD). It is a

tool which aids in the search for a minimal closed covering.

The compatibility graph for machine M4 is shown in following figure.

 (AC)

 (AD)

 (BE)

 (BC) (CD)

 (DE)

 Figure 2.3: Compatibility graph for machine M5

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

47

A subgraph of a compatibility graph is said to be closed if, for every vertex in the

subgraph, all outgoing edges and their terminating vertices also belong to the subgraph. If, in

addition, every state of the machine is covered by at least one vertex of the subgraph, then the

subgraph forms a closed covering for that machine.

Examples (for Machine M5):

{(AD),(BE)} neither closed nor covering

{(AC)} closed but not covering

{(AD),(BE),(CD)} covering but not closed

{(DE), (BC), (AD), (BE)} closed and covering

{(BC), (AD), (BE)} minimal closed covering

The compatibility graph of above figure contains seven closed subgraphs [including (AC)

alone and the graph itself], six of which form closed coverings for M5.

Compatibility graph itself gives a closed covering but not necessarily minimal.

Now, it is desirable to look for a closed covering which yields a simpler machine.

 Unfortunately, there is no simple, precise procedure leading to the selection of the

minimal closed covering, and “trial-and-error” technique cannot be avoided

The preceding minimal closed coverings have been obtained by inspecting the

compatibility graph and employing a “trail-and-error” procedure.

It should be pointed out that NO straightforward systematic procedure to find a

minimal closed covering is known as yet, and a certain amount of search is unavoidable.

[Note: If a closed subgraph containing the compatible pairs (AB), (BC), (AC) has been

found, the compatible (ABC) can be formed, and so on.]

The triangle {(BC), (AD), (BE)} yields our desired minimal closed covering set, and

hence, minimal machine which covers M5.

PS
NS, z

I1 I2 I3 I4

(AD) → α − γ, 1 γ, 1 −

(BC) → β β,0 α,1 β/γ,0 α,0

(BE) → γ β,0 α,1 β,0 β/γ,0

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

48

LECTURE 4: LOSSLESS AND LOSSY MACHINE

5. Lossless and Lossy machine:

A machine M is said to be (information) lossless if the knowledge of the initial state, the

output sequence and the final state is sufficient to determine uniquely the input sequence.

A machine that is not lossless is called lossy. For example,

PS
NS, z

x=0 x=1

A A,0 B,0

B B,0 −

If the initial state is A, output sequence is 00 and the final state is B, the input sequence is

either 01 or 10.

A machine is said to be (information) lossless of finite order if the knowledge of the

initial state and the first µ output symbols is sufficient to determine uniquely the first input

symbol. The integer µ is called order of losslessness, if µ is the least integer satisfying the

above definition.

Test for Losslessness:

We have to test whether the following machine M6 is lossless or lossy.

PS
NS, z

x=0 x=1

A A,1 C,1

B E,0 B,1

C D,0 A,0

D C,0 B,0

E B,1 A,0

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

49

We have to form Testing table for this machine. The upper part of the testing table is

output-successor table. For lower part of the table, if at least one at the next entry is blank,

then blank will get priority, otherwise we have to form pair(s).

PS
NS

z=0 z=1

A − (AC)

B E B

C (AD) −

D (BC) −

E A B

AC − −

AD − −

BC (AE)(DE)

AE − (AB)(BC)

DE (AB)(AC) −

AB − (AB)(BC)

A machine is lossless if and only if its testing table does not contain any pair

consisting of repeated entry.

As the testing table of this machine does not contain any pair consisting of repeated entry,

this machine is lossless.

To find the order, we have to draw testing graph.

 1

 1

 0

 1

 1

 0 0

0

Figure 2.4: Testing Graph for machine M6

If testing graph contains at least one loop, then the machine is of infinite order.

As the testing graph of this machine contains loop, this machine is lossless of infinite

order.

AE

AD BC

AB

AC

DE

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

50

Theorem: A machine is lossless of finite order µ = l+2 if and only if its testing graph

is loop-free and the length of the largest path in the graph is l.

Example:

Let us consider the following Machine M7.

PS
NS, z

x=0 x=1

A A,0 B,0

B C,0 D,0

C D,1 C,1

D B,1 A,1

Testing table:

PS
NS

z=0 z=1

A (AB) −

B (CD) −

C − (CD)

D − (AB)

AB (AC)(AD)(BC)(BD) −

CD − (AC)(AD)(BC)(BD)

AC − −

AD − −

BC − −

BD − −

Testing graph:

 0 0

 0 0

 1 1 1 1

Figure 2.5: Testing Graph for machine M7

AB

AC

AD

BC

BD

CD

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

51

As l is 1, order µ = 1+2 = 3.

Retrieval of an input sequence (for a lossless machine):

Let us consider the following lossless machine:

PS
NS, z

x=0 x=1

A A,1 C,1

B E,0 B,1

C D,0 A,0

D C,0 B,0

E B,1 A,0

Let us assume the initial state is A, final state is B and output sequence is 110001100.

We have to find the corresponding unique input sequence.

Possible successors to initial state

 A A A A

 A A A B

A D B B D B

 C C D C

 E C C E

Output sequence 1 1 0 0 0 1 1 0 0

Possible predecessors to final state

 C B C

A A A A C D B

 D D E

The state sequence A A C D C A A C D B

Input sequence 0 1 0 0 1 0 1 0 1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

52

MODULE 3: REGULAR EXPRESSION

LECTURE 1: REGULAR EXPRESSION AND REGULAR SET

AND REGULAR LANGUAGE

1. REGULAR EXPRESSION

The regular expressions are useful for representing certain sets of strings in an algebraic

fashion. Actually regular expressions describe the languages accepted by finite state

automata.

We give a formal recursive definition of regular expressions over Σ as follows:

 Any terminal symbol a (i.e., a Є Σ), ε andΦ are regular expression

 The union of two regular expressions R1 and R2, denoted by R1+R2 is also a regular

expression.

 The concatenation of two regular expressions R1 and R2, denoted by R1R2 is also a

regular expression.

 The iteration (or closure) of a regular expression R, denoted by R* is also a regular

expression.

 If R is a regular expression, then (R) is also a regular expression.

 The regular expressions over Σ are precisely those obtained recursively by the

application of the above rules once or several times.

2. REGULAR SET AND REGULAR LANGUAGE

Any set represented by a regular expression is called a regular set.

Examples are as follows:

Regular Expression Regular Set

a {a}

a+b {a,b}

ab {ab}

a* {ε,a,aa,…}

(a+b)* {ε,a,b,aa,ab,ba,bb,aaa,…}

ab+ba {ab,ba}

For each regular expression r, we describe the language, it represents, which we denote as

L(r). This is regular language. Actually, regular set and regular language are often used

synonymously.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

53

3. IDENTITIES AND ALGEBRAIC LAWS IN REGULAR EXPRESSION

Let, P,Q and R are three regular expressions. Then

i. Φ+R = R+Φ = R

ii. ΦR = RΦ = Φ

iii. εR = Rε = R

iv. ε* = ε

v. Φ* = ε

vi. R+R = R

vii. R*R* = R*

viii. RR* = R*R = R+

ix. (R*)*= R*

x. ε+RR* = ε+R*R = ε+R+ =R*

xi. P+Q = Q+P

xii. PQ ≠ QP

xiii. (PQ)*P = P(QP)*

xiv. (P+Q)* = (P*+Q)* = (P+Q*)* = (P*+Q*)* = (P*Q*)* ≠ (PQ*)* ≠ (P*Q)*

xv. (P+Q)+R = P+(Q+R)

xvi. (PQ)R = P(QR)

xvii. P(Q+R) = PQ + PR and (Q+R)P=QP+RP

xviii. If R = Q+RP then R = QP* (Arden’s Theorem)

Proof of Arden’s Theorem:

R = Q + RP

 = Q + (Q + RP) P

 = Q + QP + RPP

 = Q + QP + (Q + RP) PP

 = Q + QP + QPP + RPPP

 = Q + QP + QPP + QPPP + …

 = Q (ε + P + PP + PPP + …)

 = QP* [proved]

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

54

LECTURE 2: REGULAR EXPRSSION TO FINITE AUTOMATA

4. CONSTRUCTION OF FINITE AUTOMATA FOR REGULAR EXPRSSION

If R is a regular expression over Σ representing regular language L, then there exists an NFA

M with ε-transitions such that M accepts L

Let L(R) denotes the set or language represented by R.

Basis:

There are three parts of the basis, shown in Figure 3.1.

In part (a) we see how to handle the regular expression R which is ε. The language of the

automation is easily seen to be L(R) = {ε}, since the only path from the start state to an

accepting state is labeled ε.

In part (b) we can see the construction for regular expression R which is Φ. Clearly there are

no paths from start state to accepting state, so L(R) = Φ is the language for this automation.

Finally, part (c) gives the automation for a regular expression R which is a where a Є Σ. The

language L(R) of this automation evidently consists of the one string a, which is also {a}.

 ε

 OR

Figure 3.1 (a): NFA M1 which accepts the regular language L = {ε}

 OR

Figure 3.1 (b): NFA M2 which accepts the regular language L = Φ

 a

Figure 3.1 (c): NFA M3 which accepts the regular language L = {a}

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

55

Induction:

The three parts of the induction are shown in Figure 3.2.

Case i:

The expression is R1+R2 for some smaller expressions R1 and R2. Then the automation of Figure

3.2(a) serves. That is, starting at the new start state, we can go to the start state of either the

automation for R1 or the automation for R2 through ε-arc. We then reach the accepting state of

one of these automata, following a path labeled by some string in L(R1) and L(R2), respectively.

Once we reach the accepting state of the automation for R1 or R2, we can follow one of the ε-arcs

to the accepting state of the new automation. Thus the language of the new automation in Figure

3.2(a) L(R1+R2) is L(R1)∪L(R2).

Case ii:

The expression is R1R2 for some smaller expressions R1 and R2. The automation for the

concatenation is shown in Figure 3.2(b). Let us note that the start state of the first automation

becomes the start state of the whole, and the accepting state of the second automation becomes

the accepting state of the whole. The idea is that the only paths from start to the accepting state

go first through the automation for R1, where it must follow a path labeled by a string in L(R1)

and then through the automation for R2, where it follows a path labeled by a string in L(R2).

Thus, the paths in the automation of Figure 3.2(b) are all and only those labeled by strings in

L(R1)L(R2). That is, L(R1+R2) = L(R1) L(R2).

Case iii:

The expression is R* for some smaller expression R. Then we use the automation of Figure

3.2(c). That automation allows us to go either

 Directly from the start state to the accepting state along a path labeled ε. That path lets us

accept ε, which is in L(R*) no matter what expression R is.

 To the start state of the automation for R, through that automation one or more times, and

then to the accepting state. This set of paths allows us to accept strings in L(R),

L(R)L(R), L(R)L(R)L(R), and so on, thus covering all strings in L(R*) except perhaps ε,

which was covered by the direct arc to the accepting state mentioned previously.

 NFA accepting L(R1)

 NFA accepting L(R2)

Figure 3.2 (a): NFA M4 which accepts the regular language L(R1+R2)

ε

ε

ε

ε

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

56

 NFA accepting L(R1) NFA accepting L(R2)

Figure 3.2 (b): NFA M5 which accepts the regular language L(R1R2)

Figure 3.2 (c): NFA M6 which accepts the regular language L(R1*)

Example:

 Let us convert the regular expression (0+1)*0 to an ε-NFA.

 Our first step is to construct automation for 0+1. We use two automata constructed

according to Figure 3.1(c), one with label 0 on the arc and one with label 1. These two automata

are then combined using the union construction of Figure 3.2(a). n. The result is shown in Figure

3.3(a).

 Next, we apply to Figure 3.3(a) the star construction of Figure 3.2(c). This automation is

shown in Figure 3.3(b).

 The last step involves applying the concatenation construction of Figure 3.2(b). We

connect the automation of Figure 3.3(b) to another automation designed to accept only the string

0. This automation is another application of the basis construction of Figure 3.1(c) with label 0

on the arc. Let us note that we must create a new automation to recognize 0; we must not use the

automation for 0 that was part of Figure 3.3(a). The complete automation is shown in Figure

3.3(c).

ε

ε

ε

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

57

(a)

(b)

,

(c)

Figure 3.3: ε-NFA constructed for regular expression (0+1)*0

ε

ε

ε

ε

0

1

ε

ε

ε

ε

0

1

ε ε

ε

ε

ε

ε

ε

ε

0

1

ε ε

ε

ε

ε 1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

58

LECTURE 3: FINITE AUTOMATA TO REGULAR EXPRSSION

5. CONSTRUCTION OF REGULAR EXPRESSION FROM DFA

There are certain assumptions which are made regarding the transition system:

(i) The transition diagram should not have ε-transitions.

(ii) It must have only a single initial state.

(iii) It vertices are q1, q2, …, qn.

(iv) qi is final state

(v) wij denotes the regular expression representing the set of labels of edges from qi to qj. We

can get the following set of equation in q1, q2, …, qn.

q1 = q1w11 +q2w21 + … + qnwn1 + ε (ε is added since q1 is the initial state)

q2 = q1w12 +q2w22 + … + qnwn2

 …

qn = q1w1n +q2w2n + … + qnwnn

We solve these equation for q1 in terms of wij’ s and it will be required regular expression. One

thing should be noted that we add ε (empty string) in the equation starts with starting state q1 and

we solve equation to find out qi (final state) in terms of wij’ s, it is one of the regular expression

for given deterministic finite automation.

Example:

Let us find the regular expression for the following DFA of Figure 3.4:

q3

q2

0
1

1

0

 q1

Figure 3.4: Transition Diagram of a

DFA M1

1

0

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

59

Solution:

Let us form the equations:

q1 = q10 + q30 + ε … (1)

q2 = q11 + q21 + q31 … (2)

 q3 = q20 … (3)

Now,

From (2),

q2 = q11 + q21 + q31

 = q11 + q21 + (q20)1 [From (3) replacing q3 by q20]

 = q11 + q21 + q201

 = q11 + q2(1+01)

 = q11(1+01)* [Applying Arden’s theorem which is if R = P+RP then R = QP*]

From (1),

q1 = q10 + q30 + ε

 = q10 + (q20)0 + ε [From (3) replacing q3 by q20]

 = q10 + (q11(1+01)*)00 + ε

 = q10 + q11(1+01)*00 + ε

 = ε (0 + 1(1+01)*00)*

 = (0 + 1(1+01)*00)*

So regular expression is (0 + 1(1+01)*00)*

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

60

LECTURE 4: PROPERTIES OF REGULAR EXPRSSION

6. PUMPING LEMMA

Theorem

Let L be a regular language. Then there exists a constant ‘c’ such that for every string w in L −

 |w| ≥ c

We can break w into three strings, w = xyz, such that −

 |y| > 0

 |xy| ≤ c

 For all k ≥ 0, the string xykz is also in L.

Applications of Pumping Lemma

Pumping Lemma is to be applied to show that certain languages are not regular. It should never

be used to show a language is regular.

 If L is regular, it satisfies Pumping Lemma.

 If L does not satisfy Pumping Lemma, it is non-regular.

Method to prove that a language L is not regular

At first, we have to assume that L is regular. So, the pumping lemma should hold for L. We use

the pumping lemma to obtain a contradiction −

 We select w such that |w| ≥ c

 We select y such that |y| ≥ 1

 We select x such that |xy| ≤ c

 We assign the remaining string to z.

 We select k such that the resulting string is not in L.

Hence L is not regular.

Problem

Prove that L = {aibi | i ≥ 0} is not regular.

Solution −

 At first, we assume that L is regular and n is the number of states.

 Let w = anbn. Thus |w| = 2n ≥ n.

 By pumping lemma, let w = xyz, where |xy| ≤ n.

 Let x = ap, y = aq, and z = arbn, where p + q + r = n, p ≠ 0, q ≠ 0, r ≠ 0. Thus |y| ≠ 0.

 Let k = 2. Then xy2z = apa2qarbn.

 Number of a’s = (p + 2q + r) = (p + q + r) + q = n + q

 Hence, xy2z = an+q bn. Since q ≠ 0, xy2z is not of the form anbn.

 Thus, xy2z is not in L. Hence L is not regular.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

61

7. CLOUSURE PROPERTIES

Regular languages are closed under the operation

i. Union

ii. Intersection

iii. Set Complement

iv. Set Difference

v. String Reversal

vi. Concatenation

vii. Star or Closure

Regular languages are NOT closed under the operation

i. Subset

EXAMPLES:

1. Design a Finite Automata (FA) that accepts set of all strings over Σ = {0,1} such that

every string ends with 00 (i.e. every string ends with consecutive two 0’s).

2. Design a Finite Automata (FA) that accepts set of all strings over Σ = {0,1} containing

exactly one 0.

q0 q1

0

1

 q2

Figure 3.5: DFA for example 1

0

1

0

1

q0 q2

0, 1

 q1

Figure 3.6: DFA for example 2

0

1

0

1

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

62

3. Design a Finite Automata (FA) that accepts set of all strings over Σ = {0,1} such that

number of 0’s is multiple of 3 (i.e. number of 0’s is divisible by 3).

4. Design a Finite Automata (FA) M that accepts the language L(M) = { w Є {a, b}* | w ends

in the substring ab}

5. Design a Finite Automata (FA) M that accepts the language L(M) = { 0m1n, m>=0,n<2}

q1 q2

1

 q0

Figure 3.7: DFA for example 3

0

1

0

1

0

q0 q1

b

 q2

Figure 3.8: DFA for example 4

a

b

a

b

a

 q1

1

0

 q0

Figure 3.9: FA for example 5

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

63

6. Design a Finite Automata (FA) M such that that accepts the regular set S = {ab,ba} over the

alphabet Σ = {a,b}.

7. Design a Finite Automata (FA) M such that that accepts the regular expression (0+1)*0 over

Σ = {0,1}.

8. Write the regular expression for the set of all strings over Σ = {0,1} such that every string

ends with 00 (i.e. every string ends with consecutive two 0’s).

(0+1)*00

9. Write the regular expression for the set of all strings over Σ = {0,1} such that every string

contains exactly one 0.

1*01*

10. Write the regular expression for the set of all strings over Σ = {0,1} such that number of 0’s

is multiple of 3 (i.e. number of 0’s is divisible by 3).

q0

a

 q3

Figure 3.10: FA for example 6

b q1

q2 b a

q0

0, 1

 q1

Figure 3.11: FA for example 7

0

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

64

(1*01*01*0)*

11. Write the regular expression for the language L = { w Є {a, b}* | w ends in the substring

ab}

(a+b)*ab

12. Write the regular expression ‘r’ over Σ = {0,1} such that L(r) = { 0m1n, m>3,n<4}

00000*(ε+1+11+111)

13. Write the regular expression for the set S = {ab,ba} over the alphabet Σ = {a,b}.

ab+ba

14. Write the regular expression ‘r’ over Σ = {0,1} for the following FA

 (0+1)*0

q0

0, 1

 q1

Figure 3.12

0

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

65

MODULE 4: GRAMMAR AND PUSH DOWN AUTOMATA

LECTURE 1: CONTEXT FREE GRAMMAR

DEFINITION:

A context-free grammar (CFG) consisting of a finite set of grammar rules is a quadruple (N, T,

P, S) where

 N is a set of non-terminal symbols.

 T is a set of terminals where N ∩ T =NULL.

 P is a set of rules, P: N → (N U T)*, i.e., the left-hand side of the production rule

P does have any right context or left context.

 S is the start symbol.

EXAMPLE:

1. The grammar ({A}, {a, b, c}, P, A), P : A → aA, A →abc.

2. The grammar ({S, a, b}, {a, b}, P, S), P: S → aSa, S → bSb, S →ε

3. The grammar ({S, F}, {0, 1}, P, S), P: S → 00S|11F, F → 00F |ε

DERIVATION TREE:

A derivation tree or parse tree is an ordered rooted tree that graphically represents the semantic

information a string derived from a context-free grammar.

REPRESENTATION TECHNIQUE:

i. Root vertex: Must be labeled by the start symbol.

ii. Vertex: Labeled by a non-terminal symbol.

iii. Leaves: Labeled by a terminal symbol or ε.

EXAMPLE:

If S → x1x2 …… xn is a production rule in a CFG, then the parse tree / derivation tree will be as

follows:

 ………..

FIG3.1: Derivation Tree for the production S → x1x2 …… xn

S

x1 x2 xn2

http://en.wikipedia.org/wiki/Tree_%28data_structure%29
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Context-free_grammar

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

66

Step 4:

X

X + X

a
X * X

a

DERIVATION OR YIELD OF A PARSE TREE:

The derivation or the yield of a parse tree is the final string obtained by concatenating the labels

of the leaves of the tree from left to right, ignoring the Nulls. However, if all the leaves are Null,

derivation is Null.

Example

Let a CFG {N,T,P,S} be

N = {S}, T = {a, b}, Starting symbol = S, P = S → SS | aSb | ε

One derivation from the above CFG is “abaabb”

S → SS → aSbS →abS → abaSb → abaaSbb → abaabb

 FIG 3. :

S

S S

a S b a S b

ε a S b

ε

Step 3:

X

X + X

a
X * X

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

67

Sentential Form and Partial Derivation Tree

A partial derivation tree is a sub-tree of a derivation tree/parse tree such that either all of its

children are in the sub-tree or none of them are in the sub-tree.

Example

If in any CFG the productions are:

S→AB, A → aaA | ε, B →Bb| ε the partial derivation tree can be the following:

If a partial derivation tree contains the root S, it is called a sentential form. The above sub-tree

is also in sentential form.

Leftmost and Rightmost Derivation of a String

Leftmost derivation - A leftmost derivation is obtained by applying production to the leftmost

variable in each step.

Rightmost derivation - A rightmost derivation is obtained by applying production to the

rightmost variable in each step.

Example

Let any set of production rules in a CFG be X → X+X | X*X |X| a

over an alphabet {a}.

The leftmost derivation for the string "a+a*a" may be:

X → X+X→ a+X→ a+ X*X →a+a*X→a+a*a

The stepwise derivation of the above string is shown as below

S

A B

Step 1:

X

X + X

Step 2:

X

X + X

a

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

68

The right most derivation for the above string "a+a*a" may be:

X → X*X→ X*a → X+X*a →X+a*a→a+a*a

The stepwise derivation of the above string is shown as below:

Step 5:

X

X + X

a
X * X

a a

Step 1:

X

X * X

Step 2:

X

X * X

a

Step 3:
X

X * X

X + X
a

Step 4:

X

X * X

X + X
a

a

Step 5: X

X * X

X + X
a

a a

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

69

LEFT AND RIGHT RECURSIVE GRAMMAR:

In a context-free grammar G, if there is a production in the form X → Xa where X is a non-

terminal and ‘a’ is a string of terminals, it is called a left recursive production. The grammar

having a left recursive production is called a left recursive grammar.

And if in a context-free grammar G, if there is a production is in the form X → aX where

X is a non-terminal and ‘a’ is a string of terminals, it is called a right recursive production. The

grammar having a right recursive production is called a right recursive grammar.

IfacontextfreegrammarGhasmorethanonederivationtreeforsomestringw∈L(G), it is called an

ambiguous grammar. There exist multiple right-most or left-most derivations for some string

generated from that grammar.

PROBLEM

Check whether the grammar G with production rules:

X → X+X | X*X |X| a is ambiguous or not.

Solution

Let’s find out the derivation tree for the string "a+a*a". It has two leftmost derivations.

Derivation 1: X → X+X→ a +X→ a+ X*X →a+a*X→ a+a*a

PARSE TREE 1:

Derivation2: X → X*X→X+X*X→ a+ X*X →a+a*X→a+a*a

PARSE TREE 2:

X

X + X

a
X * X

a a

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

70

Since there are two parse trees for a single string "a+a*a", the grammar G is ambiguous.

X

X * X

X + X
a

a a

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

71

LECTURE 2: MINIMIZATION OF CONTEXT FREE

GRAMMAR

CFG SIMPLIFICATION:

In a CFG, it may happen that all the production rules and symbols are not needed for the

derivation of strings. Besides, there may be some null productions and unit productions.

Elimination of these productions and symbols is called simplification of CFGs. Simplification

essentially comprises of the following steps:

 Reduction of CFG

 Removal of Unit Productions

 Removal of Null Productions

Reduction of CFG

CFGs are reduced in two phases:

Phase 1: Derivation of an equivalent grammar, G’, from the CFG, G, such that each variable

derives some terminal string.

Derivation Procedure:

Step1: Include all symbols, W1, that derives one terminal and initialize i=1.
Step2: Include all symbols, Wi+1, that derive Wi.
Step3: Increment i and repeat Step 2, until Wi+1 = Wi.
Step4: Include all production rules that have Wi in it.

Phase 2: Derivation of an equivalent grammar, G”, from the CFG, G’, such that each symbol

appears in a sentential form.

Derivation Procedure:

Step1: Include the start symbol in Y1and initialize i =1.
Step2: Include all symbols, Yi+1, that can be derived from Yi and include all production rules that

have been applied.

Step3: Increment i and repeat Step 2, until Yi+1 =Yi.
PROBLEM:

Find a reduced grammar equivalent to the grammar G, having production rules, P: S

AC | B, A a, C c | BC, E aA |e

Solution

Phase 1:

T= { a, c, e}

W1 = { A, C, E } from rules A a, C c and E aA

W2 = { A, C, E } U { S } from rule S AC
W3 = { A, C, E, S } U ϕ

Since W2 = W3, we can derive G’ as:
G’ = { { A, C, E, S }, { a, c, e }, P, {S}}

where P: S AC, A a, C c , E aA | e

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

72

Phase 2:

Y1 = { S }
Y2 = { S, A, C } from rule S AC
Y3 = { S, A, C, a, c } from rules A a and C c

Y4 = { S, A, C, a, c }
Since Y3 = Y4, we can derive G” as:
G” = { { A, C, S }, { a, c }, P, {S}}

where P: S AC, A a, C c

REMOVAL OF UNITPRODUCTIONS:

Any production rule in the form A → B where A, B ∈ Non-terminal is called unit production.

Removal Procedure:

Step1: To remove A→B, add production A→x to the grammar rule whenever B→x

occurs in the grammar. [x ∈ Terminal, x can be Null]

Step2: Delete A→B from the grammar.

Step3: Repeat from step 1 until all unit productions are removed

PROBLEM:

Remove unit production from the following:

S → XY, X → a, Y → Z | b, Z → M, M → N, N → a

Solution:

There are 3 unit productions in the grammar:

Y→Z, Z→M, and M →N

At first, we will remove M → N.

As N→a, we add M →a, and M →Nis removed. The production set becomes

S → XY, X → a, Y → Z | b, Z → M, M → a, N → a

Now we will remove Z → M.

As M →a, we add Z→a, and Z→M is removed. The production set becomes

S → XY, X → a, Y → Z | b, Z → a, M → a, N → a

Now we will remove Y → Z.

As Z→a, we add Y→a, and Y→Z is removed. The production set becomes

S → XY, X → a, Y → a | b, Z → a, M → a, N → a

Now Z, M, and N are unreachable, hence we can remove those. The final CFG is unit production

free:

S→XY, X→a, Y → a |b

Removal of Null Productions

In a CFG, a non-terminal symbol ‘A’ is a nullable variable if there is a production A → ϵ or there

is a derivation that starts at A and finally ends up with

ϵ: A →… →ϵ
Removal Procedure:

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

73

Step1 Find out nullable non-terminal variables which deriveϵ.

Step2 For each production A → a, construct all productions A → x where x is obtained from ‘a’

by removing one or multiple non-terminals from Step1.

Step3 Combine the original productions with the result of step 2 and remove ϵ- productions.

Problem

Remove null production from the following: S→ASA | aB | b, A → B, B → b | ϵ

Solution:

There are two nullable variables: A and B

At first, we will remove B → ϵ.

After removing B → ϵ, the production set becomes: S→ASA | aB | b | a, A → B| b | ϵ, B → b

Now we will remove A → ϵ.

After removing A → ϵ, the production set becomes:

S→ASA | aB | b | a | SA | AS|S, A →B|b, B → b This is the final production set

without null transition.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

74

LECTURE 3: NORMAL FORM OF CONTEXT FREE

GRAMMARS

NORMAL FORMS:

There are two normal forms for Context Free Grammar, given as follows:

 CHOMSKY NORMAL FORM (CNF)

 GREIBACH NORMAL FORM (GNF)

Definition of Chomsky Normal Form:

A CFG is in Chomsky Normal Form if the Productions are in the following forms:

 A →a

 A →BC

 S →ϵ

where A, B, and C are non-terminals and a is terminal.

Algorithm to Convert into Chomsky Normal Form:

Step1 If the start symbol S occurs on some right side, create a new start symbol S’ and a new

production S’ → S.

Step2 Remove Null productions. (Using the Null production removal algorithm discussed

earlier)

Step3 Remove unit productions. (Using the Unit production removal algorithm discussed

earlier)

Step4 Replace each production A → B1…Bn where n > 2 with A → B1C where C →B2…Bn.

Repeat this step for all productions having two or more symbols in the right side.

Step5 If the right side of any production is in the form A→ aB where a is a terminal and A, B

are

non-terminal, then the production is replaced by A→ XB and X→a.

Repeat this step for every production which is in the form A→aB.

EXAMPLE:

Convert the following CFG into CNF

S→ ASA|aB, A → B|S, B → b |ϵ

SOLUTIONS:

1. Since S appears in R.H.S, we add a new state S0 and S0→S is added to the production set

and it becomes:

S0→S, S→ ASA|aB, A → B|S, B → b |ϵ

2. Now we will remove the null productions: B→ϵ and A →ϵ

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

75

After removing B → ϵ, the production set becomes:

S0→S, S→ ASA | aB | a, A → B | S | ϵ, B → b After removing A → ϵ, the production set

becomes:

S0→S, S→ ASA | aB | a | AS | SA | S, A → B | S, B → b

3. Now we will remove the unit productions. After removing S→ S, the production set

becomes:

S0→S, S→ ASA | aB | a | AS | SA, A → B | S, B → b After removing S0→ S, the production set

becomes:

S0→ ASA | aB | a | AS| SA, S→ ASA | aB | a | AS | SA A → B|S, B →b

After removing A→ B, the production set becomes:

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA A → S | b

B → b

After removing A→ S, the production set becomes:

S0 → ASA | aB | a | AS| SA, S→ ASA | aB | a | AS | SA A → b |ASA | aB | a | AS | SA, B →b

4. Now we will find out more than two variables in the R.H.S

Here, S0→ ASA, S → ASA, A→ ASA violates two Non-terminals in R.H.S.
Hence we will apply step 4 and step 5 to get the following final production set which is in CNF:

S0→ AX | aB | a | AS | SA S→ AX | aB | a | AS | SA

A → b |AX | aB | a | AS | SA B → b

X→ SA

5. We have to change the productions S0→ aB, S→ aB, A→ aB And the final production

set becomes:

S0→ AX | YB | a | AS | SA S→ AX | YB | a | AS | SA

A → b |AX | YB | a | AS | SA B → b

X→ SA

Y → a

Definition of Greibach Normal Form:

A CFG is in Greibach Normal Form if the Productions are in the following forms: A → b

A → bD1…Dn S → ϵ

where A, D1,....,Dn are non-terminals and b is a terminal.

Algorithm to Convert a CFG into Greibach Normal Form:

Step1 If the start symbol S occurs on some right side, create a new start symbol

S’ and a new production S’ → S.

Step2 Remove Null productions. (Using the Null production removal algorithm discussed

earlier)

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

76

Step3 Remove unit productions. (Using the Unit production removal algorithm discussed

earlier)

Step4 Remove all direct and indirect left-recursion.

Step5 Do proper substitutions of productions to convert it into the proper form of GNF.

PROBLEM:

Convert the following CFG into CNF

S→ XY | Xn | p

X → mX | m

Y → Xn | o

SOLUTION:

Here, S does not appear on the right side of any production and there are no unit or null

productions in the production rule set. So, we can skip Step 1 to Step 3.

Step 4:

Now after replacing X in S → XY | Xo | p

With mX | m

we obtain

S → mXY | mY | mXo | mo | p.

And after replacing

X in Y→ Xn | o with the right side of

X → mX | m we obtain

Y→ mXn | mn | o.

Two new productions O→ o and P → p are added to the production set and then we came to the

final GNF as the following:

S → mXY | mY | mXC | mC | p X→ mX | m

Y→ mXD | mD | o O → o

P → p

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

77

LECTURE 4: PROPERTIES OF CONTEXT FREE GRAMMAR

PUMPING LEMMA FOR CFG:

Lemma:

If L is a context-free language, there is a pumping length p such that any string w ∈ L of length ≥

p can be written as w = uvxyz, where vy ≠ ε, |vxy| ≤ p, and for all i ≥ 0, uvixyiz ∈L.

Applications of Pumping Lemma

Pumping lemma is used to check whether a grammar is context free or not. Let us take an

example and show how it is checked.

Problem:

Find out whether the language L= {xnynzn | n ≥1} is context free or not.

Solution:

Let L is context free. Then, L must satisfy pumping lemma.

At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n. Break z into uvwxy,

where

|vwx|≤n and vx ≠ε.

Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are at least (n+1)

positions apart. There are two cases:

Case 1: vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would have to be in L, has

n 2s, but fewer than n 0s or 1s.

Case 2: vwx has no 0s. Here contradiction occurs.

Hence, L is not a context-free language.

CFL CLOSURE PROPERTY:

Context-free languages are closed under:

 Union

 Concatenation

 Kleen Star operation

Union

Let L1 and L2 be two context free languages. Then L1 L2 is also context free.
Example:
Let L1 = { anbn , n>0}. Corresponding grammar G1 will have P: S1 aAb|ab Let L2 = { cmdm , n≥0}.

Corresponding grammar G2 will have P: S2 cBb| ε Union of L1 and L2, L = L1 L2 = { anbn } { cmdm }

The corresponding grammar G will have the additional production S S1 | S2

CONCATENATION

If L1 and L2 are context free languages, then L1L2 is also context free.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

78

Example:

Union of the languages L1 and L2, L = L1L2 = { anbncmdm }
The corresponding grammar G will have the additional production S S1 S2

KLEENE STAR:

If L is a context free language, then L* is also context free.

Example:

Let L = { anbn , n≥0}. Corresponding grammar G will have P: S aAb| ε Kleen Star L1 = {

anbn }*
The corresponding grammar G1 will have additional productions S1 SS1 | ε
Context-free languages are not closed under:

Intersection : If L1 and L2 are context free languages, then L1 L2 is not necessarily context

free.

Intersection with Regular Language: If L1 is a regular language and L2 is a context free

language, then L1 L2 is a context free language.

Complement : If L1 is a context free language, then L1’ may not be context free.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

79

LECTURE 5: PUSH DOWN AUTOMATA

PUSH DOWN AUTOMATA:

INTRODUCTION:

As we have seen, Finite automata cannot recognize context free languages (e.g., {anbn | n≥1}). It

happens because of having finite memories. Whereas the recognition of a context free language

may require storing of an unbounded amount of information. For example when we scanning a

string from above mentioned language then our checking procedure will be of two folds:(i) All

the a’s must precede the occurrence of first b. (ii) total counting of the number of a’s must be

equal with the number of b’s. Since n is unbounded, this counting cannot be done with a finite

memory.

Hence we need a machine that can count without limit, and thus leading to a new class of

automata: Push Down Automata (PDA).

Before giving a

formal definition, let

us consider

component of Push

Down Automata and

the way it operates

depicted in figure 3.1

. Any pda has a read

only input tape, an

input alphabet, a

finite state control, a

set of final states,

and an initial state as

in the case of a finite automata. In addition to these it has a stack called the pushdown store

(PDS). It is a read-write push down store as we add elements to PDS or remove elements from

PDS. A finite automaton being present in some state and on reading an input symbol either

moves to a new state or remains in the same state. Similarly the pda being present in a state and

after reading an input symbol and the topmost symbol in pds it moves either to a new state or

remains on the same state and writes (add) some symbols in push down store.

Formally a pda can be represented by a 7-tuple as follows: (Q,∑,Γ ,δ, q0, Z0 ,F)

Where,

i. Q is a finite non-empty set of states,

ii. ∑is a finite non-empty set of symbols,

iii. Γ is a finite non-empty set of push down symbols,

iv. q0is the initial state,

v. F is a set of final set which is a subset of Q,

vi. Z0 is a special push down symbol called the initial symbol on the push down store.

vii. δis the transition function from Q ×(∑U {Ʌ}) ×Γ to the finite subset of Q ×Γ*.

Figure 3.1: Block diagram of Push down Automata

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

80

The steps to write moves of PDA:

a) To PUSH a symbol onto the STACK:

δ(q0, a, Z0) = {q0, aZ0}

The above line is required to store ‘a’ in empty pds.

b) To POP a symbol from the STACK:

δ(q0, b, a) = { q1, Ʌ}

when we received an input ‘b’ in state q0and stack top element contain ‘a’ then our pda

will change from state q0 to q1 using the above rule.

c) Ʌ-Moves:

δ(q0,Ʌ , Z0) = {q0, Ʌ}

Instantaneous Description:

In case of finite automata, it is enough to specify the current state at any time and the remaining

input string to be processed. But in case of pda as we have one additional structure namely pds,

we have to specify the current state, the remaining input string to be processed and the symbol in

the pds.

Thus introducing the next definition:

 Let A= (Q,∑,Γ ,δ, q0, Z0 ,F) be a pda. An ID is (q, x, α) where q ϵ Q , x ϵ ∑* and α ϵ Γ*.

Ex: (q1, abaab , bbZ0) is an ID.

Initial ID:

(q0, x, Z0) is called the initial ID. Here x is any input string to be processed and x can be empty

(Ʌ). If it is Ʌ then it is called Ʌ-Moves.

Ex 1. Design a PDA for the language L={anbn | n≥1}accepted by push down store.

The pda is defined as follows:

 A=({q0,q1}, {a,b}, {a, Z0},δ,q0,Z0, F)

 where F=ϕ and

δ is defined as follows:

R1: δ(q0, a, Z0) = {q0, aZ0} // R1 is required to store ‘a’ in empty pds.

R2: δ(q0, a, a) = {q0, aa} // R2 is required to store ‘an’ in pds.

R3: δ(q0, b, a) = {q1, Ʌ} // when we encounter first ‘b’ in q0 then our pda will

 change from state q0 to q1 using R3.

R4: δ(q1, b, a) = {q1, Ʌ} // In state q1 if we encounter b’s then we need to pop

 ‘a’ using rule R4.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

81

R5: δ(q1,Ʌ , Z0)= {q1, Ʌ} // After processing whole input string to erase Z0 we

 need rule R5.

Let consider one input string w=aaabbb ,and check whether the rules are working properly or

not.

PROCESSED

INPUT

UNREAD

INPUT

STACK

CONTENT

STATE RULE USED

-- aaabbb Z0 q0 --

a aabbb aZ0 q0 R1

a abbb aaZ0 q0 R2

a bbb aaaZ0 q0 R2

b bb aaZ0 q1 R3

b b aZ0 q1 R4

b Ʌ Z0 q1 R4

Ʌ Ʌ Ʌ q1 R5

Conversion of PDA from given CFG :

Theorem: If L is a context-free language, then we can construct a pda A accepting L by empty

store, i.e. L=N(A).

Construction of A is defined as follows:

Ex1: Construct a PDA ‘A’ equivalent to the following CFG: {SOBB, B0S/1S/0}

Define pda A as follows:

 A= ({q}, {0,1}, {S,B,0,1},δ, q, S, ϕ)

Where, δ is defined as the following rules:

R1: δ(q, Ʌ,S) = {q, 0BB}

 R2: δ(q, Ʌ, B) = {(q, 0S) , (q,1S), (q,0)}

 R3: δ(q, 0, 0) = {(q, Ʌ)}

 R4: δ(q, 1, 1) = {(q, Ʌ) }

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

82

MODULE 5: TURING MACHINE

LECTURE 1: INTRODUCTION TO TURING MACHINE

INTRODUCTION:

A Turing Machine is an accepting device which accepts the languages (recursively enumerable

set) generated by type 0 grammars. It was invented in 1936 by Alan Turing.

A Turing Machine (TM) is a mathematical model which consists of an infinite length tape

dividedintocellsonwhichinputisgiven.Itconsistsofaheadwhichreadstheinputtape. A state register

stores the state of the Turing machine. After reading an input symbol, it is replaced with another

symbol, its internal state is changed, and it moves from one cell to the right or left. If the TM

reaches the final state, the input string is accepted, otherwise rejected.

FORMAL DEFINITION:

A TM can be formally described as a 7-tuple (Q, X, Σ, δ, q0, B, F) where:

 Q is a finite set of states

 X is the tape alphabet

 Σ is the input alphabet

 δ is a transition function; δ : Q × X → Q × X × {Left_shift,Right_shift}.

 q0is the initial state

 B is the blank symbol

 F is the set of final states

ACCEPTED LANGUAGE AND DECIDED LANGUAGE:

A TM accepts a language if it enters into a final state for any input string w. A language is

recursively enumerable (generated by Type-0 grammar) if it is accepted by a Turing machine.

A TM decides a language if it accepts it and enters into a rejecting state for any input not in the

language. A language is recursive if it is decided by a Turing machine.

There may be some cases where a TM does not stop. Such TM accepts the language, but it does

not decide it.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

83

LECTURE 2: DESIGN PROCEDURE OF A TURING MACHINE

DESIGN PROCEDURE OF A TURING MACHINE

The basic guidelines of designing a Turing machine have been explained below with the help of a

couple of examples.

EXAMPLE I:

Design a TM to recognize all strings consisting of an odd number of α’s.

SOLUTION:

The Turing machine M can be constructed by the following moves:

Let q1be the initial state.
If M is in q1; on scanning α, it enters the state q2and writes B(blank).

If M is in q2; on scanning α, it enters the state q1and writes B(blank).

From the above moves, we can see that M enters the state q1if it scans an even number of α’s,

and it enters the state q2 if it scans an odd number of α’s. Hence q2 is the only accepting state.

Hence,

M = {{q1, q2}, {1}, {1, B}, δ, q1, B, {q2}}

where δ is given by:

Tape alphabet

symbol
Present State ‘q1’ Present State ‘q2’

α BRq2 BRq1

TABLE 4.1: TRANSITION TABLE

EXAMPLE II:

Design a Turing Machine that reads a string representing a binary number and erases all leading

0’s in the string. However, if the string comprises of only 0’s, it keeps one 0.

SOLUTION:

Let us assume that the input string is terminated by a blank symbol, B, at each end of the string.

The Turing Machine, M, can be constructed by the following moves:

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

84

Let q0be the initial state.

If M is in q0, on reading 0, it moves right, enters the state q1and erases 0. On reading 1, it enters

the state q2and moves right.

If M is in q1, on reading 0, it moves right and erases 0, i.e., it replaces 0’s by B’s. On reaching

the leftmost 1, it enters q2and moves right. If it reaches B, i.e., the string comprises of only 0’s, it

moves left and enters the stateq3.

If M is in q2, on reading either 0 or 1, it moves right. On reaching B, it moves left

andentersthestateq4.Thisvalidatesthatthestringcomprisesonlyof0’sand1’s.

If M is in q3, it replaces B by 0, moves left and reaches the final state qf.

If M is in q4, on reading either 0 or 1, it moves left. On reaching the beginning of the string, i.e.,

when it reads B, it reaches the final state qf.

Hence,

M = {{q0, q1, q2, q3, q4, qf}, {0,1, B}, {1, B}, δ, q0, B, {qf}}

where δ is given by(in table 4.2):

Tape

alphabet

symbol

Present

State ‘q0’

Present

State ‘q1’

Present

State ‘q2’

Present

State ‘q3’

Present

State ‘q4’

0 BRq1 BRq1 0Rq2 - 0Lq4

1 1Rq2 1Rq2 1Rq2 - 1Lq4

B BRq1 BLq3 BLq4 0Lqf BRqf

 TABLE 4.2: TRANSITION TABLE

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

85

LECTURE 3: CHURCH TURING HYPOTHESIS

CHURCH TURING HYPOTHESIS:

The Church-Turing thesis (formerly commonly known simply as Church's thesis) says that any

real-world computation can be translated into an equivalent computation involving a Turing

machine. In Church's original formulation (Church 1935, 1936), the thesis says that real-world

calculation can be done using the lambda calculus, which is equivalent to using general recursive

functions.

The Church-Turing thesis encompasses more kinds of computations than those originally

envisioned, such as those involving cellular automata, combinators, register machines, and

substitution systems. It also applies to other kinds of computations found in theoretical computer

science such as quantum computing and probabilistic computing.

There are conflicting points of view about the Church-Turing thesis. One says that it can be

proven, and the other says that it serves as a definition for computation. There has never been a

proof, but the evidence for its validity comes from the fact that every realistic model of

computation, yet discovered, has been shown to be equivalent. If there were a device which

could answer questions beyond those that a Turing machine can answer, then it would be called

an oracle.

Some computational models are more efficient, in terms of computation time and memory, for

different tasks. For example, it is suspected that quantum computers can perform many common

tasks with lower time complexity, compared to modern computers, in the sense that for large

enough versions of these problems, a quantum computer would solve the problem faster than an

ordinary computer. In contrast, there exist questions, such as the halting problem, which an

ordinary computer cannot answer, and according to the Church-Turing thesis, no other

computational device can answer such a question.

The Church-Turing thesis has been extended to a proposition about the processes in the natural

world by Stephen Wolfram in his principle of computational equivalence (Wolfram 2002), which

also claims that there are only a small number of intermediate levels of computing power before

a system is universal and that most natural systems are universal.

http://mathworld.wolfram.com/Computation.html
http://mathworld.wolfram.com/TuringMachine.html
http://mathworld.wolfram.com/TuringMachine.html
http://mathworld.wolfram.com/LambdaCalculus.html
http://mathworld.wolfram.com/GeneralRecursiveFunction.html
http://mathworld.wolfram.com/GeneralRecursiveFunction.html
http://mathworld.wolfram.com/Computation.html
http://mathworld.wolfram.com/CellularAutomaton.html
http://mathworld.wolfram.com/Combinator.html
http://mathworld.wolfram.com/RegisterMachine.html
http://mathworld.wolfram.com/SubstitutionSystem.html
http://mathworld.wolfram.com/TuringMachine.html
http://mathworld.wolfram.com/Oracle.html
http://mathworld.wolfram.com/ComputationTime.html
http://mathworld.wolfram.com/TimeComplexity.html
http://mathworld.wolfram.com/HaltingProblem.html
http://mathworld.wolfram.com/PrincipleofComputationalEquivalence.html
http://mathworld.wolfram.com/Universality.html

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

86

End

Left End Marker Right End Marker

LECTURE 4: TYPES OF TURING MACHINE

TYPES OF TURING MACHINE

LINEAR BOUNDED AUTOMATA:

Alinearboundedautomatonisamulti-tracknon-

deterministicTuringmachinewithatape of some bounded finite length.

Length = function (Length of the initial input string, constant c)

Here,

Memory information ≤ c × Input information

The computation is restricted to the constant bounded area. The input alphabet contains two

special symbols which serve as left end markers and right end markers which mean the

transitions neither move to the left of the left end marker nor to the right of the right end marker

of the tape.

FORMAL DEFINITION:

A linear bounded automaton can be defined as an 8-tuple (Q, X, Σ, q0, ML, MR, δ, F) where:

 Q is a finite set of states

 X is the tape alphabet

 Σ is the input alphabet

 q0is the initial state

 ML is the left end marker

 MR is the right end marker where MR≠ML

δ is a transition function which maps each pair (state, tape symbol) to (state, tape symbol,

Constant ‘c’) where c can be 0 or +1 or-1

F is the set of final states

End

 FIG 4.1: LINEAR BOUNDED AUTOMATA

A deterministic linear bounded automaton is always context-sensitive and the linear bounded

automaton with empty language is undecidable.

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

87

MULTI TAPE TURING MACHINE

Multi-tape Turing Machines have multiple tapes where each tape is accessed with a separate

head. Each head can move independently of the other heads. Initially the input is on tape 1 and

others are blank. At first, the first tape is occupied by the input and the other tapes are kept blank.

Next, the machine reads consecutive symbols under its heads and the TM prints a symbol on

each tape and moves its heads.

 FIG 4.2: MULTI TAPE TURING MACHINE

and the TM prints a symbol on each tape and moves its heads.

A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B, δ,

q0, F) where:

 Q is a finite set of states

 X is the tape alphabet

 B is the blank symbol

 δ is a relation on states and symbols where

δ: Q ×Xk →Q× (X× {Left_shift, Right_shift, No_shift })k where there is

k number of tapes

 q0is the initial state
 F is the set of final states

Online Courseware for B.Tech. Computer Science and Engineering Program (Autonomy)

Paper Name: Formal Languages and Automata Theory

Paper Code: CS403

88

LECTURE 5: TURING MACHINE HALTING PROBLEM

TURING MACHINE HALTING PROBLEM:

Input: A Turing machine and an input string w.

Problem: Does the Turing machine finish computing of the string w in a finite number of steps?

The answer must be either yes or no.

Proof: At first, we will assume that such a Turing machine exists to solve this problem and then

we will show it is contradicting itself. We will call this Turing machine as a Halting machine

that produces a ‘yes’ or ‘no’ in a finite amount of time. If the halting machine finishes in a finite

amount of time, the output comes as ‘yes’, otherwise as ‘no’. The following is the block diagram

of a Halting machine:

 FIG 4.3: BLOCK DIAGRAM OF HALTING MACHINE

Now we will design an inverted halting machine (HM)’ as:

If H returns YES, then loop forever.

If H returns NO, then halt.

The following is the block diagram of an ‘Inverted halting machine’:

FIG 4.4: INVERTED HALTING MACHINE

Further, a machine (HM)2 which input itself is constructed as follows:

 If (HM)2 halts on input, loop for ever.
 Else, halt.

Here, we have got a contradiction. Hence, the halting problem is undecidable.

Halting

Machine

Input

string

Yes (HM halts on input w)

No (HM does not halt on inputw)

Halting

Machine

Infinite loop

Yes
Qi Qj

Input

string No

	Theorem
	Applications of Pumping Lemma
	Method to prove that a language L is not regular
	PARSE TREE 2:

