
Paper Name: Operating System
Paper Code: CS502
Contact Hours/Week: 3
Credit: 3
Total Contact Hours: 32L

Objective(s)

1. To understand the services provided by and the design of an operating system.
2. To understand the structure and organization of the file system.
3. To understand what a process is and how processes are synchronized and scheduled.
4. To understand different approaches to memory management.
5. Students should be able to use system calls for managing processes, memory and the file

system.
6. Students should understand the data structures and algorithms used to implement an OS.

Outcome(s)
1. Describe how computing resources (such as CPU, memory and I/O) are managed by the
operating system.
2. Analyze kernel and user mode in an operating system.
3. Solve different CPU scheduling problem to achieve specific scheduling criteria.
4. Apply the knowledge of process management, synchronization, deadlock to solve basic
problems.
5. Evaluate and report appropriate design choices when solving real-world problems
Prerequisites:

1. Computer organization
2. Computer Architecture
3. Data Structures
4. Algorithms & Programming Concept

Module – 1: [3L]

Functionalities of Operating System, Evolution of Operating System.
Types of Operating System: batch, multi-programmed, time-sharing, real-time, distributed, parallel,
Structural overview, Protection & Security. [3L]

Module – 2: [9L]

Processes: Concept of processes, process states, PCB, process scheduling, co-operating processes,
independent process, suspended process, Interaction between processes and OS, Inter-process
communication: Message passing. [2L]
Threads: overview, benefits of threads, user and kernel level threads, Thread models.
[2L]
CPU scheduling: scheduling criteria, preemptive & non-preemptive scheduling, scheduling
algorithms (FCFS, SJF, SRTF, RR, priority, multilevel queue, multilevel feedback queue
scheduling). [5L]

Module – 3: [9L]

Process Synchronization: background, critical section problem, synchronization hardware,
classical problems of synchronization(producer-consumer, readers-writer, dining philosophers,
etc), semaphores, monitors.
[5L]

Deadlocks: deadlock characterization, methods for handling deadlocks, deadlock prevention,
deadlock avoidance, deadlock detection, recovery from deadlock.
[4L]

Module – 4: [6L]

Background, logical vs. physical address space, swapping, contiguous memory allocation, paging,
Segmentation, TLB. [3L]

Virtual Memory: background, demand paging, page replacement algorithms (FCFS, LRU, Optimal),
thrashing, Working set model. [3L]

Module – 5: [5L]

Disk structure, disk scheduling (FCFS, SSTF, SCAN,C-SCAN,LOOK,C-LOOK etc),disk
reliability, disk formatting, boot block, bad blocks. [2L]

File: File concept, access methods, directory structure, file system structure, UNIX file
structure, allocation methods (contiguous, linked, indexed), free-space management (bit vector).
[2L]
I/O: I/O hardware, polling, interrupts, DMA, caching, buffering, blocking-non blocking I/O.
[1L]

Text Book:
1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts.
2. Operating Systems & Systems Programming by P Balakrishna Prasad

Reference Book:
1. Dietel H. N., “An Introduction to Operating Systems”, Addison Wesley.
2. Andrew Tanenbaum, Modern Operating Systems, Prentice Hall.
3. William Stallings, Operating Systems, Prentice Hall.

Lesson Plan for B.Tech Computer Science and Engineering Programme(Autonomy)
Paper Name: Operating System
Paper Code: CS502
Contact Hours/Week: 3
Credit: 3
Total Contact Hours: 36L
Module
No.

Course Content Lecture
Required

Reference / Text
Books

1 Functionalities of Operating System,
Evolution of Operating System.
Types of Operating System: batch,
multi-programmed, time-sharing, real-
time, distributed, parallel, Structural
overview, Protection & Security. [3L]

3L

Text Book:
1.Abraham
Silberschatz, Peter B.
Galvin, Greg Gagne,
Operating System
Concepts.
2.Operating Systems &
Systems Programming
by P Balakrishna
Prasad

 Reference Book:
1. Dietel H. N., “An

Introduction to
Operating Systems”,

Addison Wesley.
2.Andrew Tanenbaum,
Modern Operating
Systems, Prentice Hall.

2 Module – 2: [9L]

Processes: Concept of processes,
process states, PCB, process
scheduling, co-operating processes,
independent process, suspended
process, Interaction between processes
and OS, Inter-process communication:
Message passing. [2L]
Threads: overview, benefits of threads,
user and kernel level threads, Thread
models. [2L]
CPU scheduling: scheduling criteria,
preemptive & non-preemptive
scheduling, scheduling algorithms
(FCFS, SJF, SRTF, RR, priority,
multilevel queue, multilevel feedback
queue scheduling).
[5L]

9L

Text Book:
1.Abraham
Silberschatz, Peter B.
Galvin, Greg Gagne,
Operating System
Concepts.
2.Operating Systems &
Systems Programming
by P Balakrishna
Prasad

Reference Book:
1.William Stallings,
Operating Systems,
Prentice Hall.

3 Module – 3: [9L]

Text Book:
1.Abraham

Process Synchronization: background,
critical section problem,
synchronization hardware, classical
problems of synchronization(producer-
consumer, readers-writer, dining
philosophers, etc), semaphores,
monitors.

[5L]

Deadlocks: deadlock characterization,
methods for handling deadlocks,
deadlock prevention, deadlock
avoidance, deadlock detection, recovery
from deadlock.
[4L]

9L Silberschatz, Peter B.
Galvin, Greg Gagne,
Operating System
Concepts.
2.Operating Systems &
Systems Programming
by P Balakrishna
Prasad

Reference Book:
1. Dietel H. N., “An

Introduction to
Operating Systems”,

Addison Wesley.

2.William Stallings,
Operating Systems,
Prentice Hall.

4 Module – 4: [6L]

Background, logical vs. physical address
space, swapping, contiguous memory
allocation, paging, Segmentation, TLB.
 [3L]

Virtual Memory: background, demand
paging, page replacement algorithms
(FCFS, LRU, Optimal), thrashing, Working
set model. [3L]

 6L

Text Book:
1.Abraham
Silberschatz, Peter B.
Galvin, Greg Gagne,
Operating System
Concepts.
2.Operating Systems &
Systems Programming
by P Balakrishna
Prasad

Reference Book:
1.Andrew Tanenbaum,
Modern Operating
Systems, Prentice Hall.
2.William Stallings,
Operating Systems,
Prentice Hall.

5 Module – 5: [5L]

Disk structure, disk scheduling (FCFS,
SSTF, SCAN,C-SCAN,LOOK,C-
LOOK etc),disk reliability, disk
formatting, boot block, bad blocks.
[2L]

File: File concept, access methods,

 5L

Text Book:
1.Abraham
Silberschatz, Peter B.
Galvin, Greg Gagne,
Operating System
Concepts.
2.Operating Systems &
Systems Programming
by P Balakrishna
Prasad

directory structure, file system
structure, UNIX file structure,
allocation methods (contiguous,
linked, indexed), free-space
management (bit vector).
[2L]
I/O: I/O hardware, polling, interrupts,
DMA, caching, buffering, blocking-non
blocking I/O. [1L]

1.Andrew Tanenbaum,
Modern Operating
Systems, Prentice Hall.
2.William Stallings,
Operating Systems,
Prentice Hall.

MODULE 1

OVERVIEW

LECTURE: 1

Introduction to Operating Systems
A computer system has many resources (hardware and software), which may be require to
complete a task. The commonly required resources are input/output devices, memory, file storage
space, CPU etc. The operating system acts as a manager of the above resources and allocates them
to specific programs and users, whenever necessary to perform a particular task. Therefore
operating system is the resource manager i.e. it can manage the resource of a computer system
internally. The resources are processor, memory, files, and I/O devices. In simple terms, an
operating system is the interface between the user and the machine.

 Fig 1.1

Two Views of Operating System

1. User's View

2. System View

Operating System: User View
The user view of the computer refers to the interface being used. Such systems are designed for one
user to monopolize its resources, to maximize the work that the user is performing. In these cases,
the operating system is designed mostly for ease of use, with some attention paid to performance,
and none paid to resource utilization.

Operating System: System View
Operating system can be viewed as a resource allocator also. A computer system consists of many
resources like - hardware and software - that must be managed efficiently. The operating system
acts as the manager of the resources, decides between conflicting requests, controls execution of
programs etc.

Operating System Management Tasks

1. Processor management which involves putting the tasks into order and pairing them into

manageable size before they go to the CPU.

2. Memory management which coordinates data to and from RAM (random-access memory)

and determines the necessity for virtual memory.

3. Device management which provides interface between connected devices.

4. Storage management which directs permanent data storage.

5. Application which allows standard communication between software and your computer.

6. User interface which allows you to communicate with your computer.

Functions of Operating System

1. It boots the computer

2. It performs basic computer tasks e.g. managing the various peripheral devices e.g. mouse,

keyboard

3. It provides a user interface, e.g. command line, graphical user interface (GUI)

4. It handles system resources such as computer's memory and sharing of the central processing

unit(CPU) time by various applications or peripheral devices.

5. It provides file management which refers to the way that the operating system manipulates,

stores, retrieves and saves data.

6. Error Handling is done by the operating system. It takes preventive measures whenever

required to avoid errors.

Evolution of Operating Systems
The evolution of operating systems is directly dependent on the development of computer systems
and how users use them. Here is a quick tour of computing systems through the past fifty years in
the timeline.

Early Evolution

• 1945: ENIAC, Moore School of Engineering, University of Pennsylvania.

• 1949: EDSAC and EDVAC

• 1949: BINAC - a successor to the ENIAC

• 1951: UNIVAC by Remington

• 1952: IBM 701

• 1956: The interrupt

• 1954-1957: FORTRAN was developed

Operating Systems - Late 1950s
By the late 1950s Operating systems were well improved and started supporting following usages:

• It was able to perform Single stream batch processing.

• It could use Common, standardized, input/output routines for device access.

• Program transition capabilities to reduce the overhead of starting a new job was added.

• Error recovery to clean up after a job terminated abnormally was added.

• Job control languages that allowed users to specify the job definition and resource requirements

were made possible.

Operating Systems - In 1960s

• 1961: The dawn of minicomputers

• 1962: Compatible Time-Sharing System (CTSS) from MIT

• 1963: Burroughs Master Control Program (MCP) for the B5000 system

• 1964: IBM System/360

• 1960s: Disks became mainstream

• 1966: Minicomputers got cheaper, more powerful, and really useful.

• 1967-1968: Mouse was invented.

• 1964 and onward: Multics

• 1969: The UNIX Time-Sharing System from Bell Telephone Laboratories.

Supported OS Features by 1970s

• Multi User and Multi tasking was introduced.

• Dynamic address translation hardware and Virtual machines came into picture.

• Modular architectures came into existence.

• Personal, interactive systems came into existence.

Accomplishments after 1970

• 1971: Intel announces the microprocessor

• 1972: IBM comes out with VM: the Virtual Machine Operating System

• 1973: UNIX 4th Edition is published

• 1973: Ethernet

• 1974 The Personal Computer Age begins

• 1974: Gates and Allen wrote BASIC for the Altair

• 1976: Apple II

• August 12, 1981: IBM introduces the IBM PC

• 1983 Microsoft begins work on MS-Windows

• 1984 Apple Macintosh comes out

• 1990 Microsoft Windows 3.0 comes out

• 1991 GNU/Linux

• 1992 The first Windows virus comes out

• 1993 Windows NT

• 2007: iOS

• 2008: Android OS

And as the research and development work continues, we are seeing new operating systems being
developed and existing ones getting improved and modified to enhance the overall user experience,
making operating systems fast and efficient like never before.
Also, with the onset of new devies like wearables, which includes, Smart Watches, Smart
Glasses, VR gears etc, the demand for unconventional operating systems is also rising.

LECTURE: 2

Types of Operating Systems
Following are some of the most widely used types of Operating system.

1. Simple Batch System

2. Multiprogramming Batch System

3. Multiprocessor System

4. Desktop System

5. Distributed Operating System

6. Clustered System

7. Realtime Operating System

8. Handheld System

Simple Batch Systems

• In this type of system, there is no direct interaction between user and the computer.

• The user has to submit a job (written on cards or tape) to a computer operator.

• Then computer operator places a batch of several jobs on an input device.

• Jobs are batched together by type of languages and requirement.

• Then a special program, the monitor, manages the execution of each program in the batch.

• The monitor is always in the main memory and available for execution.

Advantages of Simple Batch Systems

1. No interaction between user and computer.

2. No mechanism to prioritise the processes.

 Fig:1.2

Multiprogramming Batch Systems

• In this the operating system picks up and begins to execute one of the jobs from memory.

• Once this job needs an I/O operation operating system switches to another job (CPU and OS

always busy).

• Jobs in the memory are always less than the number of jobs on disk(Job Pool).

• If several jobs are ready to run at the same time, then the system chooses which one to run

through the process of CPU Scheduling.

• In Non-multiprogrammed system, there are moments when CPU sits idle and does not do any

work.

• In Multiprogramming system, CPU will never be idle and keeps on processing.
Time Sharing Systems are very similar to Multiprogramming batch systems. In fact time sharing
systems are an extension of multiprogramming systems.
In Time sharing systems the prime focus is on minimizing the response time, while in
multiprogramming the prime focus is to maximize the CPU usage.

 Fig:1.3

Multiprocessor Systems
A Multiprocessor system consists of several processors that share a common physical memory.
Multiprocessor system provides higher computing power and speed. In multiprocessor system all
processors operate under single operating system. Multiplicity of the processors and how they do
act together are transparent to the others.

Advantages of Multiprocessor Systems

1. Enhanced performance

2. Execution of several tasks by different processors concurrently, increases the system's

throughput without speeding up the execution of a single task.

3. If possible, system divides task into many subtasks and then these subtasks can be executed in

parallel in different processors. Thereby speeding up the execution of single tasks.

Desktop Systems
Earlier, CPUs and PCs lacked the features needed to protect an operating system from user
programs. PC operating systems therefore were neither multiuser nor multitasking. However, the
goals of these operating systems have changed with time; instead of maximizing CPU and
peripheral utilization, the systems opt for maximizing user convenience and responsiveness. These

systems are called Desktop Systems and include PCs running Microsoft Windows and the Apple
Macintosh. Operating systems for these computers have benefited in several ways from the
development of operating systems for mainframes.
Microcomputers were immediately able to adopt some of the technology developed for larger
operating systems. On the other hand, the hardware costs for microcomputers are
sufficiently low that individuals have sole use of the computer, and CPU utilization is no longer a
prime concern. Thus, some of the design decisions made in operating systems for mainframes may
not be appropriate for smaller systems.

Distributed Operating System
The motivation behind developing distributed operating systems is the availability of powerful and
inexpensive microprocessors and advances in communication technology.
These advancements in technology have made it possible to design and develop distributed systems
comprising of many computers that are inter connected by communication networks. The main
benefit of distributed systems is its low price/performance ratio.

Advantages Distributed Operating System

1. As there are multiple systems involved, user at one site can utilize the resources of systems at

other sites for resource-intensive tasks.

2. Fast processing.

3. Less load on the Host Machine.

Types of Distributed Operating Systems
Following are the two types of distributed operating systems used:

1. Client-Server Systems

2. Peer-to-Peer Systems

Client-Server Systems
Centralized systems today act as server systems to satisfy requests generated by client systems.
The general structure of a client-server system is depicted in the figure below:

 Fig:1.4

Server Systems can be broadly categorized as: Compute Servers and File Servers.

• Compute Server systems, provide an interface to which clients can send requests to perform

an action, in response to which they execute the action and send back results to the client.

• File Server systems, provide a file-system interface where clients can create, update, read, and

delete files.

Peer-to-Peer Systems
The growth of computer networks - especially the Internet and World Wide Web (WWW) – has
had a profound influence on the recent development of operating systems. When PCs were
introduced in the 1970s, they were designed for personal use and were generally considered
standalone computers. With the beginning of widespread public use of the Internet in the 1990s for
electronic mail and FTP, many PCs became connected to computer networks.
In contrast to the Tightly Coupled systems, the computer networks used in these applications
consist of a collection of processors that do not share memory or a clock. Instead, each processor
has its own local memory. The processors communicate with one another through various
communication lines, such as high-speed buses or telephone lines. These systems are usually
referred to as loosely coupled systems (or distributed systems). The general structure of a client-
server system is depicted in the figure below:

Clustered Systems Fig:1.5

• Like parallel systems, clustered systems gather together multiple CPUs to accomplish

computational work.

• Clustered systems differ from parallel systems, however, in that they are composed of two or

more individual systems coupled together.

• The definition of the term clustered is not concrete; the general accepted definition is that

clustered computers share storage and are closely linked via LAN networking.

• Clustering is usually performed to provide high availability.

• A layer of cluster software runs on the cluster nodes. Each node can monitor one or more of the

others. If the monitored machine fails, the monitoring machine can take ownership of its

storage, and restart the application(s) that were running on the failed machine. The failed

machine can remain down, but the users and clients of the application would only see a brief

interruption of service.

• Asymmetric Clustering - In this, one machine is in hot standby mode while the other is

running the applications. The hot standby host (machine) does nothing but monitor the active

server. If that server fails, the hot standby host becomes the active server.

• Symmetric Clustering - In this, two or more hosts are running applications, and they are

monitoring each other. This mode is obviously more efficient, as it uses all of the available

hardware.

• Parallel Clustering - Parallel clusters allow multiple hosts to access the same data on the

shared storage. Because most operating systems lack support for this simultaneous data access

by multiple hosts, parallel clusters are usually accomplished by special versions of software

and special releases of applications.
Clustered technology is rapidly changing. Clustered system's usage and it's features should expand
greatly as Storage Area Networks(SANs). SANs allow easy attachment of multiple hosts to
multiple storage units. Current clusters are usually limited to two or four hosts due to the
complexity of connecting the hosts to shared storage.

Real Time Operating System
It is defined as an operating system known to give maximum time for each of the critical operations
that it performs, like OS calls and interrupt handling.
The Real-Time Operating system which guarantees the maximum time for critical operations and
complete them on time are referred to as Hard Real-Time Operating Systems.

While the real-time operating systems that can only guarantee a maximum of the time, i.e. the
critical task will get priority over other tasks, but no assurity of completeing it in a defined time.
These systems are referred to as Soft Real-Time Operating Systems.

Handheld Systems
Handheld systems include Personal Digital Assistants(PDAs), such as Palm-Pilots or Cellular
Telephones with connectivity to a network such as the Internet. They are usually of limited size
due to which most handheld devices have a small amount of memory, include slow processors, and
feature small display screens.
• Many handheld devices have between 512 KB and 8 MB of memory. As a result, the operating

system and applications must manage memory efficiently. This includes returning all allocated
memory back to the memory manager once the memory is no longer being used.

• Currently, many handheld devices do not use virtual memory techniques, thus forcing
program developers to work within the confines of limited physical memory.

• Processors for most handheld devices often run at a fraction of the speed of a processor in a PC.
Faster processors require more power. To include a faster processor in a handheld device
would require a larger battery that would have to be replaced more frequently.

• The last issue confronting program designers for handheld devices is the small display screens
typically available. One approach for displaying the content in web pages is web clipping,
where only a small subset of a web page is delivered and displayed on the handheld device.

Some handheld devices may use wireless technology such as BlueTooth, allowing remote access
to e-mail and web browsing. Cellular telephones with connectivity to the Internet fall into this
category. Their use continues to expand as network connections become more available and other
options such as cameras and MP3 players, expand their utility.

Questions :-

Multiple Choice Questions

i)Which one of the following is not shared by threads?
a) program counter
b) stack
c) both program counter and stack
d) none of the mentioned

 ii) A process can be
 a) single threaded
 b) multithreaded
 c) both single threaded and multithreaded
 d) none of the mentioned

 iii)If one thread opens a file with read privileges then
 a) other threads in the another process can also read from that file
 b) other threads in the same process can also read from that file
 c) any other thread can not read from that file
 d) all of the mentioned
iv)The time required to create a new thread in an existing process is
a) greater than the time required to create a new process
c) less than the time required to create a new process
c) equal to the time required to create a new process
d) none of the mentioned
v)When the event for which a thread is blocked occurs,
a) thread moves to the ready queue
b) thread remains blocked
c) thread completes
d) a new thread is provided
vi) What is not a important part of security protection ?
a) Large amount of RAM to support antivirus
b) Strong passwords
c) Audit log periodically
d) Scan for unauthorized programs in system directories
vii)What is used to protect network from outside internet access ?
a) A trusted antivirus
b) 24 hours scanning for virus
c) Firewall to separate trusted and untrusted network
d) Deny users access to websites which can potentially cause security leak
viii) What is are two safe computing practices ?
a) Not to open software from unknown vendors
b) Open and execute programs in admin level/root
c) Open and execute programs in presence of antivirus
d) None of the mentioned
ix)How do viruses avoid basic pattern matchof antivirus ?
a) They are encrypted
b) They act with special permissions
c) They modify themselves
d) None of the mentioned

x) How does an antivirus of today identify viruses ?
a) Previously known patterns
b) It can detect unknown patterns
c) It can take high priority to increase scanning speed
d) None of the mentioned

2. Short AnswerType Questions :-
i)What is an operating system?
ii)What are its main functions?
iii)Describe system calls and its type
vi)What is a Kernel?
v)What are the main functions of a Kernel?
vi)What are the different types of Kernel?
vii)What is a command interpreter?

MODULE 2

Process Management

LECTURE: 1

Process

A process basically is a program in execution. The execution of a process must progress in a
sequential fashion.
A process is defined as an entity which represents the basic unit of work to be implemented in the
system.

To put it in simple terms, we write our computer programs in a text file and when we execute this
program, it becomes a process which performs all the tasks mentioned in the program.

When a program is loaded into the memory and it becomes a process, it can be divided into four
sections ─ stack, heap, text and data. The following image shows a simplified layout of a process

inside main memory −

 Fig:2.1

Component & Description

1. Stack

The process Stack contains the temporary data such as method/function parameters, return address
and local variables.

2. Heap

This is dynamically allocated memory to a process during its run time.

3. Text

This includes the current activity represented by the value of Program Counter and the contents of
the processor's registers.

4. Data

This section contains the global and static variables.

Program

A program is a piece of code which may be a single line or millions of lines. A computer program
is usually written by a computer programmer in a programming language. For example, here is a
simple program written in C programming language −

#include <stdio.h>
int main() {

 printf("Hello, World! \n");
 return 0;

}

A computer program is a collection of instructions that performs a specific task when executed by
a computer. When we compare a program with a process, we can conclude that a process is a
dynamic instance of a computer program.

A part of a computer program that performs a well-defined task is known as an algorithm. A
collection of computer programs, libraries and related data are referred to as a software.

Process Life Cycle

When a process executes, it passes through different states. These stages may differ in different
operating systems, and the names of these states are also not standardized.

In general, a process can have one of the following five states at a time.
State & Description of a Process LifeCycle

Start

This is the initial state when a process is first started/created.

Ready

The process is waiting to be assigned to a processor. Ready processes are waiting to have the
processor allocated to them by the operating system so that they can run. Process may come into
this state after Start state or while running it by but interrupted by the scheduler to assign CPU to
some other process.

Running

Once the process has been assigned to a processor by the OS scheduler, the process state is set to
running and the processor executes its instructions.

Waiting

Process moves into the waiting state if it needs to wait for a resource, such as waiting for user
input, or waiting for a file to become available.

Terminated or Exit

Once the process finishes its execution, or it is terminated by the operating system, it is moved to
the terminated state where it waits to be removed from main memory.

 Fig: 2.2

Process Control Block(PCB)-

In modern sophisticated multitasking systems, the PCB stores many different items of data, all
needed for correct and efficient process management.[1] Though the details of these structures are
obviously system-dependent, we can identify some very common parts, and classify them in three
main categories:
• Process identification data

• Process state data
• Process control data
The approach commonly followed to represent this information is to create and update status tables
for each relevant entity, like memory, I/O devices, files and processes.
Memory tables, for example, may contain information about the allocation of main and secondary
(virtual) memory for each process, authorization attributes for accessing memory areas shared
among different processes, etc. I/O tables may have entries stating the availability of a device or its
assignment to a process, the status of I/O operations being executed, the location of memory
buffers used for them, etc.
File tables provide info about location and status of files. Finally, process tables store the data the
OS needs to manage processes. At least part of the process control data structure is always
maintained in main memory, though its exact location and configuration varies with the OS and the
memory management technique it uses.
Process identification data always include a unique identifier for the process (almost invariably an
integer number) and, in a multiuser-multitasking system, data like the identifier of the parent
process, user identifier, user group identifier, etc. The process id is particularly relevant, since it is

https://en.wikipedia.org/wiki/Process_control_block#cite_note-OSConcepts-1

often used to cross-reference the OS tables defined above, e.g. allowing to identify which process
is using which I/O devices, or memory areas.
Process state data are those pieces of information that define the status of a process when it is
suspended, allowing the OS to restart it later and still execute correctly. This always includes the
content of the CPU general-purpose registers, the CPU process status word, stack and frame
pointers etc. During context switch, the running process is stopped and another process is given a
chance to run. The kernel must stop the execution of the running process, copy out the values in
hardware registers to its PCB, and update the hardware registers with the values from the PCB of
the new process.
Process control information is used by the OS to manage the process itself. This includes:
• The process scheduling state, e.g. in terms of "ready", "suspended", etc., and other scheduling

information as well, like a priority value, the amount of time elapsed since the process gained
control of the CPU or since it was suspended. Also, in case of a suspended process, event
identification data must be recorded for the event the process is waiting for.

• Process structuring information: process's children id's, or the id's of other processes related
to the current one in some functional way, which may be represented as a queue, a ring or other
data structures.

• Interprocess communication information: various flags, signals and messages associated
with the communication among independent processes may be stored in the PCB.

• Process Privileges in terms of allowed/disallowed access to system resources.
• Process State: State may enter into new, ready, running, waiting, dead depending on CPU

scheduling.

• Process Number: A unique identification number for each process in the operating system.
• Program Counter: A pointer to the address of the next instruction to be executed for this

process.
• CPU Registers: Indicates various register set of CPU where process need to be stored for

execution for running state.
• CPU scheduling Information: indicates the information of a process with which it uses the

CPU time through scheduling.
• Memory Management Information: includes the information of page table, memory limits,

Segment table depending on memory used by the operating system.
• Accounting information: Includes the amount of CPU used for process execution, time limits,

execution ID etc.
• I/O Status Information: Includes a list of I/O devices allocated to the process.

https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Central_processing_unit

 LECTURE: 2

Process Scheduling-

Definition

The process scheduling is the activity of the process manager that handles the removal of the
running process from the CPU and the selection of another process on the basis of a particular
strategy.

Process scheduling is an essential part of a Multiprogramming operating systems. Such operating
systems allow more than one process to be loaded into the executable memory at a time and the
loaded process shares the CPU using time multiplexing.

Process Scheduling Queues

The OS maintains all PCBs in Process Scheduling Queues. The OS maintains a separate queue for
each of the process states and PCBs of all processes in the same execution state are placed in the
same queue. When the state of a process is changed, its PCB is unlinked from its current queue
and moved to its new state queue.

The Operating System maintains the following important process scheduling queues −

• Job queue − This queue keeps all the processes in the system.

• Ready queue − This queue keeps a set of all processes residing in main memory, ready

and waiting to execute. A new process is always put in this queue.

• Device queues − The processes which are blocked due to unavailability of an I/O device
constitute this queue.

 Fig: 2.3

The OS can use different policies to manage each queue (FIFO, Round Robin, Priority, etc.). The
OS scheduler determines how to move processes between the ready and run queues which can
only have one entry per processor core on the system; in the above diagram, it has been merged
with the CPU.

Process Co-operation is needed for –
i)Information sharing:
Several users may need to access same piece of information, so there should be an environment to
allow concurrent access to these types of resources.

ii)Computation speedup:
To make any task run faster , It should be divided into subtasks, each of which will be executing in
parallel with the others. Speedup can achieved if computer has multiple processing elements such
as CUP or I/O channels.
iii)Modularity: Constructing system in a modular fashion, by dividing the system function into
separate processes or thread.
iv)Convenience:
Concurrent execution of cooperation processes requires mechanisms that allow communicating
processes with each other’s and synchronizing their actions.

The concurrent processes in operating system are of two types
1. Independent processes
Independent process is the process that can not affect or be affected by the other processes.
Independent processes does not share any data like temporary or persistent with any other process.

2. Cooperating processes
Cooperating process is affect or be affected by the other processes executing in the system.
Cooperating process shares data with other processes.
Suspended Process-

Some of the reasons to suspend a process are...
1.If one process is ready to excecute,but there is no space in the main memory,then it is suspended.
2.when one process in main memory which was blocked & there is another process ready to
excecute,but waiting in secondary memory,then the process in main memory is suspended.
3.when the parent process suspends,then the sub process is also suspended.

Schedulers
Schedulers are special system software which handle process scheduling in various ways. Their
main task is to select the jobs to be submitted into the system and to decide which process to run.
Schedulers are of three types −

• Long-Term Scheduler

• Short-Term Scheduler

• Medium-Term Scheduler

Long Term Scheduler

It is also called a job scheduler. A long-term scheduler determines which programs are admitted
to the system for processing. It selects processes from the queue and loads them into memory for
execution. Process loads into the memory for CPU scheduling.

The primary objective of the job scheduler is to provide a balanced mix of jobs, such as I/O bound
and processor bound. It also controls the degree of multiprogramming. If the degree of
multiprogramming is stable, then the average rate of process creation must be equal to the average
departure rate of processes leaving the system.

On some systems, the long-term scheduler may not be available or minimal. Time-sharing
operating systems have no long term scheduler. When a process changes the state from new to
ready, then there is use of long-term scheduler.

Short Term Scheduler

It is also called as CPU scheduler. Its main objective is to increase system performance in
accordance with the chosen set of criteria. It is the change of ready state to running state of the
process. CPU scheduler selects a process among the processes that are ready to execute and
allocates CPU to one of them.

Short-term schedulers, also known as dispatchers, make the decision of which process to execute
next. Short-term schedulers are faster than long-term schedulers.

Medium Term Scheduler

Medium-term scheduling is a part of swapping. It removes the processes from the memory. It
reduces the degree of multiprogramming. The medium-term scheduler is in-charge of handling the
swapped out-processes.

A running process may become suspended if it makes an I/O request. A suspended processes
cannot make any progress towards completion. In this condition, to remove the process from
memory and make space for other processes, the suspended process is moved to the secondary
storage. This process is called swapping, and the process is said to be swapped out or rolled out.
Swapping may be necessary to improve the process mix.

Comparison among Scheduler

S.N. Long-Term Scheduler Short-Term Scheduler Medium-Term Scheduler

1 It is a job scheduler It is a CPU scheduler It is a process swapping
scheduler.

2 Speed is lesser than short
term scheduler

Speed is fastest among
other two

Speed is in between both
short and long term
scheduler.

3 It controls the degree of
multiprogramming

It provides lesser
control over degree of
multiprogramming

It reduces the degree of
multiprogramming.

4 It is almost absent or
minimal in time sharing
system

It is also minimal in
time sharing system

It is a part of Time sharing
systems.

5 It selects processes from
pool and loads them into
memory for execution

It selects those
processes which are
ready to execute

It can re-introduce the
process into memory and
execution can be
continued.

Context Switch
A context switch is the mechanism to store and restore the state or context of a CPU in Process
Control block so that a process execution can be resumed from the same point at a later time.

Using this technique, a context switcher enables multiple processes to share a single CPU. Context
switching is an essential part of a multitasking operating system features.

When the scheduler switches the CPU from executing one process to execute another, the state
from the current running process is stored into the process control block. After this, the state for
the process to run next is loaded from its own PCB and used to set the PC, registers, etc. At that
point, the second process can start executing.

 Fig: 2.4

 Context switches are computationally intensive since register and memory state must be
saved and restored. To avoid the amount of context switching time, some hardware systems
employ two or more sets of processor registers. When the process is switched, the following
information is stored for later use.

• Program Counter
• Scheduling information

• Base and limit register value
• Currently used register
• Changed State
• I/O State information
• Accounting information

IPC-

In this section you will learn about the various working capabilities of IPC (Inter process

communication) within an Operating system along with usage. Processes executing concurrently in

the operating system might be either independent processes or cooperating processes. A process is

independent if it cannot be affected by the other processes executing in the system.

There are numerous reasons for providing an environment or situation which allows process co-

operation:
• Information sharing: Since a number of users may be interested in the same piece of information

(for example, a shared file), you must provide a situation for allowing concurrent access to those
information.

• Computation speedup: If you want a particular work to run fast, you must break it into sub-tasks
where each of them will get execute in parallel with the other tasks. Note that such a speed-up can
be attained only when the computer has compound or various processing elements like CPUs or
I/O channels.

• Modularity: You may want to build the system in a modular way by dividing the system functions
into split processes or threads.

• Convenience: Even a single user may work on many tasks at a time. For example, a user may be
editing, formatting, printing, and compiling in parallel.

Working together multiple processes, require an inter process communication (IPC) method which

will allow them to exchange data along with various information. There are two primary models of

inter process communication:
1. shared memory and
2. message passing.

In the shared-memory model, a region of memory which is shared by cooperating processes gets

established. Processes can then able to exchange information by reading and writing all the data to

the shared region. In the message-passing form, communication takes place by way of messages

exchanged among the cooperating processes.

The two communications models are contrasted in figure below:

 Fig: 2.5

Shared Memory Systems

Inter process communication (IPC) usually utilizes shared memory that requires communicating

processes for establishing a region of shared memory. Typically, a shared-memory region resides

within the address space of any process creating the shared-memory segment. Other processes that

wish for communicating using this shared-memory segment must connect it to their address space.
More on Inter Process Shared Memory

Note that, normally what happens, the operating system tries to check one process from accessing

other's process's memory. Shared memory needs that two or more processes agree to remove this

limitation. They can then exchange information via reading and writing data within the shared

areas.

The form of the data and the location gets established by these processes and are not under the

control of operating system. The processes are also in charge to ensure that they are not writing to

the same old location simultaneously.

 LECTURE: 3

Thread

A thread is a flow of execution through the process code, with its own program counter that keeps
track of which instruction to execute next, system registers which hold its current working
variables, and a stack which contains the execution history.
A thread shares with its peer threads few information like code segment, data segment and open
files. When one thread alters a code segment memory item, all other threads see that.
A thread is also called a lightweight process. Threads provide a way to improve application
performance through parallelism. Threads represent a software approach to improving
performance of operating system by reducing the overhead thread is equivalent to a classical
process.
Each thread belongs to exactly one process and no thread can exist outside a process. Each thread
represents a separate flow of control. Threads have been successfully used in implementing
network servers and web server. They also provide a suitable foundation for parallel execution of
applications on shared memory multiprocessors. The following figure shows the working of a
single-threaded and a multithreaded process.
Advantages of Thread

• Threads minimize the context switching time.
• Use of threads provides concurrency within a process.
• Efficient communication.
• It is more economical to create and context switch threads.
• Threads allow utilization of multiprocessor architectures to a greater scale and efficiency.

 Fig: 2.6

 Difference between Process and Thread

S.N. Process Thread

1 Process is heavy weight or resource
intensive.

Thread is light weight, taking lesser
resources than a process.

2 Process switching needs interaction
with operating system.

Thread switching does not need to
interact with operating system.

3 In multiple processing environments,
each process executes the same code
but has its own memory and file
resources.

All threads can share same set of open
files, child processes.

4 If one process is blocked, then no
other process can execute until the
first process is unblocked.

While one thread is blocked and waiting,
a second thread in the same task can run.

5 Multiple processes without using
threads use more resources.

Multiple threaded processes use fewer
resources.

6 In multiple processes each process
operates independently of the others.

One thread can read, write or change
another thread's data.

 LECTURE: 4

Types of Thread

Threads are implemented in following two ways −

• User Level Threads − User managed threads.

• Kernel Level Threads − Operating System managed threads acting on kernel, an

operating system core.

User Level Threads

In this case, the thread management kernel is not aware of the existence of threads. The thread
library contains code for creating and destroying threads, for passing message and data between
threads, for scheduling thread execution and for saving and restoring thread contexts. The
application starts with a single thread.

 Fig: 2.7

Advantages-

• Thread switching does not require Kernel mode privileges.
• User level thread can run on any operating system.
• Scheduling can be application specific in the user level thread.
• User level threads are fast to create and manage.

Disadvantages-
• In a typical operating system, most system calls are blocking.
• Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

In this case, thread management is done by the Kernel. There is no thread management code in the
application area. Kernel threads are supported directly by the operating system. Any application
can be programmed to be multithreaded. All of the threads within an application are supported
within a single process.

The Kernel maintains context information for the process as a whole and for individuals threads
within the process. Scheduling by the Kernel is done on a thread basis. The Kernel performs
thread creation, scheduling and management in Kernel space. Kernel threads are generally slower
to create and manage than the user threads.

Advantages
• Kernel can simultaneously schedule multiple threads from the same process on multiple

processes.
• If one thread in a process is blocked, the Kernel can schedule another thread of the same

process.
• Kernel routines themselves can be multithreaded.

Disadvantages
• Kernel threads are generally slower to create and manage than the user threads.
• Transfer of control from one thread to another within the same process requires a mode

switch to the Kernel.

Multithreading Models
Some operating system provide a combined user level thread and Kernel level thread facility.
Solaris is a good example of this combined approach. In a combined system, multiple threads
within the same application can run in parallel on multiple processors and a blocking system call
need not block the entire process. Multithreading models are three types

• Many to many relationship.

• Many to one relationship.
• One to one relationship.

Many to Many Model

The many-to-many model multiplexes any number of user threads onto an equal or smaller
number of kernel threads.

The following diagram shows the many-to-many threading model where 6 user level threads are
multiplexing with 6 kernel level threads. In this model, developers can create as many user threads
as necessary and the corresponding Kernel threads can run in parallel on a multiprocessor
machine. This model provides the best accuracy on concurrency and when a thread performs a
blocking system call, the kernel can schedule another thread for execution.

Fig: 2.8

Many to One Model

Many-to-one model maps many user level threads to one Kernel-level thread. Thread management
is done in user space by the thread library. When thread makes a blocking system call, the entire
process will be blocked. Only one thread can access the Kernel at a time, so multiple threads are
unable to run in parallel on multiprocessors.

If the user-level thread libraries are implemented in the operating system in such a way that the
system does not support them, then the Kernel threads use the many-to-one relationship modes.

 Fig: 2.9

One to One Model

There is one-to-one relationship of user-level thread to the kernel-level thread. This model
provides more concurrency than the many-to-one model. It also allows another thread to run when
a thread makes a blocking system call. It supports multiple threads to execute in parallel on
microprocessors.

Disadvantage of this model is that creating user thread requires the corresponding Kernel thread.
OS/2, windows NT and windows 2000 use one to one relationship model.

 Fig: 2.10

Difference between User-Level & Kernel-Level Thread

S.N. User-Level Threads Kernel-Level Thread

1 User-level threads are faster to create and
manage.

Kernel-level threads are slower to
create and manage.

2 Implementation is by a thread library at the
user level.

Operating system supports creation
of Kernel threads.

3 User-level thread is generic and can run on
any operating system.

Kernel-level thread is specific to
the operating system.

4 Multi-threaded applications cannot take Kernel routines themselves can be

advantage of multiprocessing. multithreaded.

 LECTURE: 5

CPU Scheduling
CPU scheduling is a process which allows one process to use the CPU while the execution of
another process is on hold(in waiting state) due to unavailability of any resource like I/O etc,
thereby making full use of CPU. The aim of CPU scheduling is to make the system efficient, fast
and fair.
Whenever the CPU becomes idle, the operating system must select one of the processes in
the ready queue to be executed. The selection process is carried out by the short-term scheduler
(or CPU scheduler). The scheduler selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them.

CPU Scheduling: Dispatcher
Another component involved in the CPU scheduling function is the Dispatcher. The dispatcher is
the module that gives control of the CPU to the process selected by the short-term scheduler. This
function involves:

• Switching context

• Switching to user mode

• Jumping to the proper location in the user program to restart that program from where it left

last time.
The dispatcher should be as fast as possible, given that it is invoked during every process switch.
The time taken by the dispatcher to stop one process and start another process is known as
the Dispatch Latency. Dispatch Latency can be explained using the below figure:

 Fig: 2.11

Types of CPU Scheduling
CPU scheduling decisions may take place under the following four circumstances:
1. When a process switches from the running state to the waiting state(for I/O request or

invocation of wait for the termination of one of the child processes).
2. When a process switches from the running state to the ready state (for example, when an

interrupt occurs).
3. When a process switches from the waiting state to the ready state(for example, completion of

I/O).
4. When a process terminates.
In circumstances 1 and 4, there is no choice in terms of scheduling. A new process(if one exists in
the ready queue) must be selected for execution. There is a choice, however in circumstances 2 and
3.
When Scheduling takes place only under circumstances 1 and 4, we say the scheduling scheme
is non-preemptive; otherwise the scheduling scheme is preemptive.

Non-Preemptive Scheduling
Under non-preemptive scheduling, once the CPU has been allocated to a process, the process keeps
the CPU until it releases the CPU either by terminating or by switching to the waiting state.
This scheduling method is used by the Microsoft Windows 3.1 and by the Apple Macintosh
operating systems.

It is the only method that can be used on certain hardware platforms, because It does not require the
special hardware(for example: a timer) needed for preemptive scheduling.

Preemptive Scheduling
In this type of Scheduling, the tasks are usually assigned with priorities. At times it is necessary to
run a certain task that has a higher priority before another task although it is running. Therefore, the
running task is interrupted for some time and resumed later when the priority task has finished its
execution.

CPU Scheduling: Scheduling Criteria
There are many different criterias to check when considering the "best" scheduling algorithm, they
are:

CPU Utilization
To make out the best use of CPU and not to waste any CPU cycle, CPU would be working most of
the time(Ideally 100% of the time). Considering a real system, CPU usage should range from 40%
(lightly loaded) to 90% (heavily loaded.)

Throughput
It is the total number of processes completed per unit time or rather say total amount of work done
in a unit of time. This may range from 10/second to 1/hour depending on the specific processes.

Turnaround Time
It is the amount of time taken to execute a particular process, i.e. The interval from time of
submission of the process to the time of completion of the process(Wall clock time).

Waiting Time
The sum of the periods spent waiting in the ready queue amount of time a process has been waiting
in the ready queue to acquire get control on the CPU.

Load Average
It is the average number of processes residing in the ready queue waiting for their turn to get into
the CPU.

Response Time

Amount of time it takes from when a request was submitted until the first response is produced.
Remember, it is the time till the first response and not the completion of process execution(final
response).
In general CPU utilization and Throughput are maximized and other factors are reduced for proper
optimization.

Pre-emptive scheduler: Non pre-emptive scheduler

LECTURE: 6

Scheduling Algorithms
To decide which process to execute first and which process to execute last to achieve maximum
CPU utilisation, computer scientists have defined some algorithms, they are:

1. First Come First Serve(FCFS) Scheduling

2. Shortest-Job-First(SJF) Scheduling

3. Priority Scheduling

4. Round Robin(RR) Scheduling

5. Multilevel Queue Scheduling

6. Multilevel Feedback Queue Scheduling

Scheduling Algorithms-

A Process Scheduler schedules different processes to be assigned to the CPU based on particular
scheduling algorithms. There are six popular process scheduling algorithms which we are going to
discuss in this chapter −

• First-Come, First-Served (FCFS) Scheduling

• Shortest-Job-Next (SJN) Scheduling

▪ Scheduler has ability to move

process from running state to other state and

let another process run when interrupt

occur. Also called pre-emptive scheduling.

▪ Cannot take cup (processor) away

from a process. Also called non pre-emptive

scheduling.

▪ Pre-emptive scheduling is helpful in
multi programming environment by using
time slots. Using time slots an process
cannot enter into infinite loop and block the
whole system.

▪ When we need processor do not halt

in middle of something very important non

pre-emptive environment is

preferable.Processes in kernel mode usually

run in non-pre-emptive mode. The process

gives up control voluntarily.

https://www.studytonight.com/operating-system/first-come-first-serve
https://www.studytonight.com/operating-system/shortest-job-first
https://www.studytonight.com/operating-system/priority-scheduling
https://www.studytonight.com/operating-system/round-robin-scheduling
https://www.studytonight.com/operating-system/multilevel-queue-scheduling
https://www.studytonight.com/operating-system/multilevel-feedback-queue-scheduling

• Priority Scheduling

• Shortest Remaining Time

• Round Robin(RR) Scheduling

• Multiple-Level Queues Scheduling

These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms are
designed so that once a process enters the running state, it cannot be preempted until it completes
its allotted time, whereas the preemptive scheduling is based on priority where a scheduler may
preempt a low priority running process anytime when a high priority process enters into a ready
state.

First Come First Serve (FCFS)

• Jobs are executed on first come, first serve basis.

• It is a non-preemptive, pre-emptive scheduling algorithm.

• Easy to understand and implement.

• Its implementation is based on FIFO queue.

• Poor in performance as average wait time is high.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

Shortest Job Next (SJN)

• This is also known as shortest job first, or SJF

• This is a non-preemptive, pre-emptive scheduling algorithm.

• Best approach to minimize waiting time.

• Easy to implement in Batch systems where required CPU time is known in advance.

• Impossible to implement in interactive systems where required CPU time is not known.

• The processer should know in advance how much time process will take.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 3 - 0 = 3

P1 0 - 0 = 0

P2 16 - 2 = 14

P3 8 - 3 = 5

Average Wait Time: (3+0+14+5) / 4 = 5.50

LECTURE: 7

Priority Based Scheduling

• Priority scheduling is a non-preemptive algorithm and one of the most common scheduling
algorithms in batch systems.

• Each process is assigned a priority. Process with highest priority is to be executed first and
so on.

• Processes with same priority are executed on first come first served basis.

• Priority can be decided based on memory requirements, time requirements or any other
resource requirement.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 9 - 0 = 9

P1 6 - 1 = 5

P2 14 - 2 = 12

P3 0 - 0 = 0

Average Wait Time: (9+5+12+0) / 4 = 6.5
LECTURE: 8

Shortest Remaining Time

• Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.

• The processor is allocated to the job closest to completion but it can be preempted by a
newer ready job with shorter time to completion.

• Impossible to implement in interactive systems where required CPU time is not known.

• It is often used in batch environments where short jobs need to give preference.

Round Robin Scheduling

• Round Robin is the preemptive process scheduling algorithm.

• Each process is provided a fix time to execute, it is called a quantum.

• Once a process is executed for a given time period, it is preempted and other process
executes for a given time period.

• Context switching is used to save states of preempted processes.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

 LECTURE: 9

Multilevel Queue Scheduling
Another class of scheduling algorithms has been created for situations in which processes are easily
classified into different groups.
For example: A common division is made between foreground(or interactive) processes and
background (or batch) processes. These two types of processes have different response-time
requirements, and so might have different scheduling needs. In addition, foreground processes may
have priority over background processes.
A multi-level queue scheduling algorithm partitions the ready queue into several separate queues.
The processes are permanently assigned to one queue, generally based on some property of the
process, such as memory size, process priority, or process type. Each queue has its own scheduling
algorithm.
For example: separate queues might be used for foreground and background processes. The
foreground queue might be scheduled by Round Robin algorithm, while the background queue is
scheduled by an FCFS algorithm.
In addition, there must be scheduling among the queues, which is commonly implemented as fixed-
priority preemptive scheduling. For example: The foreground queue may have absolute priority
over the background queue.

Let us consider an example of a multilevel queue-scheduling algorithm with five queues:

1. System Processes

2. Interactive Processes

3. Interactive Editing Processes

4. Batch Processes

5. Student Processes

Each queue has absolute priority over lower-priority queues. No process in the batch queue, for
example, could run unless the queues for system processes, interactive processes, and interactive
editing processes were all empty. If an interactive editing process entered the ready queue while a
batch process was running, the batch process will be preempted.

 Fig: 2.12

Multilevel Feedback Queue Scheduling
In a multilevel queue-scheduling algorithm, processes are permanently assigned to a queue on
entry to the system. Processes do not move between queues. This setup has the advantage of low
scheduling overhead, but the disadvantage of being inflexible.
Multilevel feedback queue scheduling, however, allows a process to move between queues. The
idea is to separate processes with different CPU-burst characteristics. If a process uses too much
CPU time, it will be moved to a lower-priority queue. Similarly, a process that waits too long in a
lower-priority queue may be moved to a higher-priority queue. This form of aging prevents
starvation.

 Fig: 2.13

An example of a multilevel feedback queue can be seen in the below figure.

In general, a multilevel feedback queue scheduler is defined by the following parameters:

• The number of queues.

• The scheduling algorithm for each queue.

• The method used to determine when to upgrade a process to a higher-priority queue.

• The method used to determine when to demote a process to a lower-priority queue.

• The method used to determine which queue a process will enter when that process needs

service.
The definition of a multilevel feedback queue scheduler makes it the most general CPU-scheduling
algorithm. It can be configured to match a specific system under design. Unfortunately, it also
requires some means of selecting values for all the parameters to define the best scheduler.
Although a multilevel feedback queue is the most general scheme, it is also the most complex.

Questions :-

1.Some Mutiple Choice Questions :
i) The systems which allows only one process execution at a time, are called

a) uniprogramming systems
b) uniprocessing systems
c) unitasking systems
d) none of the mentioned

ii) In operating system, each process has its own

a) address space and global variables
b) open files
c) pending alarms, signals and signal handlers
d) all of the mentioned

iii) In Unix, Which system call creates the new process?

a) fork
b) create
c) new
d) none of the mentioned

iv) A process can be terminated due to

a) normal exit
b) fatal error
c) killed by another process
d) all of the mentioned

v) What is the ready state of a process?

a) when process is scheduled to run after some execution
b) when process is unable to run until some task has been completed
c) when process is using the CPU
d) none of the mentioned

vi) An optimal scheduling algorithm in terms of minimizing the average waiting time of a
given set of process is …
a. FCFS scheduling

 b. Round robin scheduling algorithm
 c. Shortest job first scheduling algorithm
 d. Priority scheduling algorithm

vii) RR scheduling is most suitable for ……..
 a. time shared OS
 b. distributed OS
 c. real time OS
 d. an Ordinary OS

viii) …….. time is defined as the time period for which the execution of the process is stopped for

transferring its information to the destination node.
 a. turn around

 b. latency
 c. freezing
 d. execution

ix)) A process stack does not contain
a) Function parameters
b) Local variables
c) Return addresses
d) PID of child process

x)) What is interprocess communication?
a) communication within the process
b) communication between two process
c) communication between two threads of same process
d) none of the mentioned

2.Short Answer Type Questions :
A i)Draw a State Transition diagram of a process.
 ii)Write down the advantages and disadvantages of

 a)SJF Algorithm and b) Round-Robin Scheduling Algorithm ?

B..Write down short notes on

 i) Context Switching
 ii) PCB (Process Control Block)

 iii) IPC (InterProcess Communication)
C.i)What do you know about interrupt?

 ii)What do you mean by a zombie process?
 iii)What is the basic difference between pre-emptive and non-pre-emptive scheduling.

1. Consider the Processes listed below .Consider the following Scheduling Algorithms .

 a) FCFS b) SJF with Pre-emption c) RR (Time Slice =2 ns)

 Process Arrival Time Burst Time (ns)

 A 0 8

 B 1 4

 C 2 9

 D 3 5

 i) Draw a Gantt Chart illustrating the execution time of all the processes. (3*3=9)

 ii)Find the average Turn Around Time for each of the Scheduling Algorithm ? (4)

 iii)Find Average waiting Time for each of the Scheduling Algorithm ? (3)

2. Consider the Processes listed below .Consider the following Scheduling Algorithms .

 a) FCFS b) SJF with Pre-emption c) RR (Time Slice =2 ns)

 Process Arrival Time Burst Time (ns)

 A 0 10

 B 1 6

 C 2 3

 D 3 7

 E 4 5

 i) Draw a Gantt Chart illustrating the execution time of all the processes. (3*3=9)

 ii)Find the average Turn Around Time for each of the Scheduling Algorithm ? (4)

 iii)Find Average waiting Time for each of the Scheduling Algorithm ? (3)

Module 3

Process Synchronization
LECTURE 1

Process Synchronization means sharing system resources by processes in a such a way that,
concurrent access to shared data is handled thereby minimizing the chance of inconsistent data.
maintaining data consistency demands mechanisms to ensure synchronized execution of
cooperating processes.

Process Synchronization was introduced to handle problems that arose while multiple process
executions. Some of the problems are discussed below.

Critical Section Problem
A Critical Section is a code segment that accesses shared variables and has to be executed as an
atomic action. It means that in a group of cooperating processes, at a given point of time, only one
process must be executing its critical section. If any other process also wants to execute its critical
section, it must wait until the first one finishes.

Solution to Critical Section Problem
A solution to the critical section problem must satisfy the following three conditions:

1. Mutual Exclusion
Out of a group of cooperating processes, only one process can be in its critical section at a given
point of time.

2. Progress
If no process is in its critical section, and if one or more threads want to execute their critical
section then any one of these threads must be allowed to get into its critical section.

3. Bounded Waiting
After a process makes a request for getting into its critical section, there is a limit for how many
other processes can get into their critical section, before this process's request is granted. So after
the limit is reached, system must grant the process permission to get into its critical section.

LECTURE 2

Peterson’s solution

Peterson’s Solution is a classical software based solution to the critical section problem.
In Peterson’s solution, we have two shared variables:

▪ boolean flag[i] :Initialized to FALSE, initially no one is interested in entering the critical
section

▪ int turn : The process whose turn is to enter the critical section.

Peterson’s Solution preserves all three conditions :
▪ Mutual Exclusion is assured as only one process can access the critical section at any time.
▪ Progress is also assured, as a process outside the critical section does not blocks other

processes from entering the critical section.
▪ Bounded Waiting is preserved as every process gets a fair chance.

Disadvantages of Peterson’s Solution
▪ It involves Busy waiting
▪ It is limited to 2 processes.

Synchronization Hardware
Test And Set

TestAndSet is a hardware solution to the synchronization problem. In TestAndSet, we have a
shared lock variable which can take either of the two values, 0 or 1.
Before entering into the critical section, a process inquires about the lock. If it is locked, it keeps on
waiting till it become free and if it is not locked, it takes the lock and executes the critical section.
In TestAndSet, Mutual exclusion and progress are preserved but bounded waiting cannot be
preserved.

Semaphores

https://www.geeksforgeeks.org/wp-content/uploads/gq/2015/06/peterson.png

A Semaphore is an integer variable, which can be accessed only through two
operations wait() and signal().
There are two types of semaphores : Binary Semaphores and Counting Semaphores

▪ Binary Semaphores : They can only be either 0 or 1. They are also known as mutex
locks, as the locks can provide mutual exclusion. All the processes can share the
same mutex semaphore that is initialized to 1. Then, a process has to wait until the
lock becomes 0. Then, the process can make the mutex semaphore 1 and start its
critical section. When it completes its critical section, it can reset the value of mutex
semaphore to 0 and some other process can enter its critical section.

▪ Counting Semaphores : They can have any value and are not restricted over a
certain domain. They can be used to control access a resource that has a limitation
on the number of simultaneous accesses. The semaphore can be initialized to the
number of instances of the resource. Whenever a process wants to use that resource,
it checks if the number of remaining instances is more than zero, i.e., the process has
an instance available. Then, the process can enter its critical section thereby
decreasing the value of the counting semaphore by 1. After the process is over with
the use of the instance of the resource, it can leave the critical section thereby
adding 1 to the number of available instances of the resource.

Semaphore provides mutual exclusion

Semaphore mutex; // initialized to 1

do {

wait (mutex);

// Critical Section

signal (mutex);

// remainder section

} while (TRUE);

LECTURE 3

Classical problems of synchronization

The following are some classic problems of synchronization:

• The Producer–Consumer Problem (also called The Bounded Buffer Problem);
• The Readers–Writers Problem;
• The Dining Philosophers Problem.

Bounded buffer producer consumer problem

 N buffers- each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N

The structure of the producer process

do {
// produce an item in nextp

wait (empty);
wait (mutex);

// add the item to the buffer
signal (mutex);

signal (full);
} while (TRUE);

The structure of the consumer process

do {
wait (full);

wait (mutex);
// remove an item from buffer to nextc

signal (mutex);
signal (empty);

// consume the item in nextc
} while (TRUE);

LECTURE 4

The Readers–Writers Problem

A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates

 Writers – can both read and write

https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem
https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

 Problem – allow multiple readers to read at the same time

 Only one single writer can access the shared data at a time

Semaphore mutex initialized to 1

 Semaphore wrt initialized to 1

 Integer readcount initialized to 0

The structure of a writer process

do {
wait (wrt) ;

// writing is performed
signal (wrt) ;

} while (TRUE);

The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;

if (readcount == 1)
wait (wrt) ;

signal (mutex)
// reading is performed

wait (mutex) ;
readcount - - ;

if (readcount == 0)
signal (wrt) ;

signal (mutex) ;
} while (TRUE);

LECTURE 5

Dining-Philosophers Problem

Philosophers spend their lives thinking and eating. Don’t interact with their neighbors, occasionally

try to pick up 2 chopsticks (one at a time) to eat from bowl, need both to eat, then release both
when done

 In the case of 5 philosophers
 Shared data
 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1

The structure of Philosopher i:

do {
wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);
// eat

signal (chopstick[i]);
signal (chopstick[(i + 1) % 5]);

// think
} while (TRUE);

Monitor
Monitor is one of the ways to achieve Process synchronization. Monitor is supported by
programming languages to achieve mutual exclusion between processes. For example Java
Synchronized methods. Java provides wait() and notify() constructs.

1. It is the collection of condition variables and procedures combined together in a special kind of
module or a package.

2. The processes running outside the monitor can’t access the internal variable of monitor but can
call procedures of the monitor.
3. Only one process at a time can execute code inside monitors.

Syntax of Monitor

Deadlock

LECTURE 6

In an operating system, a deadlock occurs when a process enters a waiting state because a
requested system resource is held by another waiting process, which in turn is waiting for another
resource held by another waiting process. If a process is unable to change its state indefinitely
because the resources requested by it are being used by another waiting process, then the system is
said to be in a deadlock.

A deadlock situation on a resource can arise if and only if all of the following conditions hold
simultaneously in a system:

1. Mutual exclusion: At least one resource must be held in a non-shareable mode. otherwise,
the processes would not be prevented from using the resource when necessary. Only one
process can use the resource at any given instant of time.

2. Hold and wait or resource holding: a process is currently holding at least one resource and
requesting additional resources which are being held by other processes.

3. No preemption: a resource can be released only voluntarily by the process holding it.

4. Circular wait: each process must be waiting for a resource which is being held by another
process, which in turn is waiting for the first process to release the resource. In general,
there is a set of waiting processes, P = {P1, P2, …, PN}, such that P1 is waiting for a
resource held by P2, P2 is waiting for a resource held by P3 and so on until PN is waiting for
a resource held by P1.

Resource-Allocation Graph

A set of vertices V and a set of edges E.
V is partitioned into two types:
● P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system.
● R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system.
■ request edge – directed edge P1 → Rj
■ assignment edge – directed edge Rj → Pi

Resource Allocation Graph With A Cycle But No Deadlock

Deadlock Prevention

https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Set_(mathematics)

Deadlock prevention works by preventing one of the four Coffman conditions from
occurring.

• Removing the mutual exclusion condition means that no process will have exclusive access
to a resource.

• The hold and wait or resource holding conditions may be removed by requiring processes
to request all the resources they will need before starting up (or before embarking upon a
particular set of operations). This advance knowledge is frequently difficult to satisfy and,
in any case, is an inefficient use of resources. Another way is to require processes to request
resources only when it has none. Thus, first they must release all their currently held
resources before requesting all the resources they will need from scratch. This too is often
impractical. It is so because resources may be allocated and remain unused for long periods.
Also, a process requiring a popular resource may have to wait indefinitely, as such a
resource may always be allocated to some process, resulting in resource
starvation.[12] (These algorithms, such as serializing tokens, are known as the all-or-none
algorithms.)

• The no preemption condition may also be difficult or impossible to avoid as a process has
to be able to have a resource for a certain amount of time, or the processing outcome may
be inconsistent or thrashing may occur. However, inability to enforce preemption may
interfere with a priority algorithm. Preemption of a "locked out" resource generally implies
a rollback, and is to be avoided, since it is very costly in overhead. Algorithms that allow
preemption include lock-free and wait-free algorithms and optimistic concurrency control.
If a process holding some resources and requests for some another resource(s) that cannot
be immediately allocated to it, the condition may be removed by releasing all the currently
being held resources of that process.

• The final condition is the circular wait condition. Approaches that avoid circular waits
include disabling interrupts during critical sections and using a hierarchy to determine
a partial ordering of resources. If no obvious hierarchy exists, even the memory address of
resources has been used to determine ordering and resources are requested in the increasing
order of the enumeration. Dijkstra's solution can also be used.

https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Deadlock#cite_note-12
https://en.wikipedia.org/wiki/Serializing_tokens
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Thrashing_(computer_science)
https://en.wikipedia.org/wiki/Rollback_(data_management)
https://en.wikipedia.org/wiki/Lock-free_and_wait-free_algorithms
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Dining_philosophers_problem#Resource_hierarchy_solution

LECTURE 7

 Deadlock Avoidance

• Main idea

– Carefully allocate the resources such that the system will not run into deadlock

• More specifically

– Require additional information about how resources will be requested. Use this information to
determine whether to grant an allocation request or to cause the requesting process to wait.

• Costs

– Run-time overhead of decision making

– Extra information required from applications

Safe and Unsafe States

A system is in a safe state if the system can allocate resources to each process (up to its maximum)
in some order and let each of them compete successfully (hence, avoiding a deadlock).

• More formally

– each process declares a maximum need

– Safe state: if there exists a sequence of processes <P1,P2,...,Pn> such that for each Pi in the
sequence, 1 <= i <= n, the resources that Pi can still request (i.e., Pi’s maximum need - current
need) can be satisfied by the currently available resources plus the resources held by all the Pj, j < i.

– Unsafe state: not safe

As you saw already, most prevention algorithms have poor resource utilization, and hence result in
reduced throughputs. Instead, we can try to avoid deadlocks by making use prior knowledge about
the usage of resources by processes including resources available, resources allocated, future
requests and future releases by processes. Most deadlock avoidance algorithms need every process
to tell in advance the maximum number of resources of each type that it may need. Based on all
these info we may decide if a process should wait for a resource or not, and thus avoid chances for
circular wait.

If a system is already in a safe state, we can try to stay away from an unsafe state and avoid
deadlock. Deadlocks cannot be avoided in an unsafe state. A system can be considered to be in safe
state if it is not in a state of deadlock and can allocate resources upto the maximum available. A
safe sequence of processes and allocation of resources ensures a safe state. Deadlock avoidance
algorithms try not to allocate resources to a process if it will make the system in an unsafe state.
Since resource allocation is not done right away in some cases, deadlock avoidance algorithms also
suffer from low resource utilization problem.

A resource allocation graph is generally used to avoid deadlocks. If there are no cycles in the
resource allocation graph, then there are no deadlocks. If there are cycles, there may be a deadlock.
If there is only one instance of every resource, then a cycle implies a deadlock. Vertices of the
resource allocation graph are resources and processes. The resource allocation graph has request
edges and assignment edges. An edge from a process to resource is a request edge and an edge
from a resource to process is an allocation edge. A claim edge denotes that a request may be made
in future and is represented as a dashed line. Based on claim edges we can see if there is a chance
for a cycle and then grant requests if the system will again be in a safe state.

Consider the image with claim edges as below:

If R2 is allocated to p2 and if P1 request for R2, there will be a deadlock.

The resource allocation graph is not useful if there are multiple instances for a resource. In such a
case, we can use Banker’s algorithm. In this algorithm, every process must tell upfront the

maximum resource of each type it need, subject to the maximum available instances for each type.
Allocation of resources is made only, if the allocation ensures a safe state; else the processes need
to wait. The Banker’s algorithm can be divided into two parts: Safety algorithm if a system is in a

safe state or not. The resource request algorithm make an assumption of allocation and see if the
system will be in a safe state. If the new state is unsafe, the resources are not allocated and the data
structures are restored to their previous state; in this case the processes must wait for the resource.

Banker’s Algorithm

The banker’s algorithm is a resource allocation and deadlock avoidance algorithm that tests for

safety by simulating the allocation for predetermined maximum possible amounts of all resources,
then makes an “s-state” check to test for possible activities, before deciding whether allocation
should be allowed to continue.

Following Data structures are used to implement the Banker’s Algorithm:
Let ‘n’ be the number of processes in the system and ‘m’ be the number of resources types.
Available :

▪ It is a 1-d array of size ‘m’ indicating the number of available resources of each type.
▪ Available[j] = k means there are ‘k’ instances of resource type Rj

Max :
▪ It is a 2-d array of size ‘n*m’ that defines the maximum demand of each process in a

system.
▪ Max[i, j] = k means process Pi may request at most ‘k’ instances of resource type Rj.

Allocation :
▪ It is a 2-d array of size ‘n*m’ that defines the number of resources of each type currently

allocated to each process.
▪ Allocation[i, j] = k means process Pi is currently allocated ‘k’ instances of resource

type Rj
Need :

▪ It is a 2-d array of size ‘n*m’ that indicates the remaining resource need of each process.
▪ Need [i, j] = k means process Pi currently allocated ‘k’ instances of resource type Rj
▪ Need [i, j] = Max [i, j] – Allocation [i, j]

Allocationi specifies the resources currently allocated to process Pi and Needi specifies the
additional resources that process Pi may still request to complete its task.
Banker’s algorithm consist of Safety algorithm and Resource request algorithm
Safety Algorithm

The algorithm for finding out whether or not a system is in a safe state can be described as follows:
1) Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively.
Initialize:Work=Available
Finish[i] = false; for i=1, 2, 3, 4….n
2) Find an i such that both
 a) Finish[i] = false
 b) Needi <= Work if no such i exists goto step (4)
3) Work = Work + Allocation
 Finish[i] = true
 goto step (2)
4) if finish [i] = true for all i
 then the system is in a safe state

LECTURE 8

Resource-Request Algorithm

Let Requesti be the request array for process Pi. Requesti [j] = k means process Pi wants k instances
of resource type Rj. When a request for resources is made by process Pi, the following actions are
taken:
1) If Requesti <= Needi
Goto step (2) ; otherwise, raise an error condition, since the process has exceeded its maximum
claim.

2) If Requesti <= Available Goto step (3); otherwise, Pi must wait, since the resources are not
available.

3) Have the system pretend to have allocated the requested resources to process Pi by modifying
the state as follows:
 Available = Available – Requesti
 Allocationi = Allocationi + Requesti
 Needi = Needi– Requesti

Example:
Considering a system with five processes P0 through P4 and three resources types A, B, C.
Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at
time t0 following snapshot of the system has been taken:

Question1. What will be the content of the Need matrix?
Need [i, j] = Max [i, j] – Allocation [i, j]

So, the content of Need Matrix is:

Question2. Is the system in safe state? If Yes, then what is the safe sequence?
Applying the Safety algorithm on the given system,

Question3. What will happen if process P1 requests one additional instance of resource type A
and two instances of resource type C?

https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/unnamed.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/questionsolved.png

We must determine whether this new system state is safe. To do so, we again execute Safety
algorithm on the above data structures.

Hence the new system state is safe, so we can immediately grant the request for process P1 .

https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/Allocation.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/Q31.png

LECTURE 9

Deadlock Detection

If deadlock prevention and avoidance are not done properly, as deadlock may occur and only
things left to do is to detect the recover from the deadlock.

If all resource types has only single instance, then we can use a graph called wait-for-graph, which
is a variant of resource allocation graph. Here, vertices represent processes and a directed edge
from P1 to P2 indicate that P1 is waiting for a resource held by P2. Like in the case of resource
allocation graph, a cycle in a wait-for-graph indicate a deadlock. So the system can maintain a
wait-for-graph and check for cycles periodically to detect any deadlocks.

The wait-for-graph is not much useful if there are multiple instances for a resource, as a cycle may
not imply a deadlock. In such a case, we can use an algorithm similar to Banker’s algorithm to

detect deadlock. We can see if further allocations can be made on not based on current allocations.

Single Instance of Each Resource Type

• Maintain wait-for graph
• Nodes are processes.

1. Periodically invoke an algorithm that searches for a cycle in the graph.
2. An algorithm to detect a cycle in a graph requires an order of 𝑛2 operations, where n is the

number of vertices in the graph.

 Deadlock Recovery

Once a deadlock is detected, you will have to break the deadlock. It can be done through different
ways, including, aborting one or more processes to break the circular wait condition causing the
deadlock and preempting resources from one or more processes which are deadlocked.

• Process Termination
o Abort all deadlocked processes:

▪ Fast
▪ A lot of process work is lost.

o Abort one deadlocked process at a time and check for deadlocks again:
▪ More work to resolve a deadlock.
▪ Better in terms of process work.
▪ What is a good order to abort processes?

• Resource Preemption
o what is a good way to select a victim
o How can we rollback and then recover from preemption?
o How can we protect from starvation

Questions

A. Multiple choice questions.

1. A situation where several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which access takes place is called :
 a) data consistency
 b) race condition
 c) aging
 d) starvation
2. For Mutual exclusion to prevail in the system :
a) at least one resource must be held in a non sharable mode
b) the processor must be a uniprocessor rather than a multiprocessor
c) there must be at least one resource in a sharable mode
d) all of the mentioned
3. The segment of code in which the process may change common variables, update tables, write
into files is known as :
a) program
b) critical section
c) non – critical section
d) synchronizing
4. The following three conditions must be satisfied to solve the critical section problem :
a) Mutual Exclusion
b) Progress
c) Bounded Waiting
d) All of the mentioned
5. Mutual exclusion implies that :
a) if a process is executing in its critical section, then no other process must be executing in their
critical sections
b) if a process is executing in its critical section, then other processes must be executing in their
critical sections
c) if a process is executing in its critical section, then all the resources of the system must be
blocked until it finishes execution
d) none of the mentioned
6. Bounded waiting implies that there exists a bound on the number of times a process is allowed to
enter its critical section :
a) after a process has made a request to enter its critical section and before the request is granted
b) when another process is in its critical section
c) before a process has made a request to enter its critical section
d) none of the mentioned
7. A minimum of _____ variable(s) is/are required to be shared between processes to solve the
critical section problem.
a) one
b) two
c) three
d) four

8. In the bakery algorithm to solve the critical section problem :
a) each process is put into a queue and picked up in an ordered manner
b) each process receives a number (may or may not be unique) and the one with the lowest number
is served next
c) each process gets a unique number and the one with the highest number is served next
d) each process gets a unique number and the one with the lowest number is served next
9. Semaphore is a/an _______ to solve the critical section problem.
a) hardware for a system
b) special program for a system
c) integer variable
d) none of the mentioned
10. The two atomic operations permissible on semaphores are :
a) wait
b) stop
c) hold
d) none of the mentioned

11. In the bounded buffer problem, there are the empty and full semaphores that :
a) count the number of empty and full buffers
b) count the number of empty and full memory spaces
c) count the number of empty and full queues
d) none of the mentioned

12. A mutex :
a) is a binary mutex
b) must be accessed from only one process
c) can be accessed from multiple processes
d) None of the mentioned

13. For a deadlock to arise, which of the following conditions must hold simultaneously ?
a) Mutual exclusion
b) No preemption
c) Hold and wait
d) All of the mentioned
14. For a Hold and wait condition to prevail :
a) A process must be not be holding a resource, but waiting for one to be freed, and then request to
acquire it
b) A process must be holding at least one resource and waiting to acquire additional resources that
are being held by other processes
c) A process must hold at least one resource and not be waiting to acquire additional resources
d) None of the mentioned

B. Short answer type question.

1. Define Mutual Exclusion.
2. What is meant by Binary Semaphore?
3. What is meant by Binary Semaphore?
4. What does a solution for Critical Section Problem must satisfy?
5. Discuss in detail semaphores.
6. What is deadlock?
7. What are the necessary condition for deadlock?

C. Long answer type question.

1. Discuss in detail deadlock and its prevention mechanism.
2. Explain the Banker's algorithm for deadlock avoidance.
3. Discuss in detail the methods involved in the detection and recovery of deadlock.
4. What is semaphore? Write a solution for bounded buffer producer consumer problem.
5. Write a solution for Reader’s writer’s problem.
6. Write a solution for Dining philosopher’s problem.
7. What is critical section problem ? How it can be solved?

Module 4
Memory Management

LECTURE 4

Memory management is the functionality of an operating system which handles or manages
primary memory and moves processes back and forth between main memory and disk during
execution. Memory management keeps track of each and every memory location, regardless of
either it is allocated to some process or it is free. It checks how much memory is to be allocated to
processes. It decides which process will get memory at what time. It tracks whenever some
memory gets freed or unallocated and correspondingly it updates the status.

Basic concepts related to Memory Management

Process Address Space

The process address space is the set of logical addresses that a process references in its code. For
example, when 32-bit addressing is in use, addresses can range from 0 to 0x7fffffff; that is, 2^31
possible numbers, for a total theoretical size of 2 gigabytes.

The operating system takes care of mapping the logical addresses to physical addresses at the time
of memory allocation to the program. There are three types of addresses used in a program before
and after memory is allocated −

S.N. Memory Addresses & Description

1 Symbolic addresses

The addresses used in a source code. The variable names, constants, and instruction
labels are the basic elements of the symbolic address space.

2 Relative addresses

At the time of compilation, a compiler converts symbolic addresses into relative
addresses.

3 Physical addresses

The loader generates these addresses at the time when a program is loaded into
main memory.

Virtual and physical addresses are the same in compile-time and load-time address-binding
schemes. Virtual and physical addresses differ in execution-time address-binding scheme.

The set of all logical addresses generated by a program is referred to as a logical address space.
The set of all physical addresses corresponding to these logical addresses is referred to as
a physical address space.

The runtime mapping from virtual to physical address is done by the memory management unit
(MMU) which is a hardware device. MMU uses following mechanism to convert virtual address to
physical address.

• The value in the base register is added to every address generated by a user process, which
is treated as offset at the time it is sent to memory. For example, if the base register value is
10000, then an attempt by the user to use address location 100 will be dynamically
reallocated to location 10100.

• The user program deals with virtual addresses; it never sees the real physical addresses.

Static vs Dynamic Loading

The choice between Static or Dynamic Loading is to be made at the time of computer program
being developed. If you have to load your program statically, then at the time of compilation, the
complete programs will be compiled and linked without leaving any external program or module
dependency. The linker combines the object program with other necessary object modules into an
absolute program, which also includes logical addresses.

If you are writing a Dynamically loaded program, then your compiler will compile the program and
for all the modules which you want to include dynamically, only references will be provided and
rest of the work will be done at the time of execution.

At the time of loading, with static loading, the absolute program (and data) is loaded into memory
in order for execution to start.

If you are using dynamic loading, dynamic routines of the library are stored on a disk in
relocatable form and are loaded into memory only when they are needed by the program.

Static vs Dynamic Linking

As explained above, when static linking is used, the linker combines all other modules needed by a
program into a single executable program to avoid any runtime dependency.

When dynamic linking is used, it is not required to link the actual module or library with the
program, rather a reference to the dynamic module is provided at the time of compilation and
linking. Dynamic Link Libraries (DLL) in Windows and Shared Objects in Unix are good
examples of dynamic libraries.

Swapping

Swapping is a mechanism in which a process can be swapped temporarily out of main memory (or
move) to secondary storage (disk) and make that memory available to other processes. At some
later time, the system swaps back the process from the secondary storage to main memory.

Though performance is usually affected by swapping process but it helps in running multiple and
big processes in parallel and that's the reason Swapping is also known as a technique for
memory compaction.

The total time taken by swapping process includes the time it takes to move the entire process to a
secondary disk and then to copy the process back to memory, as well as the time the process takes
to regain main memory.

Let us assume that the user process is of size 2048KB and on a standard hard disk where swapping
will take place has a data transfer rate around 1 MB per second. The actual transfer of the 1000K
process to or from memory will take

2048KB / 1024KB per second

= 2 seconds

= 2000 milliseconds

Now considering in and out time, it will take complete 4000 milliseconds plus other overhead
where the process competes to regain main memory.

Memory Allocation

Main memory usually has two partitions −

• Low Memory − Operating system resides in this memory.

• High Memory − User processes are held in high memory.

Operating system uses the following memory allocation mechanism.

S.N. Memory Allocation & Description

1 Single-partition allocation

In this type of allocation, relocation-register scheme is used to protect user
processes from each other, and from changing operating-system code and data.
Relocation register contains value of smallest physical address whereas limit
register contains range of logical addresses. Each logical address must be less than
the limit register.

2 Multiple-partition allocation

In this type of allocation, main memory is divided into a number of partitions
where each partition should contain only one process. When a partition is free, a
process is selected from the input queue and is loaded into the free partition. When
the process terminates, the partition becomes available for another process.

In Partition Allocation, when there are more than one partition freely available to accommodate a
process’s request, a partition must be selected. To choose a particular partition, a partition

allocation method is needed. A partition allocation method is considered better if it avoids internal
fragmentation.
Below are the various partition allocation schemes :

1. First Fit: In the first fit, partition is allocated which is first
 sufficient from the top of Main Memory.

2. Best Fit Allocate the process to the partition which is first
 smallest sufficient partition among the free available partition.

3. Worst Fit Allocate the process to the partition which is largest
 sufficient among the freely available partitions available in
 the main memory.

4. Next Fit Next fit is similar to the first fit but it will search
 for the first sufficient partition from the last allocation point.

Contiguous memory allocation

Memory is a large array of bytes, where each byte has its own address. The memory allocation can
be classified into two methods contiguous memory allocation and non-contiguous memory
allocation. The major difference between Contiguous and Noncontiguous memory allocation is that
the contiguous memory allocation assigns the consecutive blocks of memory to a process
requesting for memory whereas, the noncontiguous memory allocation assigns the separate
memory blocks at the different location in memory space in a nonconsecutive manner to a process
requesting for memory.

Fragmentation

As processes are loaded and removed from memory, the free memory space is broken into little
pieces. It happens after sometimes that processes cannot be allocated to memory blocks
considering their small size and memory blocks remains unused. This problem is known as
Fragmentation.

Fragmentation is of two types −

S.N. Fragmentation & Description

1 External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it, but it is
not contiguous, so it cannot be used.

2 Internal fragmentation

Memory block assigned to process is bigger. Some portion of memory is left unused,
as it cannot be used by another process.

The following diagram shows how fragmentation can cause waste of memory and a compaction
technique can be used to create more free memory out of fragmented memory −

External fragmentation can be reduced by compaction or shuffle memory contents to place all free
memory together in one large block. To make compaction feasible, relocation should be dynamic.

The internal fragmentation can be reduced by effectively assigning the smallest partition but large
enough for the process.

Paging

A computer can address more memory than the amount physically installed on the system. This
extra memory is actually called virtual memory and it is a section of a hard that's set up to emulate
the computer's RAM. Paging technique plays an important role in implementing virtual memory.

Paging is a memory management technique in which process address space is broken into blocks of
the same size called pages (size is power of 2, between 512 bytes and 8192 bytes). The size of the
process is measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory
called frames and the size of a frame is kept the same as that of a page to have optimum utilization
of the main memory and to avoid external fragmentation.

Address Translation

Page address is called logical address and represented by page numberand the offset.

Logical Address = Page number + page offset

Frame address is called physical address and represented by a frame number and the offset.

Physical Address = Frame number + page offset

A data structure called page map table is used to keep track of the relation between a page of a
process to a frame in physical memory.

When the system allocates a frame to any page, it translates this logical address into a physical
address and create entry into the page table to be used throughout execution of the program.

When a process is to be executed, its corresponding pages are loaded into any available memory
frames. Suppose you have a program of 8Kb but your memory can accommodate only 5Kb at a
given point in time, then the paging concept will come into picture. When a computer runs out of
RAM, the operating system (OS) will move idle or unwanted pages of memory to secondary
memory to free up RAM for other processes and brings them back when needed by the program.

This process continues during the whole execution of the program where the OS keeps removing
idle pages from the main memory and write them onto the secondary memory and bring them back
when required by the program.

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging −

• Paging reduces external fragmentation, but still suffers from internal fragmentation.

• Paging is simple to implement and assumed as an efficient memory management technique.

• Due to equal size of the pages and frames, swapping becomes very easy.

• Page table requires extra memory space, so may not be good for a system having small
RAM.

Segmentation

Segmentation is a memory management technique in which each job is divided into several
segments of different sizes, one for each module that contains pieces that perform related functions.
Each segment is actually a different logical address space of the program.

When a process is to be executed, its corresponding segmentation are loaded into non-contiguous
memory though every segment is loaded into a contiguous block of available memory.

Segmentation memory management works very similar to paging but here segments are of
variable-length where as in paging pages are of fixed size.

A program segment contains the program's main function, utility functions, data structures, and so
on. The operating system maintains a segment map table for every process and a list of free
memory blocks along with segment numbers, their size and corresponding memory locations in
main memory. For each segment, the table stores the starting address of the segment and the length
of the segment. A reference to a memory location includes a value that identifies a segment and an
offset.

Address translation through segmentation

Fig. Address translation through segmentation

Translation lookaside buffer (TLB)

A translation lookaside buffer (TLB) is a memory cache that stores recent translations of virtual
memory to physical addresses for faster retrieval.

When a virtual memory address is referenced by a program, the search starts in the CPU. First,
instruction caches are checked. If the required memory is not in these very fast caches, the system
has to look up the memory’s physical address. At this point, TLB is checked for a quick reference
to the location in physical memory.

http://searchstorage.techtarget.com/definition/virtual-memory
http://searchstorage.techtarget.com/definition/virtual-memory
http://whatis.techtarget.com/definition/physical-address
http://whatis.techtarget.com/definition/processor

When an address is searched in the TLB and not found, the physical memory must be searched
with a memory page crawl operation. As virtual memory addresses are translated, values
referenced are added to TLB. When a value can be retrieved from TLB, speed is enhanced because
the memory address is stored in the TLB on processor. Most processors include TLBs to increase
the speed of virtual memory operations through the inherent latency-reducing proximity as well as
the high-running frequencies of current CPU’s.

TLBs also add the support required for multi-user computers to keep memory separate, by having a
user and a supervisor mode as well as using permissions on read and write bits to enable sharing.

TLBs can suffer performance issues from multitasking and code errors. This performance
degradation is called a cache thrash. Cache thrash is caused by an ongoing computer activity that
fails to progress due to excessive use of resources or conflicts in the caching system.

Fig. TLB

http://searchsoftwarequality.techtarget.com/definition/cache-thrash

Questions

▪ Multiple choice questions.

1. CPU fetches the instruction from memory according to the value of
a) program counter
b) status register
c) instruction register
d) program status word

2. Which one of the following is the address generated by CPU?
a) physical address
b) absolute address
c) logical address
d) none of the mentioned

3. 4. Run time mapping from virtual to physical address is done by
a) Memory management unit
b) CPU
c) PCI
d) None of the mentioned

4. 5. Memory management technique in which system stores and retrieves data from
secondary storage for use in main memory is called
a) fragmentation
b) paging
c) mapping
d) none of the mentioned

5. What is compaction?
a) a technique for overcoming internal fragmentation
b) a paging technique
c) a technique for overcoming external fragmentation
d) a technique for overcoming fatal error

6. Physical memory is broken into fixed-sized blocks called ________

a) frames
b) pages
c) backing store

d) none of the mentioned

7. 2. Logical memory is broken into blocks of the same size called _________
a) frames
b) pages
c) backing store
d) none of the mentioned

8. 3. Every address generated by the CPU is divided into two parts :
a) frame bit & page number
b) page number & page offset
c) page offset & frame bit
d) frame offset & page offset

9. The size of a page is typically :
a) varied
b) power of 2
c) power of 4
d) none of the mentioned

10. The operating system maintains a ______ table that keeps track of how many frames have
been allocated, how many are there, and how many are available.
a) page
b) mapping
c) frame
d) memory

▪ Short answer type question.

1. What is meant by External Fragmentation and Internal Fragmentation?
2. What is meant by Paging? Give its advantages?
3. What is meant by Swapping?
4. What is meant by Memory Compaction?

▪ Long answer type question.

1. Explain paging technique in detail.
2. Explain Segmentation technique in detail.
3. How TLB can be used in Paging?
4. What do you mean by external and internal fragmentation?
5. What is compaction? Why it is used?

MODULE: 4

VIRTUAL MEMORY

LECTURE: 1

Virtual Memory is a storage allocation scheme in which secondary memory can be addressed as
though it were part of main memory. The addresses a program may use to reference memory are
distinguished from the addresses the memory system uses to identify physical storage sites, and
program generated addresses are translated automatically to the corresponding machine addresses.
The size of virtual storage is limited by the addressing scheme of the computer system and amount
of secondary memory is available not by the actual number of the main storage locations.

It is a technique that is implemented using both hardware and software. It maps memory addresses
used by a program, called virtual addresses, into physical addresses in computer memory.

1. All memory references within a process are logical addresses that are dynamically
translated into physical addresses at run time. This means that a process can be swapped in
and out of main memory such that it occupies different places in main memory at different
times during the course of execution.

2. A process may be broken into number of pieces and these pieces need not be continuously
located in the main memory during execution. The combination of dynamic run-time addres
translation and use of page or segment table permits this

Modern microprocessors intended for general-purpose use, a memory management unit, or MMU,
is built into the hardware. The MMU's job is to translate virtual addresses into physical addresses.
A basic example is given below –

Fig: The MMU's job is to translate virtual addresses into physical addresses

Demand paging:

Virtual memory is commonly implemented by demand paging. It can also be implemented in a
segmentation system. Demand segmentation can also be used to provide virtual memory.

A demand paging system is quite similar to a paging system with swapping where processes reside
in secondary memory and pages are loaded only on demand, not in advance. When a context
switch occurs, the operating system does not copy any of the old program’s pages out to the disk or

any of the new program’s pages into the main memory Instead, it just begins executing the new

program after loading the first page and fetches that program’s pages as they are referenced.

The Demand Paging is also same with the Simple Paging. But the Main Difference is that in the
Demand Paging Swapping is used. Means all the Pages will be in and out from the Memory when
they are required. When we specify a Process for the Execution then the Processes is stored firstly
on the Secondary Memory which is also known as the Hard Disk.

Fig: Swapping

But when they are required then they are Swapped Backed into the Memory and when a Process is
not used by the user then they are Temporary Swapped out from the Memory. Means they are
Stored on the Disk and after that they are Copied into the Memory.

So Demand Paging is the Concept in which a Process is Copied into the Logical Memory from the
Physical Memory when we needs them. A Process can load either Entire, Copied into the Main
Memory or the part of single Process is copied into the Memory so that is only the single Part of
the Process is copied into the Memory then this is also called as the Lazy Swapping.

For Swapping the Process from the Main Memory or from the Physical Memory, a Page Table
must be used. The Page Table is used for Storing the Entries which Contains the Page or Process
Number and also the offset Number which indicates the address of the Process where a Process is
Stored and there will also be the Special or Extra Bit which is also Known as the Flag Bit which
indicates whether the Page is Stored into the Physical Memory.

The Page Table Contains two Entries those are used as valid and invalid means whether the
Process is Stored into the Page Table. Or Whether the Demand Program is Stored into the Physical
Memory So that they can be easily swapped. If the Requested Program is not stored into the Page
Table then the Page Table must Contains the Entries as v and I means valid and invalid along the
Page Number.

When a user Request for any Operation then the Operating System performs the following
instructions:-

1) First of all this will fetch all the instructions from the Physical Memory into the Logical
Memory.
2) Decode all the instructions means this will find out which Operation has to be performed on the
instructions.
3) Perform Requested Operation.
4) Stores the Result into the Logical Memory and if needed the Results will be Stored into the
Physical Memory.

Fig: Demand paging Example

Advantages

Following are the advantages of Demand Paging −

• Large virtual memory.
• More efficient use of memory.
• There is no limit on degree of multiprogramming.

Disadvantages

• Number of tables and the amount of processor overhead for handling page interrupts are
greater than in the case of the simple paged management techniques.

LECTURE: 2

PAGE FAULTS

While executing a program, if the program references a page which is not available in the main
memory because it was swapped out a little ago, the processor treats this invalid memory reference
as a page fault and transfers control from the program to the operating system to demand the page
back into the memory.

.
 Fig: Page faults

1. If CPU try to refer a page that is currently not available in the main memory, it generates an
interrupt indicating memory access fault.

2. The OS puts the interrupted process in a blocking state. For the execution to proceed the OS
must bring the required page into the memory.

3. The OS will search for the required page in the logical address space.
4. The required page will be brought from logical address space to physical address space. The

page replacement algorithms are used for the decision making of replacing the page in
physical address space.

5. The page table will updated accordingly.
6. The signal will be sent to the CPU to continue the program execution and it will place the

process back into ready state.

Pure Demand paging:

There are cases when no pages are loaded into the memory initially, pages are only loaded when
demanded by the process by generating page faults. This is called Pure Demand Paging.

 Demand Paging.

 Pure Demand Paging.

In demand paging, a page is not loaded into
main memory until it is needed

In pure demand paging, even a single
page is not loaded into memory
initially. Hence pure demand paging
causes a page fault. Page fault, the
situation in which the page is not
available whenever a processor needs
to execute it.

In Demand paging follows that pages should
only be brought into memory if the executing
process demands them

while in pure demand
paging swapping, where all memory
for a process is swapped from
secondary storage to main memory
during the process startup.

PERFORMANCE OF DEMAND PAGING

LECTURE: 3

1. Effective Access Time (EAT) for a demand-paged memory.
2. Memory Access Time (ma) for most computers now ranges from 10 to 200 nanoseconds.
3. If there is no page fault, then EAT = ma.
4. If there is page fault, then
5. EAT = (1 – p) x (ma) + p x (page-fault time).
 p: the probability of a page fault (0 ≤p ≤1),
 we expect p to be close to zero (a few page faults).
6. If p=0 then no page faults, but if p=1 then every reference is a fault. If a page fault occurs, we
must first read the relevant page from disk, and then access the desired word.
7. We are faced with three major components of the page-fault service time:
a. Service the page-fault interrupt.
b. Read in the page.
c. Restart the process.
8.A typical hard disk has: An average latency of 8 milliseconds. A seek of 15 milliseconds.
 A transfer time of 1 milliseconds. Total paging time = (8+15+1)= 24 milliseconds, including
hardware and software time, but no queuing (wait) time.

Example 1:

Assume an average page-fault service time of 25 milliseconds (10-3), and a Memory Access Time
of 100 nanoseconds (10-9). Find the Effective Access Time?

•Solution: Effective Access Time (EAT)
= (1 – p) x (ma) + p x (page fault time)
= (1 – p) x 100 + p x 25,000,000
= 100 – 100 x p + 25,000,000 x p
= 100 + 24,999,900 x p.

•Note: The Effective Access Time is directly proportional to
the page-fault rate.

PAGE REPLACEMENT ALGORITHM
LECTURE: 3

Page Replacement Algorithm

Page replacement algorithms are the techniques using which an Operating System decides which
memory pages to swap out, write to disk when a page of memory needs to be allocated. Paging
happens whenever a page fault occurs and a free page cannot be used for allocation purpose
accounting to reason that pages are not available or the number of free pages is lower than required
pages.

When the page that was selected for replacement and was paged out, is referenced again, it has to
read in from disk, and this requires for I/O completion. This process determines the quality of the
page replacement algorithm: the lesser the time waiting for page-ins, the better is the algorithm.

Fig: Page Replacement Algorithm

The page-fault service time is now modified to include page replacement:
1. Find the location of the desired page on the disk.
2. Find a free frame:

–If there is a free frame use it.
–Otherwise, use a page-replacement algorithm to
select a victim frame.
–Write the victim page to the disk; change the page and frame tables accordingly.

3. Read the desired page into the newly free frame;
change the page and frame tables.
4. Restart the user process

First In First Out (FIFO) algorithm

• Oldest page in main memory is the one which will be selected for replacement.
• Easy to implement, keep a list, replace pages from the tail and add new pages at the head.

Optimal Page algorithm

• An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An
optimal page-replacement algorithm exists, and has been called OPT or MIN.

• Replace the page that will not be used for the longest period of time. Use the time when a
page is to be used.

Least Recently Used (LRU) algorithm

• Page which has not been used for the longest time in main memory is the one which will be
selected for replacement.

• Easy to implement, keep a list, replace pages by looking back into time.

THRASHING

LECTURE: 3

Too much of this leads to a condition called Thrashing. The system spends most of its time
swapping pages rather than executing instructions.

Causes of Thrashing :

1. High degree of multiprogramming : If the number of processes keeps on increasing in the
memory than number of frames allocated to each process will be decreased. So, less

number of frames will be available to each process. Due to this, page fault will occur more
frequently and more CPU time will be wasted in just swapping in and out of pages and the
utilization will keep on decreasing.

For example:
Let free frames = 400
Case 1: Number of process = 100
Then, each process will get 4 frames.

Case 2: Number of process = 400
Each process will get 1 frame.
Case 2 is a condition of thrashing, as the number of processes are increased,frames per
process are decreased. Hence CPU time will be consumed in just swapping pages.

2. Lacks of Frames:If a process has less number of frames then less pages of that process will
be able to reside in memory and hence more frequent swapping in and out will be required.
This may lead to thrashing. Hence sufficient amount of frames must be allocated to each
process in order to prevent thrashing.

Recovery of Thrashing :

• Do not allow the system to go into thrashing by instructing the long term scheduler not to
bring the processes into memory after the threshold.

• If the system is already in thrashing then instruct the mid term schedular to suspend some of
the processes so that we can recover the system from thrashing.

References:
 [1] http://www.dauniv.ac.in/downloads/CArch_PPTs/CompArchCh12L01MultProcArch.pdf
 [2] https://www.tutorialspoint.com

 [3] www.geeksforgeeks.org/operating-system-page-replacement-algorithm

 [4] http://www2.latech.edu/~box/os/ch08.pdf

 [5] http://www.eecg.toronto.edu/~jacobsen/os/2007s/memory.pdf

 MCQ Questions:

1. Because of virtual memory, the memory can be shared among
a) processes
b) threads
c) instructions
d) none of the mentioned
2. _____ is the concept in which a process is copied into main memory from the
secondary memory according to the requirement.
a) Paging
b) Demand paging
c) Segmentation

http://www.dauniv.ac.in/downloads/CArch_PPTs/CompArchCh12L01MultProcArch.pdf
https://www.tutorialspoint.com/
http://www.geeksforgeeks.org/operating-system-page-replacement-algorithm
http://www2.latech.edu/~box/os/ch08.pdf
http://www.eecg.toronto.edu/~jacobsen/os/2007s/memory.pdf

d) Swapping
3. The pager concerns with the
a) individual page of a process
b) entire process
c) entire thread
d) first page of a process
4. Swap space exists in
a) primary memory
b) secondary memory
c) cpu
d) none of the mentioned
5. When a program tries to access a page that is mapped in address space but not
loaded in physical memory, then
a) segmentation fault occurs
b) fatal error occurs
c) page fault occurs
d) no error occurs
6. Effective access time is directly proportional to
a) page-fault rate
b) hit ratio
c) memory access time
d) none of the mentioned
7. In FIFO page replacement algorithm, when a page must be replaced
a) oldest page is chosen
b) newest page is chosen
c) random page is chosen
d) none of the mentioned
8. Which algorithm chooses the page that has not been used for the longest period of
time whenever the page required to be replaced?
a) first in first out algorithm
b) additional reference bit algorithm
c) least recently used algorithm
d) counting based page replacement algorithm
9. A process is thrashing if
a) it is spending more time paging than executing
b) it is spending less time paging than executing
c) page fault occurs
d) swapping cannot take place
10. Working set model for page replacement is based on the assumption of
a) modularity
b) locality
c) globalization
d) random access

Short Answer Type Questions:
2. What is the need of Virtual Memory?
3. Write down the advantages and disadvantages of virtual memory?
4. What is lazy swapper?
5. What is swap space?
6. What is page fault?
7. What do you mean by Pure Demand paging?
8. Differentiate between: Demand Paging VS Pure Demand paging
9. Why page replacement algorithm important?
10. What do mean by Belady’s anomaly?
11. What is thrashing?

Assignment:

1. Explain how do you implement virtual memory by demand paging? What is pure demand
paging?

2. Explain how a page fault occurs with diagram.
3. What is thrashing? Why thrashing occurs? How do you recover from Thrashing?
4. Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement algorithms, assuming
one, two, three, four, five, six, or seven frames? Remember all frames are initially empty,so
your first unique pages will all cost one fault each.
a)LRU replacement,
b)FIFO replacement,
c)Optimal replacement
5. Write Short Notes on:
a) Beladys anomaly
b) Frame allocation strategies
c) NRU (Not recently Used)
d) The Clock Page Replacement Algorithm
e)Thrashing

Module 5

LECTURE 1

➢ Hard disks drives are organized as a concentric stack of disks or ‘platters’.
➢ Each platter has 2 surfaces.
➢ Platter is made from aluminum, ceramic, or class, coated with a magnetic materials such as

iron oxide.

• Platters: The shiny rigid disks. Multiple platters increase storage without equivalent increase in

cost.
• Heads: The read/write heads of a hard drive. Disk assembly must be sealed µ-filtered.
• Tracks: Lanes centered around platters.
• Sectors / Clusters: Each track was divided into sectors. Several sectors form a cluster.

Cylinders: A grouping of the same tracks vertically through the stack of platters

LECTURE 2

Disk Scheduling Algorithms

INTRODUCTION

Disk scheduling is is done by operating systems to schedule I/O requests arriving for disk. Disk
scheduling is also known as I/O scheduling.

. PURPOSE

Disk scheduling is important because:

• Multiple I/O requests may arrive by different processes and only one I/O request can be
served at a time by disk controller. Thus other I/O requests need to wait in waiting queue
and need to be scheduled.

• Two or more request may be far from each other so can result in greater disk arm
movement.

• Hard drives are one of the slowest parts of computer system and thus need to be accessed in
an efficient manner.

There are many Disk Scheduling Algorithms but before discussing them let’s have a quick look at

some of the important terms:

• Seek Time:Seek time is the time taken to locate the disk arm to a specified track where the
data is to be read or write. So the disk scheduling algorithm that gives minimum average
seek time is better.

• Rotational Latency: Rotational Latency is the time taken by the desired sector of disk to
rotate into a position so that it can access the read/write heads. So the disk scheduling
algorithm that gives minimum rotational latency is better.

• Transfer Time: Transfer time is the time to transfer the data. It depends on the rotating
speed of the disk and number of bytes to be transferred.

• Disk Access Time: Disk Access Time is:

Disk Access Time = Seek Time +

 Rotational Latency + Transfer Time

• Disk Response Time: Response Time is the average of time spent by a request waiting to
perform its I/O operation. Average Response time is the response time of the all requests.
Variance Response Time is measure of how individual request are serviced with respect to
average response time. So the disk scheduling algorithm that gives minimum variance
response time is better.

LECTURE 2

TYPES OF DISK SCHEDULING ALGORITHMS

Although there are other algorithms that reduce the seek time of all requests, but we will only
concentrate on the following disk scheduling algorithms:

i.First Come-First Serve (FCFS)
ii.Shortest Seek Time First (SSTF)
iii.Elevator (SCAN)
iv.Circular SCAN (C-SCAN)
v.LOOK
vi.C-LOOK

These algorithms are not hard to understand, but they can confuse someone because they are so
similar. What we are striving for by using these algorithms is keeping Head Movements (# tracks)
to the least amount as possible. The less the head has to move the faster the seek time will be. I will
show you and explain to you why C-LOOK is the best algorithm to use in trying to establish less
seek time.
Given the following queue -- 95, 180, 34, 119, 11, 123, 62, 64 with the Read-write head initially at
the track 50 and the tail track being at 199 let us now discuss the different algorithms.

Fig: First Come -First Serve (FCFS)

1. First Come -First Serve (FCFS) All incoming requests are placed at the end of the queue.
Whatever number that is next in the queue will be the next number served. Using this algorithm
doesn't provide the best results. To determine the number of head movements you would simply
find the number of tracks it took to move from one request to the next. For this case it went from
50 to 95 to 180 and so on. From 50 to 95 it moved 45 tracks. If you tally up the total number of
tracks you will find how many tracks it had to go through before finishing the entire request. In this
example, it had a total head movement of 640 tracks. The disadvantage of this algorithm is noted
by the oscillation from track 50 to track 180 and then back to track 11 to 123 then to 64. As you
will soon see, this is the worse algorithm that one can use.

Fig: Shortest Seek Time First (SSTF)

2. Shortest Seek Time First (SSTF) :In this case request is serviced according to next shortest
distance. Starting at 50, the next shortest distance would be 62 instead of 34 since it is only 12
tracks away from 62 and 16 tracks away from 34. The process would continue until all the process
are taken care of. For example the next case would be to move from 62 to 64 instead of 34 since
there are only 2 tracks between them and not 18 if it were to go the other way. Although this seems
to be a better service being that it moved a total of 236 tracks, this is not an optimal one. There is a
great chance that starvation would take place. The reason for this is if there were a lot of requests
close to eachother the other requests will never be handled since the distance will always be
greater.

Fig:Elevator (SCAN)

3. Elevator (SCAN) :This approach works like an elevator does. It scans down towards the nearest
end and then when it hits the bottom it scans up servicing the requests that it didn't get going down.
If a request comes in after it has been scanned it will not be serviced until the process comes back
down or moves back up. This process moved a total of 230 tracks. Once again this is more optimal
than the previous algorithm, but it is not the best.

Fig:Circular Scan (C-SCAN)

4. Circular Scan (C-SCAN) :Circular scanning works just like the elevator to some extent. It begins
its scan toward the nearest end and works it way all the way to the end of the system. Once it hits
the bottom or top it jumps to the other end and moves in the same direction. Keep in mind that the
huge jump doesn't count as a head movement. The total head movement for this algorithm is only
187 track, but still this isn't the mose sufficient.

Fig:C-LOOK

5. C-LOOK :This is just an enhanced version of C-SCAN. In this the scanning doesn't go past the
last request in the direction that it is moving. It too jumps to the other end but not all the way to the
end. Just to the furthest request. C-SCAN had a total movement of 187 but this scan (C-LOOK)
reduced it down to 157 tracks.

From this you were able to see a scan change from 644 total head movements to just 157. You
should now have an understanding as to why your operating system truly relies on the type of
algorithm it needs when it is dealing with multiple processes.

LECTURE 3

FILE CONCEPT

File: File concept, access methods, directory structure, file system structure, UNIX file structure,
allocation methods (contiguous, linked, indexed), free-space management (bit vector).
[2L]

File system

File system is a method for storing and organizing computer files and the data they contain to make
it easy to find and access them.

Most file systems make use of an underlying data storage device such as Hard Disks that offers
access to an array of fixed-size blocks which is the smallest logical amount of disk space that can
be allocated to hold a file.

File systems typically have directories which associate file names with files, usually by connecting
the file name to an index in a file allocation table of some sort, such as the FAT in a DOS file
system, or an inode in a Unix-like file system.
File names are simple strings, and per-file Metadata is maintained which is the bookkeeping
information, typically associated with each file within a file system.

Metadata could contain file attributes such as file size, data and time of creation or modification of
the file, owner of the file, access permissions etc.

Types of File system

File system types can be classified into disk file systems, network file systems and flash file
systems.

A disk file system is a file system designed for the storage of files on a data storage device, most
commonly a disk drive e.g. FAT, NTFS, etx2, ext3 etc.

A network file system is a file system that acts as a client for a remote file access protocol,
providing access to files on a server e.g. NFS, SMB etc.

A flash file system is a file system designed for storing files on flash memory devices.

File system and OS

Operating systems provide a file system, as a file system is an integral part of any modern
operating system.

Windows Operating system supports FAT and NTFS File Systems

Linux popularly supports ext2 and ext3 File Systems

Other flavors of Operating Systems may support other File Systems like UFS in many UNIX
Operating Systems and HFS in MAC OS X.

All Operating Systems provide a user interface like Command Line (CLI) or File Browser to access
and manage File System information.

File Allocation Table (FAT)

The File Allocation Table (FAT) file system was initially developed for DOS Operating System
and was later used and supported by all versions of Microsoft Windows.

It was an evolution of Microsoft's earlier operating system MS-DOS and was the predominant File
System in Windows versions like 95, 98, ME etc.

All the latest versions of Windows still support FAT file system although it may not be popular.

FAT had various versions like FAT12, FAT16 and FAT32. Successive versions of FAT were
named after the number of bits in the table: 12, 16 and 32.

NTFS

NTFS or the NT File System was introduced with the Windows NT operating system.

NTFS allows ACL-based permission control which was the most important feature missing in FAT
File System.

Later versions of Windows like Windows 2000, Windows XP, Windows Server 2003, Windows
Server 2008, and Windows Vista also use NTFS.

NTFS has several improvements over FAT such as security access control lists (ACL) and file
system journaling.

File System in Linux

Linux supports many different file systems, but common choices for the system disk include the
ext family (such as ext2 and ext3), XFS, JFS and ReiserFS.

The ext3 or third extended file system is a journaled file system and is the default file system for
many popular Linux distributions .

It is an upgrade of its predecessor ext2 file system and among other things it has added the
journouling feature.

A journaling file system is a file system that logs changes to a journal (usually a circular log in a
dedicated area) before committing them to the main file system. Such file systems are less likely to
become corrupted in the event of power failure or system crash.

File Structure:

• Three kinds of files

a.byte sequence

b.record sequence

c.tree

File Types

(a) An executable file (b) An archive

File Access

• Sequential access

– read all bytes/records from the beginning

– cannot jump around, could rewind or back up

– convenient when medium was mag tape

• Random access

– bytes/records read in any order

– essential for data base systems

– read can be …

• move file marker (seek), then read or …

• read and then move file marker
UNIX file structure

The UNIX V7 File System:

Fig: The UNIX V7 File System

File Allocation Methods
The allocation methods define how the files are stored in the disk blocks. There are three main disk
space or file allocation methods.

• Contiguous Allocation
• Linked Allocation
• Indexed Allocation

The main idea behind these methods is to provide:

• Efficient disk space utilization.
• Fast access to the file blocks.

All the three methods have their own advantages and disadvantages as discussed below:

1. Contiguous Allocation

In this scheme, each file occupies a contiguous set of blocks on the disk. For example, if a file
requires n blocks and is given a block b as the starting location, then the blocks assigned to the file
will be: b, b+1, b+2,……b+n-1. This means that given the starting block address and the length of
the file (in terms of blocks required), we can determine the blocks occupied by the file.
The directory entry for a file with contiguous allocation contains

• Address of starting block
• Length of the allocated portion.

The file ‘mail’ in the following figure starts from the block 19 with length = 6 blocks. Therefore, it occupies
19, 20, 21, 22, 23, 24 blocks.

Advantages:

• Both the Sequential and Direct Accesses are supported by this. For direct access, the
address of the kth block of the file which starts at block b can easily be obtained as (b+k).

• This is extremely fast since the number of seeks are minimal because of contiguous
allocation of file blocks.

Disadvantages:

• This method suffers from both internal and external fragmentation. This makes it inefficient
in terms of memory utilization.

• Increasing file size is difficult because it depends on the availability of contiguous memory
at a particular instance.

2. Linked List Allocation

• In this scheme, each file is a linked list of disk blocks which need not be contiguous. The
disk blocks can be scattered anywhere on the disk.
The directory entry contains a pointer to the starting and the ending file block. Each block
contains a pointer to the next block occupied by the file.

• The file ‘jeep’ in following image shows how the blocks are randomly distributed. The last

block (25) contains -1 indicating a null pointer and does not point to any other block.

Advantages:

• This is very flexible in terms of file size. File size can be increased easily since the system
does not have to look for a contiguous chunk of memory.

• This method does not suffer from external fragmentation. This makes it relatively better in
terms of memory utilization.

Disadvantages:

• Because the file blocks are distributed randomly on the disk, a large number of seeks are
needed to access every block individually. This makes linked allocation slower.

• It does not support random or direct access. We can not directly access the blocks of a file.
A block k of a file can be accessed by traversing k blocks sequentially (sequential access)
from the starting block of the file via block pointers.

• Pointers required in the linked allocation incur some extra overhead.

3. Indexed Allocation

• In this scheme, a special block known as the Index block contains the pointers to all the
blocks occupied by a file. Each file has its own index block. The ith entry in the index block
contains the disk address of the ith file block. The directory entry contains the address of
the index block as shown in the image:

Advantages:

• This supports direct access to the blocks occupied by the file and therefore provides fast
access to the file blocks.

• It overcomes the problem of external fragmentation.

Disadvantages:

• The pointer overhead for indexed allocation is greater than linked allocation.
• For very small files, say files that expand only 2-3 blocks, the indexed allocation would

keep one entire block (index block) for the pointers which is inefficient in terms of memory
utilization. However, in linked allocation we lose the space of only 1 pointer per block.

FREE-SPACE MANAGEMENT

Since disk space is limited, we need to reuse the space from deleted files for new files, if possible.
To keep track of free disk space, the system maintains a free-space list. The free-space list records
all free disk blocks – those not allocated to some file or directory. To create a file, we search the
free-space list for the required amount of space, and allocate that space to the new file. This space
is then removed from the free-space list. When a file is deleted, its disk space is added to the free-
space list

1. Bit Vector

 The free-space list is implemented as a bit map or bit vector.

 Each block is represented by 1 bit. If the block is free, the bit is 1; if the block is allocated,
the bit is 0.

 For example, consider a disk where block 2,3,4,5,8,9,10,11,12,13,17,18,25,26 and 27 are
free, and the rest of the block are allocated. The free space bit map would be

001111001111110001100000011100000 …

 The main advantage of this approach is its relatively simplicity and efficiency in finding
the first free block, or n consecutive free blocks on the disk.

Example

The Intel family starting with the 80386 and the Motorola family starting with the 68020
(processors that have powered PCs and Macintosh systems, respectively) have instructions that
return the offset in a word of the first bit with the value 1. In fact, the Apple Macintosh operating
system uses the bit-vector method to allocate disk space.

The calculation of the block number is

(number of bits per word) x (number of 0-value words) + offset of first 1 bit.

Unfortunately, bit vectors are inefficient unless the entire vector is kept in main memory
(and is written to disk occasionally for recovery needs). Keeping it in main memory is possible for
smaller disks, such as on microcomputers, but not for larger ones.

A 1.3-GB disk with 512-byte blocks would need a bit map of over 332 KB to track its free blocks.
Clustering the blocks in groups of four reduces this number to over 83 KB per disk.

2. Linked List

 Another approach to free-space management is to link together all the free disk blocks, keeping a
pointer to the first free block in a special location on the disk and caching it in memory.

This first block contains a pointer to the next free disk block, and so on.

In our example, we would keep a pointer to block 2, as the first free block. Block 2 would contain
a pointer to block 3, which would point to block 4, which would point to block 5, which would
point to block 8, and so on.

 However, this scheme is not efficient; to traverse the list, we must read each block, which
requires substantial I/O time.

 The FAT method incorporates free-block accounting data structure. No separate method is
needed.

3. Grouping

 A modification of the free-list approach is to store the addresses of n free blocks in the
first free block.The first n-1 of these blocks are actually free.

The last block contains the addresses of another n free blocks, and so on. The importance
of this implementation is that the addresses of a large number of free blocks can be found
quickly.

4. Counting

 We can keep the address of the first free block and the number n of free contiguous blocks
that follow the first block.

Each entry in the free-space list then consists of a disk address and a count. Although each
entry requires more space than would a simple disk address, the overall list will be shorter,
as long as the count is generally greater than one.

Online Courseware for B.Tech Computer Science and Engineering Programme (Autonomy)
Paper Name: Operating System

Paper Code: CS502

113

I/O MANAGEMENT

LECTURE 1

One of the important jobs of an Operating System is to manage various I/O devices including
mouse, keyboards, touch pad, disk drives, display adapters, USB devices, Bit-mapped screen,
LED, Analog-to-digital converter, On/off switch, network connections, audio I/O, printers
etc.

An I/O system is required to take an application I/O request and send it to the physical
device, then take whatever response comes back from the device and send it to the
application. I/O devices can be divided into two categories −

• Block devices − A block device is one with which the driver communicates by

sending entire blocks of data. For example, Hard disks, USB cameras, Disk-On-Key
etc.

• Character devices − A character device is one with which the driver communicates

by sending and receiving single characters (bytes, octets). For example, serial ports,
parallel ports, sounds cards etc

Device Controllers

Device drivers are software modules that can be plugged into an OS to handle a particular
device. Operating System takes help from device drivers to handle all I/O devices.

The Device Controller works like an interface between a device and a device driver. I/O units
(Keyboard, mouse, printer, etc.) typically consist of a mechanical component and an
electronic component where electronic component is called the device controller.

There is always a device controller and a device driver for each device to communicate with
the Operating Systems. A device controller may be able to handle multiple devices. As an
interface its main task is to convert serial bit stream to block of bytes, perform error
correction as necessary.

Any device connected to the computer is connected by a plug and socket, and the socket is
connected to a device controller. Following is a model for connecting the CPU, memory,
controllers, and I/O devices where CPU and device controllers all use a common bus for
communication.

Online Courseware for B.Tech Computer Science and Engineering Programme (Autonomy)
Paper Name: Operating System

Paper Code: CS502

114

Synchronous vs asynchronous I/O

• Synchronous I/O − In this scheme CPU execution waits while I/O proceeds
• Asynchronous I/O − I/O proceeds concurrently with CPU execution

Communication to I/O Devices

The CPU must have a way to pass information to and from an I/O device. There are three
approaches available to communicate with the CPU and Device.

• Special Instruction I/O
• Memory-mapped I/O
• Direct memory access (DMA)

Special Instruction I/O

This uses CPU instructions that are specifically made for controlling I/O devices. These
instructions typically allow data to be sent to an I/O device or read from an I/O device.

Memory-mapped I/O

When using memory-mapped I/O, the same address space is shared by memory and I/O
devices. The device is connected directly to certain main memory locations so that I/O device
can transfer block of data to/from memory without going through CPU.

Online Courseware for B.Tech Computer Science and Engineering Programme (Autonomy)
Paper Name: Operating System

Paper Code: CS502

115

While using memory mapped IO, OS allocates buffer in memory and informs I/O device to
use that buffer to send data to the CPU. I/O device operates asynchronously with CPU,
interrupts CPU when finished.

The advantage to this method is that every instruction which can access memory can be used
to manipulate an I/O device. Memory mapped IO is used for most high-speed I/O devices like
disks, communication interfaces.

Online Courseware for B.Tech Computer Science and Engineering Programme (Autonomy)
Paper Name: Operating System

Paper Code: CS502

116

DIRECT MEMORY ACCESS (DMA)

LECTURE 2

Slow devices like keyboards will generate an interrupt to the main CPU after each byte is
transferred. If a fast device such as a disk generated an interrupt for each byte, the operating
system would spend most of its time handling these interrupts. So a typical computer uses
direct memory access (DMA) hardware to reduce this overhead.

Direct Memory Access (DMA) means CPU grants I/O module authority to read from or write
to memory without involvement. DMA module itself controls exchange of data between main
memory and the I/O device. CPU is only involved at the beginning and end of the transfer
and interrupted only after entire block has been transferred.

Direct Memory Access needs a special hardware called DMA controller (DMAC) that
manages the data transfers and arbitrates access to the system bus. The controllers are
programmed with source and destination pointers (where to read/write the data), counters to
track the number of transferred bytes, and settings, which includes I/O and memory types,
interrupts and states for the CPU cycles.

Online Courseware for B.Tech Computer Science and Engineering Programme (Autonomy)
Paper Name: Operating System

Paper Code: CS502

117

The operating system uses the DMA hardware as follows −

Step Description
1 Device driver is instructed to transfer disk data to a buffer address X.
2 Device driver then instruct disk controller to transfer data to buffer.
3 Disk controller starts DMA transfer.
4 Disk controller sends each byte to DMA controller.

5 DMA controller transfers bytes to buffer, increases the memory address, decreases the
counter C until C becomes zero.

6 When C becomes zero, DMA interrupts CPU to signal transfer completion.

Polling vs Interrupts I/O

A computer must have a way of detecting the arrival of any type of input. There are two ways
that this can happen, known as polling and interrupts. Both of these techniques allow the
processor to deal with events that can happen at any time and that are not related to the
process it is currently running.

Polling I/O

Polling is the simplest way for an I/O device to communicate with the processor. The process
of periodically checking status of the device to see if it is time for the next I/O operation, is
called polling. The I/O device simply puts the information in a Status register, and the
processor must come and get the information.

Most of the time, devices will not require attention and when one does it will have to wait
until it is next interrogated by the polling program. This is an inefficient method and much of
the processors time is wasted on unnecessary polls.

Compare this method to a teacher continually asking every student in a class, one after
another, if they need help. Obviously the more efficient method would be for a student to
inform the teacher whenever they require assistance.

Interrupts I/O

An alternative scheme for dealing with I/O is the interrupt-driven method. An interrupt is a
signal to the microprocessor from a device that requires attention.

A device controller puts an interrupt signal on the bus when it needs CPU’s attention when

CPU receives an interrupt, It saves its current state and invokes the appropriate interrupt
handler using the interrupt vector (addresses of OS routines to handle various events). When
the interrupting device has been dealt with, the CPU continues with its original task as if it
had never been interrupted.

Online Courseware for B.Tech Computer Science and Engineering Programme (Autonomy)
Paper Name: Operating System

Paper Code: CS502

118

MCQ Questions

1) Suppose a disk has 201 cylinders, numbered from 0 to 200. At some time the disk arm is at
cylinder 100, and there is a queue of disk access requests for cylinders 30, 85, 90, 100, 105,
110, 135 and 145. If Shortest-Seek Time First (SSTF) is being used for scheduling the disk
access, the request for cylinder 90 is serviced after servicing ____________ number of
requests. (GATE CS 2014
(A) 1
(B) 2
(C) 3
(D) 4
2) Consider an operating system capable of loading and executing a single sequential user
process at a time. The disk head scheduling algorithm used is First Come First Served
(FCFS). If FCFS is replaced by Shortest Seek Time First (SSTF), claimed by the vendor to
give 50% better benchmark results, what is the expected improvement in the I/O performance
of user programs? (GATE CS 2004)
(A) 50%
(B) 40%
(C) 25%
(D) 0%
3) Suppose the following disk request sequence (track numbers) for a disk with 100 tracks is
given: 45, 20, 90, 10, 50, 60, 80, 25, 70. Assume that the initial position of the R/W head is
on track 50. The additional distance that will be traversed by the R/W head when the Shortest
Seek Time First (SSTF) algorithm is used compared to the SCAN (Elevator) algorithm
(assuming that SCAN algorithm moves towards 100 when it starts execution) is _________
tracks
(A) 8
(B) 9
(C) 10
(D) 11

4.Write Short notes on:
a) Device Driver
b) DMA
c)Bit Vector
d) Polling I/O vs Interrupt I/O
e) Memory mapped I/O

Online Courseware for B.Tech Computer Science and Engineering Programme (Autonomy)
Paper Name: Operating System

Paper Code: CS502

119

Web/Video links:
[1] https://www.youtube.com/watch?v=qlH4-oHnBb8

[2] https://www.youtube.com/watch?v=59rEMnKWoS4

[3] https://www.youtube.com/watch?v=KNUJhZCQZ9c

[4] https://www.youtube.com/watch?v=6neHHkI0Z0o

[5] https://www.youtube.com/watch?v=bShqyf-hDfg

[6] https://www.youtube.com/watch?v=2quKyPnUShQ

[7] https://www.youtube.com/watch?v=ujoJ7J_l9cY

[8] https://www.youtube.com/watch?v=ZrMl-7QHg28&list=PLLDC70psjvq5hIT0kfr1sirNuees0NIbG&index=18

[9] https://www.youtube.com/watch?v=ygekh5ehxu4&list=PLLDC70psjvq5hIT0kfr1sirNuees0NIbG&index=17

[10] https://www.youtube.com/watch?v=2i2N_Qo_FyM&list=PLEbnTDJUr_If_BnzJkkN_J0Tl3iXTL8vq

https://www.youtube.com/watch?v=qlH4-oHnBb8
https://www.youtube.com/watch?v=59rEMnKWoS4
https://www.youtube.com/watch?v=KNUJhZCQZ9c
https://www.youtube.com/watch?v=6neHHkI0Z0o
https://www.youtube.com/watch?v=bShqyf-hDfg
https://www.youtube.com/watch?v=2quKyPnUShQ
https://www.youtube.com/watch?v=ujoJ7J_l9cY
https://www.youtube.com/watch?v=ZrMl-7QHg28&list=PLLDC70psjvq5hIT0kfr1sirNuees0NIbG&index=18
https://www.youtube.com/watch?v=ygekh5ehxu4&list=PLLDC70psjvq5hIT0kfr1sirNuees0NIbG&index=17
https://www.youtube.com/watch?v=2i2N_Qo_FyM&list=PLEbnTDJUr_If_BnzJkkN_J0Tl3iXTL8vq

	Introduction to Operating Systems
	Two Views of Operating System
	Operating System: User View
	Operating System: System View

	Operating System Management Tasks
	Functions of Operating System

	Evolution of Operating Systems
	Early Evolution
	Operating Systems - Late 1950s
	Operating Systems - In 1960s
	Supported OS Features by 1970s
	Accomplishments after 1970

	Types of Operating Systems
	Simple Batch Systems
	Advantages of Simple Batch Systems

	Multiprogramming Batch Systems
	Multiprocessor Systems
	Advantages of Multiprocessor Systems

	Desktop Systems
	Distributed Operating System
	Advantages Distributed Operating System
	Types of Distributed Operating Systems
	Client-Server Systems
	Peer-to-Peer Systems

	Real Time Operating System
	Handheld Systems
	Multiple Choice Questions
	i)Which one of the following is not shared by threads? a) program counter b) stack c) both program counter and stack d) none of the mentioned
	ii) A process can be a) single threaded b) multithreaded c) both single threaded and multithreaded d) none of the mentioned
	iii)If one thread opens a file with read privileges then a) other threads in the another process can also read from that file b) other threads in the same process can also read from that file c) any other thread can not read fro...
	v)When the event for which a thread is blocked occurs, a) thread moves to the ready queue b) thread remains blocked c) thread completes d) a new thread is provided vi) What is not a important part of security protection ? a) Large amount of RAM to sup...
	vii)What is used to protect network from outside internet access ? a) A trusted antivirus b) 24 hours scanning for virus c) Firewall to separate trusted and untrusted network d) Deny users access to websites which can potentially cause security leak
	viii) What is are two safe computing practices ? a) Not to open software from unknown vendors b) Open and execute programs in admin level/root c) Open and execute programs in presence of antivirus d) None of the mentioned
	ix)How do viruses avoid basic pattern matchof antivirus ? a) They are encrypted b) They act with special permissions c) They modify themselves d) None of the mentioned
	x) How does an antivirus of today identify viruses ? a) Previously known patterns b) It can detect unknown patterns c) It can take high priority to increase scanning speed d) None of the mentioned
	2. Short AnswerType Questions :-
	i)What is an operating system?
	ii)What are its main functions?
	iii)Describe system calls and its type
	vi)What is a Kernel?
	v)What are the main functions of a Kernel?
	vi)What are the different types of Kernel?
	vii)What is a command interpreter?
	Program
	Process Life Cycle
	Process Scheduling-
	Definition
	Process Scheduling Queues
	Some of the reasons to suspend a process are... 1.If one process is ready to excecute,but there is no space in the main memory,then it is suspended. 2.when one process in main memory which was blocked & there is another process ready to excecute,but w...
	Schedulers
	Long Term Scheduler
	Short Term Scheduler
	Medium Term Scheduler
	Comparison among Scheduler
	Context Switch
	Shared Memory Systems
	More on Inter Process Shared Memory

	Thread
	Advantages of Thread
	Difference between Process and Thread
	Types of Thread
	User Level Threads
	Advantages-
	Disadvantages-

	Kernel Level Threads
	Advantages
	Disadvantages

	Multithreading Models
	Many to Many Model
	Many to One Model
	One to One Model
	Difference between User-Level & Kernel-Level Thread

	CPU Scheduling
	CPU Scheduling: Dispatcher
	Types of CPU Scheduling
	Non-Preemptive Scheduling
	Preemptive Scheduling

	CPU Scheduling: Scheduling Criteria
	CPU Utilization
	Throughput
	Turnaround Time
	Waiting Time
	Load Average
	Response Time

	First Come First Serve (FCFS)
	Shortest Job Next (SJN)
	Priority Based Scheduling
	Shortest Remaining Time
	Round Robin Scheduling

	Multilevel Queue Scheduling
	Multilevel Feedback Queue Scheduling
	C.i)What do you know about interrupt?
	ii)What do you mean by a zombie process?
	iii)What is the basic difference between pre-emptive and non-pre-emptive scheduling.

	Module 3
	Process Synchronization
	Critical Section Problem
	Solution to Critical Section Problem
	1. Mutual Exclusion
	2. Progress
	3. Bounded Waiting

	Classical problems of synchronization
	Deadlock Detection

	 Process Termination
	 Resource Preemption

	Module 4
	Memory Management
	Translation lookaside buffer (TLB)
	Advantages
	Disadvantages
	PAGE REPLACEMENT ALGORITHM
	Page Replacement Algorithm
	First In First Out (FIFO) algorithm
	Optimal Page algorithm
	Least Recently Used (LRU) algorithm
	Disk Scheduling Algorithms

	File Allocation Methods
	Device Controllers
	Synchronous vs asynchronous I/O
	Communication to I/O Devices
	Special Instruction I/O
	Memory-mapped I/O

	DIRECT MEMORY ACCESS (DMA)
	Polling vs Interrupts I/O
	Polling I/O
	Interrupts I/O

