
GURUNANAK INSTITUTE OF TECHNOLOGY 

157/F, Nilgunj Road, Panihati 
Kolkata -700114 

Website: www.gnit.ac.in 
Email: info.gnit@jisgroup.org 

 
Approved by A.I.C.T.E., New Delhi 

Affiliated to MAKAUT, West Bengal 

 

 

 
Online Course Ware (OCW) 

 
Course: Computer Networks 

 
Course Level: Undergraduate 

 
Credit: 3 

 
Prepared by: 

 
Dr. Sangeeta Bhattacharya (CSE)   
 
Mr. Rafiqul Islam (CSE) 
 

 
 
  



 
 

Module-1 
 
This module is covered by 3 lectures. However, student read physical layer, communication part in their 
communication subjects thats why its not discussed in this topic. Only encoding part is included in Datalink 
layer chapter. 
 

 

Introduction: networks, layers and 
protocols 

 

1.1 Networking  
Networking supports communication between two or more programs running on physically distant ma-
chines. For example all the following require network support: 

 
• a WWW browser client using a WWW server, 

 
• mail from a user agent program to a remote mail box, 

 
• remote access to a data-base, 

 
• a remote shared file server system, 

 
• downloading an MP3 music file. 

 

1.2 Protocols  
To request any service or exchange any information between 2 programs there must be an agreed set of 
commands and data formats, this is a protocol. So, for example, the commands and data sent between a 
World Wide Web browser and a remote server are a protocol. The browser (probably) uses the GET 
command follow by the name of the required file (page), this protocol is recognised and understood by 
the web server program which responds appropriately. Similarly the format of packets sent between 
Ethernet cards and their drivers are a protocol. The programs exchanging messages are called peers. 

 

1.3 Networking layers 
 

Two very important concepts in understanding networking are protocols and service layers. Figure 1.1 is 
a simplified view of the layers of network service in TCP/IP.  

 
Application http Application 

eg. Web browser protocol eg. Web server 

Transport layer tcp Transport layer 

eg. TCP protocol eg. TCP 

Network Layer ip Network Layer 

eg. IP protocol eg. IP 

Data−link layer ethernet Data−link layer 

eg. Ethernet driver protocol eg. Ethernet driver 

hardware 
physical network 

hardware  

 
Figure 1.1: Layers and protocols 

 
 
 

1 



2 CHAPTER 1.  INTRODUCTION: NETWORKS, LAYERS AND PROTOCOLS 

 
1.3.1 The functions of the layers  
Each layer in the simple model provides facilities and carries out certain tasks: 

 
Hardware Bits of wire that can carry bits? 

 
Data-link This layer is responsible for delivering packets for the network layer to other physically con-

nected machines. It is responsible for error checking and driving the devices. Ethernet is a data-link 
layer protocol, it can only send packets to machines that are physically attached to the same wire. 

 
Network This “spans” different physical networks, it is a protocol t hat makes minimal assumptions so it 

can work on any and all data-link networks. Its job is to get packets from a machine on one 
physical network to a machine on another—the inter-network protocol IP. Its main job is finding 
and maintaining routes to the remote systems. 

 
Transport This layer turns IP packets into a “stream” of characters bet ween different processes on 

differ-ent machines. This layer provides a “reliable” service, if a ny IP datagrams are lost this layer 
must recognise this and re-transmit them. The layer guarantees delivery of all the data (for TCP 
anyway) in the correct sequence by using sequence numbers. This layer provides an interface to the 
application and supports streams of data (TCP) or arbitrary length single messages (UDP) to 
selected services on selected systems. The interface it provides is called the socket interface. 

 
Application These are either user programs or standard utilities like: ftp, telnet, WWW browsers, 

network file store, or mail programs, each provides its own applicati on oriented protocol. All of 
them use the transport layer service. 

 
Usually all the layers upto and including the transport layer are in the kernel of the operating system and 
the applications are programs. So the interface between is usually a set of system calls. 

 
1.3.2 Why have layers?  
One reason for having separate layers is that it makes the system simpler to use by defining clear 
interfaces for application or protocol developers. 

 

Application  Application   Application  
Web server  telnet   tftpd  

        

         
 

Transport service Transport service 

TCP UDP 
 

 

Network Layer  Network Layer 

IPX  IP 
    

 

 
Data-link device driver 

 
Ethernet 

 

 
Data-link device driver 
 

LAP from X25 
 
 

 
ethernet  leased line 

 
  
      

 
Figure 1.2: Layers with alternative protocols 

 
 

Another reason is that the separation simplifies the use of al ternative layers and protocols so that if the 
network level determines that one site is connected via a leased line it can pass a message packet to the 
appropriate driver, whereas a message to a different site will be passed to a different data-link level protocol 
driver, this is shown in figure 1.2. It also works in reverse: n etwork (IP) packets contain a field in their 



1.3.  NETWORKING LAYERS 3

 
header identifying whivh transport level protocol they use and this is used to determine which level to 
pass the packet up to (either TCP or UDP). 
 
1.3.3 Relationship between protocols and layers 
 
If a browser communicates with a web server they exchange messages (using the HTTP protocol), the 
messages are simple character strings: 
 

• In order for the browser to send the HTTP message it must request that the layer below it (the 
transport layer) opens a connection to the server on the remote machine. 

 
• The transport layer has to communicate with its peer, (the transport layer software on the remote 

machine) to establish the connection to the web server. Peers at the transport layer use the TCP 
protocol. 

 
• In order for the transport layer to send its TCP messages it breaks them into “packets” and requests 

that the network layer below it sends these packets to the remote machine which will pass them up 
to the peer transport layer. 

 
• The network layer uses the IPv4 (and soon IPv6) protocol. It also uses a routing protocol to work 

out which machine to send to in order to get the remote end. and it must ask the datalink layer . . . 
 
This is very similar to using the Post Office to convey letters . 
 

• You write to your friend, the letter is your message (what you say in the letter and how they 
respond is your “protocol”), you put it in an envelope, put the addres s on the front and pass it down 
to the next “layer”—the postal service, 

 
• The local postal service sorts the letters and puts them in bags for different destinations, these are 

labelled. The bags are then given to an airline or a railway that uses the labels to deliver them to the 
remote postal service, 

 
• The remote postal service unpacks the bags and delivers the letters. 

 
Notice that it is necessary to have a “protocol” that is under stood by the lower layer (TCP, or postal 
service bag labels) in order for messages from a higher level to be delivered. Notice also that the layer 
below knows nothing about the higher level protocol (whether it is HTTP, or the contents of your letter). 
 
A PACKET'S JOURNEY  
Figure 1.3 shows the path of a packet through the network software layers when a client application sends 
a message to its peer (the corresponding server) application. First the application calls on the transport 
layer on its machine to convey the message to the right program at the destination, the transport layer will 
use the network layer to send the packet to the correct host, the network layer, once it has found the next 
hop on the journey to the destination, will call the appropriate data link driver to send the packet.  
 

other app     other app 

client     server 

TCP     TCP 
     

forwarding forwarding forwarding forwarding 

table  IP table IP table IP table  IP 

DLX DLX DLY DLY DLZ DLZ 

 
 application messages   
path of IP packet  

 
Figure 1.3: Packet encapsulation 



4 CHAPTER 1.  INTRODUCTION: NETWORKS, LAYERS AND PROTOCOLS 

 
When the packet arrives at the next machine the data-link layer passes the packet to the network layer, 

it examines the packet's destination address, it finds the next hop and uses the appropriate data-link driver. 
This continues until the packet arrives at the destination, then the network layer software will examine the 
destination address and find that it is its own machine so, ins tead of forwarding it, it passes the packet up 
to the transport layer software. The transport layer looks at the transport message and determines which 
application to give the message to. 

 

1.4 Message encapsulation 
 

As data are passed down from an application level through the transport level, the network layer to the 
data-link layer they are encapsulated, this is shown in figure 1.4. In order to transmit the characte rs the 
transport layer puts a header on to communicate with its peer module at the remote end. In this header 
will be the port number. The transport module passes the data plus header to the network module which 
puts on its header containing the remote system address. Finally when this is passed to the data-link code 
another header is added. 

 
 application layer   
 protocol, eg HTTP 

application data 
 

TCP flags 
  
   

16 bit sender port    
16 bit dest. port    

IP stuff: TTL, etc
 TCP 

application data 
 

 header  

32 bit IP src addr.
  

   

    

32 bit IP dest addr    

frame type IP TCP 
application data 

 
48 bit src addr header header  

  

48 bit dst addr     

Ethernet IP TCP 
application data 

Ethernet 

header header header trailer  

14 20 20  4 

 Figure 1.4: Packet encapsulation   
 
 

 

1.4.1 Using ethereal to examine packets 
 

There is a program called ethereal that can “capture” (which means: “take copies of”, not “remo ve”) all 
the raw data data-link packets from a network interface. Since all the higher level protocols are 
encapsulated in, and carried by, the datalink packet and ethereal can decode all the protocols, it is 
therefore possible to examine any or all the protocols.  

The following pictures (figs 1.5 and 1.6) of ethereal have a lot of detail but most should be ignored, 
the only concept being examined is packet encapsulation: one message, wrapped inside another.  

In figure 1.5 the top window shows a list of packets that were ca ptured, one packet has been selected, 
it is circled. More details of the selected packet are displayed in the middle window, Remember that each 
“layer” of networking software has its own task and must comm unicate with the equivalent layer at the 
recipient, so it attaches its own header. The middle window shows a decoding of each layer's header, each 
can be “opened” (using the arrowhead at the left) to get more d etails, here the application layer protocol, 
HTTP, has been opened.  

In the bottom window there is a hexadecimal dump of the whole raw packet including all protocol 
headers and data. When one of the protocols is selected in the middle window the corresponding section 
of the hex dump is highlighted, in the first picture the HTTP prot ocol is selected so the final (most 
nested) part is highlighted. But in the second ethereal picture the IP protocol is selected in the middle 
window and so, in the bottom window, only 20 bytes (the IP packet header length) are hightlighted.  

The second picture in figure 1.6 shows the selection of the IP h eader in the middle window and the 
highlighting of a different section of the hexadecimal dump in the bottom window. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1. Select a packet 
 
 

 

2. Select the nested 
protocol 

 
 
 

3. The highlighted block 
of bytes is the one 
representing the 
selected protocol 

 
 
 
 
 

Figure 1.5: Ethereal windows  
 
 
 
 
 
 
 
 
 
 
 
 

2. Select a different 
level of nested protocol 

 

 

3. A different block of  
bytes is highlighted 

 
 
 
 
 
 

Figure 1.6: Highlighting a different header 



6 CHAPTER 1.  INTRODUCTION: NETWORKS, LAYERS AND PROTOCOLS 
 

1.5 The OSI and TCP/IP layers  
There is another (less used) view of layers called the ISO Open Systems Interconnection: 

 
 application 7 application 
7–5 or user- 6 presentation 
 process 5 session 
4 transport 4 transport 
3 network 3 network 
2–1 data-link 2 data-link 
 & hardware 1 hardware 

 
The TCP/IP can be seen as a simplification of the OSI levels: 

 
• The service level, 7–5 merged as the process or application layer. They provide FTP, Telnet, NFS, 

X11 and other higher level protocols. 
 

• The transport layer, (the OSI layer 4) the link between different processes on different systems, the 
bit provided by TCP. 

 
• The network layer (OSI layer 3), that links systems across one or more networks, it provides 

internet working. The IP bit. 
 

• The data-link layer, (OSI layers 2 & 1). It is a network, for example Ethernet with its hardware and 
low-level protocols for moving data between 2 directly connected systems. 

 

1.6 Networks and internets  
Networks might be campus networks, company networks, national or local. But in TCP/IP terms a 
network is most easily though of as a collection of hosts joined directly together at the data-link level. So 
those systems directly connected to a common Ethernet constitute a network, or some PCs connected via 
a token ring are a network. Therefore the Hatfield campus has more than one network, even though it is 
sometimes referred to as one and treated as such for network administrative reasons. A group of 
interconnected net-works is called an internet; the most famous and largest internet, that grew from 
ARPA-net, is called the Internet. The Hatfield internet is in turn connected to the UK Universities 
national network Janet and, in turn, to the Internet. 

 
 

1.7 Wired networks and Wireless 
 

Wired and wireless networking can be differetiate in five key areas: 
 

1. ease of  
2.installationtotal 
3.cost 
4.reliability 
5.performance  
6.security. 

 
Installation is easy more than wired but all the cases wired network are more 
greater advantages than wireless network. 



Module-II 
 
 

Chapter 2 
 

The data-link layer 
 

 

2.1 Functions of data-link layer  
The data-link layer, in networking software, is reponsible for transferring data from one machine to 
another directly connected machine. In other words, the networking layer above will pass it packets of 
data and the name of a network interface and it must transmit the data. This layer must know how to drive 
the hardware. In different systems the responsibilities might vary but could include: 
 

• encoding 
 

• sending, receiving and framing data (all protocols), 
 

• error checking using CRC (cyclic redundancy checks), 
 

• error recovery: acknowledgement and re-transmission (in HDLC but not Ethernet). 
 
In many types of network there is a big variation between how much is done by hardware and how much 
by software, for example an ethernet card will include lots of the functions, but software must do most of 
the work of driving a dial-up modem line. These notes will examine the logical problems (not electrical 
issues) whether the functions are in a software of hardware device driver. 
 

2.2 Topologies  
The data-link level software in a computer must send data along different physical networks that its com-
puter is connected to. The topology of a network is its basic architecture, how components are logically 
connected. The simplest and oldest (and still widely used) is the point-to-point. A system can be build 
from an arbitrary number of dedicated machine to machine links.  
 
 
 
 
 
 
 
 
 

Figure 2.1: Point to point connection 
 
 

Point-to-point connections like simple serial or parallel lines that join a device on one machine to a 
device on another, these are commonly used to connect to wide area networks, for example BT leased 
lines or simple dial-up telephone links. The technology and speed can vary from simple serial lines like 
RS232 at 9.6 Kbps. to fibre optic cables at 2.5 Gbps. A protocol used on dialup lines PPP. A protocol 
used for long distance backbone connections is SONET. 
 

• some long distance links, dial-up modems, joining 2 parallel ports (laplink), institutional network to 
an exchange (our off-site link), 

 
• simple, no addressing needed, if a machine sends on one link it only has one destination, 

 
• Advantages: robust: one lost link only affects that link, no contention: can have all machines com-  

municating at the same time, flexible: different technologies can used for different links, 
 

• BUT scales very badly, there are an exponential number of required connections. 
 

The star network, all machines are connected through a dedicated switch:  
These are typically used for local area nets and work at about 150 Mbps or more. Actually they may 

provide the data-link layer but they share some of the characteristics of the network layer. 
 

7 



8 CHAPTER 2.  THE DATA-LINK LAYER  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2: Star topology 

 
 

• like ATM (there is one at Hatfield, in the middle of lots of ethe rnets), can be used for local or 
metropolitan or wide area nets, 

 
• more scalable, fewer connections, 

 
• the switch might provide some concurrent connections but it is less parallel than point-to-point, 

 
• needs some form of addressing, so virtual circuits can be set up between communicating machines 

or packets can be directed to the correct recipient, 
 

The shared bus topology, all machines connect to a common carrier,  
 
 
 
 
 

 
Figure 2.3: Multiaccess shared bus topology 

 
 

Multi-access nets where lots of machines are connected to the same carrier cable (it works a bit like a 
computer bus). These are the commonest for local area networks. The different types include token rings 
like FDDI or single lines like Ethernet. Their difference lies in the way they compete for and schedule 
access to the common carrier between the different machines. There performance is between 10 and 
1000m bps. The performance of some ethernets is over 1Gb, these use a similar protocol but they are not 
really shared bus architectures. 

 
• used for local-area networks, the famous ethernet, not used for metropolitan or wide-area nets, 

 
• very simple, very scalable, very cheap 

 
• requires hardware addresses so the receiver can recognise its data, 

 
• lots of contention, only one message between two systems at any time, requires a fast medium 

 
The store-and-forward packet switched network, the switches are high performance purpose built 

boxes (by CISCO or 3COM or ..), they link with arbitrary toplogies to other switches OR they have 
“outside” links to host computers, or other networks. 

 
• very expensive, used for wide-area networks or metropolitan nets, they form the backbone of large 

internets so they need inter-switch connections and ways of connecting to other nets. 
 

• they usually work by switching packets of information, which can be briefly stored and forwarded 
when a link is free, 

 
• they must do routing: how to get from a machine or LAN on one side to a LAN or machine on the 

other side, 

 

2.2.1 Note on real topologies  
The preceding descriptions of topologies are over-simplifi ed logical structures. In reality there are many 
variations and alternatives, and sometimes a difference between the apparent physical topology and the 
logical topology of operation of the network. For example: 

 
• many store and forward WAN are made out of multiple point-to-point connections, 



2.3.  DATA TRANSMISSION 9

                           

                           
                           

                           

                           
                           

                           
                           
                           
                           

                           
                           
                           
                           
                           

                           

                           

                            
 

Figure 2.4: Store and forward WAN topology 
 
 

• ATM networks can be connected to produce a structure that doesn't look like a star but resembles 
the store-and-forward organisation, 

 
• 100Mb ethernets that use hubs (more later) to connect them look like physically like a star but 

really do function as a broadcast shared bus toplogy, 
 

• 100Mb ethernets that use switches (more later) to connect them look like physically like a star 
AND really do function as a star network NOT a shared bus architecture, 

 

2.3 Data transmission 
 
The first problem is how are “bits” of digital data sent, this i s the problem of data transmission. This is an 
enormous subject that will not be dealt with here. It includes: 
 

• the data transmission medium: radio signals, copper wires (twisted or not), fibre optic cables etc., 
 

• the performance of the different media and their properties, 
 

• the problem of “noise” and how much information can be sent. T his is a big topic and can involve 
quite a lot of mathematical analysis, 

 
• how data are represented: amplitude modulation, one signal strength for a “1” and a different signal 

strength for “0”, phase modulation using a sine wave and chan ging the phase of the oscillation 
where the change represents a bit, or frequency modulation using a sine wave and changing the 
frequency of oscillation to indicate a bit. 

 
Just ignore this for now, but you must know that the topic of data transmission is a major subject in its 
own right and an area of overlap between the concerns of electrical and electronic engineers and computer 
scientists. We will only assume that some how ones and zeros can be represented and transmitted. 
 

2.4 Encoding  
To send a binary digit along a carrier the sender can vary the voltage or frequency for a fixed period of 
time, the receiver must detect this change. To do this they must synchronize clocks so the receiver 
samples at the right time and duration.  

The clock is probably a transition from one level to another and triggers the sampling of the line. If 
the line is at one level to long then the clocks at each end might drift.  

There are various forms of encoding: 
 

• NRZ low level for 0, high for 1. But the signal can stay too long in one state. 
 

• NRZI change level for a 1, unchanged signal for 0. Solves problem for 1s but not 0s. 
 

• Manchester encoding which does an XOR of the bit with the clock signal (which changes every 
interval). Clearly produces lots of transitions but clearly only provides half the bit rate for any Baud 
rate (the maximum number of transitions the line can make in a second). 



10                   CHAPTER 2.  THE DATA-LINK LAYER 

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0  
                                  

NRZ 

                                  

                                  

clock 

                                  

                                  

Manch- 
                                  
                                  

ester                                   
                                  

NRZI 

                                  

                                  
                                    

 
Figure 2.5: Simple digital encoding 

 
 

• 4B/5B, every 4 bits of data are encoded in 5 bits of signal: 0000 as 11110, 1111 as 11101, 
0001 as 01001. The codes are chosen to guarantee that there can be no long sequence of 1s or 0s 
no matter what the data is. FDDI uses this. 

 

2.5 Error detection  
Electrical signals can be corrupted or misread so it is necessary to have a way of detecting any corruption.  
This is usually done by computing and sending redundant information, the receiver recalculates and checks.  
The amount of redundant information and how it is calculated affect the likelihood of detecting errors. 

 
• Parity, add one extra bit for every byte (or whatever) so there is an even (or odd) number of 1s. Not 

very strong. 
 

• Checksum, add up all the bytes in a message and send the sum. Better. 
 

• CRC (cyclic redundancy check), treat n bits of data as being represented by an n − 1 bit polynomial, 
divide this by some smaller (carefully chosen) polynomial and use this to check. (I don't understand 
the maths!). This can give quite strong checking of upto 12000 bits with just 32 bits of redundancy. 

 

2.6 Framing  
How are bits of data sent? The receiver needs to know how to interpret the sequence. One bit by itself 
provides little information, it is necessary to send sequences of bits to represent useful data. The solution 
is to send data in frames with a given format. The next problem is to know when the sequence, the frame, 
starts and when it ends, there are three main ways: 

 
• always send a fixed size frame, this is used by fast backbone ne twork protocols like SONET where 

there is always loads of traffic, 
 

• start with a marker pattern (a special byte) so the receiver will find the start, then be followed by a 
byte count, then the data. This is not so often used because it can be hard for the receiver to recover 
if there is an error in the count (so it is said). All the bits must be sent as bytes so the counting can 
work. One such protocol was DDCMP used by DEC. More commonly: 

 
• send a special marker (a sequence of bits), then the data and terminate the sequence with another 

(or the same) special sequence. These protocols can be either byte-oriented or bit-oriented: bits can 
be sent as bytes (always multiples of 8 bits), or as an arbitrary sequence of bits representing binary 
or character data. So PPP is a byte oriented protocol (always multiples of 8) and uses the special 
byte 01111110 as both the start and end marker. IBM designed SDLC for medium distance links 
and it was later standardised as HDLC, it is bit oriented, it uses the bit sequence 01111110 (like 
PPP) as both start and end markers. Figure 2.6 is an HDLC frame. 

 
With any method that uses an end marker there is a problem that if the value of the end marker character or 
byte sequence occurs in the data being transmitted then the receiving hardware will believe that the frame has 
ended prematurely. To solve the problem with byte oriented protocols a technique called byte stuffing is 



2.7.  RELIABLE TRANSMISSION   11

01111110 header data CRC 01111110 

8 16  16 8  
 

Figure 2.6: HDLC packet format 
 
used: a special escape character (DLE in ASCII) is used. Whenever the end marker value occurs in the data it is 
replaced by the escape character followed by a code indicating that the end marker was replaced. When the 
receiver detects the escape it removes it and the following character and replaces it with the original code 
required. (If the value of the escape occurs in the input then it will be replaced by some other escape sequence. 
NB this is just like the use, in C, of the \ escape character, where \n is a newline \\ is \ etc.)  

Things are simpler with bit oriented protocols, they use bit stuffing . The sender, to avoid the termination 
sequence, for example 01111110, being sent in the data, will if five ones occur ( 11111) just stick in an extra 

0. The receiver will be given the data and will remove any zero that occurs after five ones. It is now OK 
because the start and end markers are the only things that will have six ones. 
 

2.7 Reliable transmission  
Depending on the networking system being used, it might be important for the data-link layer to be 
reliable (not in the TCP context, but maybe others). The simplest solution is to used an acknowledgement, 
timeout and retransmit system. This is done in the HDLC protocol. It will not be described here because it 
is dealt with in chapter 6 on TCP. 
 

2.8 Local area networks including ethernet  
There have been many forms of local area network architecture: token ring, FDDI, ATM, ethernet and 
now wireless networks. However the one used most widely is ethernet (and increasingly wireless). 
 
2.8.1 Standards  
The IEEE, American Institute of Electrical and Electronic Engineers, has many standards that have become 
international standards, (the “Unix” standard called POSI X is an IEEE standard). IEEE have a set of standards 
called 802 that cover many aspects of local area networks (and some wider network issues): 
 

802.2 logical link layer, interface to layers above  
802.3 CSMA/CD, the ethernet family, many sub-standards  
802.3u 100Mbps ethernet  
802.3z 1000Mbps ethernet  
802.5 token ring network  
802.11 wireless LAN  
802.11x 802.11a, 802.11b, 802.11g etc. different wireless frequencies 

 
in the 802 family there is an important distinction between: 
 

• the LLC, the logical link control sub-layer, which specifies the interface to the network layer in the 
protocol stack. This is independent of the underlying network type and will be the same for all. And 

 
• the MAC, medium access control sub-layer, which specifies th e operation of the protocol, data format 

and data transmission. This is medium dependent and will be different for different network types. 
 
This distinction is used in the 802.11 wireless protocol, the network layer (usually IP) communicates with the 
LLC layer which then passes LLC frames down to the 802.11 MAC layer. However this distinction is not made 
by ethernet (802.3) because its design pre-dates the introduction of 802.2. So ethernet packets do not 
encapsulate or contain LLC packets, higher levels (like IP) interact directly with 802.3 not with 802.2. 
 
2.8.2 802.3 (ethernet) features  
Ethernet is a form of carrier sense multi-access network with collision detection or CSMA/CD, 
“Ethernet” was a brand name belonging to Xerox but it is so common it is nearly always used as the name 
instead of CSMA/CD.  

Since many machines can connect to the same Ethernet cable they have to use source and destination 
addressing. The address is 48 bits long and is built into each Ethernet card or device when it is manufactured 
and is assumed to be unique. An Ethernet packet contains a preamble which is a standard recognisable 
sequence of bits so that devices detect the start of a packet, the destination and source addresses, a field 



12  CHAPTER 2.  THE DATA-LINK LAYER 

 Logical link control   

Datalink 
802.11 MAC protocols 802.3 rings, etc  

 
DCF and PCF 

ethernet  
 CSMA/CD  

 
802.11a   802.11b   802.11g 

10Base−T  
Physical and  

  others   
 

Figure 2.7: IEEE 802 protocol stack 
 
 

identifying the protocol of the message in the data, ie. IP or something else, so it can be passed to the 
right layer above.  

 
 

sync. preamble dest addr source addr type data CRC 

8 6 6 2 46−1500 4  
 

Figure 2.8: Ethernet packet format (sizes in bytes) 
 
 
 

2.8.3 Ethernet operation 
 

Another problem arising from having lots of machines on the same cable is synchronising the use of it, 
when one device puts a packet on the cable no other machine can. In other words “collisions” can occur 
and must be dealt with. The operation of sending is as follows: 

 
1. if the carrier is busy (ie. some other computer is sending) then wait, or, 

 
2. if the carrier is idle then start sending bits, 

 
3. while sending, monitor the carrier to see if any other bits appear, if not then done. 

 
4. otherwise there is a collision, some other device transmitted at the same time; if so stop, put error 

bits on the carrier (jamming signal) so all other devices know there is an error and then wait a 
variable time before going to step 1. The length of delay is random and increases with repeated 
collisions, it is called exponential back-off. 

 
Ethernets are very successful and very widely used but they perform very badly if they get much more 

the half their load. This is because the rate of collisions rises exponentially as the load increases, and also 
the consequent increase in re-transmissions. 

 
2.8.4 Ethernet cable length 

 
The method depends on a host being able to detect the collision before it stops sending, otherwise a 
collision might have occurred at the receiver but the sender will not realise and not re-transmit. 
Consequently there is a maximum length for a 10Mbps ethernet network of 2500m and a minimum length 
of frame of 512 bits (64 bytes). Assume the worst case: 

 
• the sender is at one end of a 2500m cable, and a second sender is at the other end, 

 
• the sender transmits at time t, 

 
• the frame starts to arrive at the other sender at time t+d, where d is the latency (time to reach the 

other end), just after the second sender started to transmit, 
 

• now the second sender will detect the collision and jam 
 

• it will require another d micro-seconds for the second sender's message to arrive at the first sender, at 
time t+2*d, the first sender must still be transmitting at this time or it will not detect the collision. 



2.8.  LOCAL AREA NETWORKS INCLUDING ETHERNET 13

 
The time, d, taken for a bit to travel 2500m is 25.6 micro-secs, so the firs t sender must be still be sending 
after 2*d, 51.2 micro-seconds, On a 10Mbps ethernet 512 bits are transmitted in 51.2 micro-seconds so in 
order to still be sending and detect the collision the minimum packet length must be 512 bits.  

This problem still applies for 100Mbps and 1000Mbps ethernets, they have maximum cable and min-
imum packet size limits. They also use additional ways to detect collisions, but the basic problem is the 
same. So the 100Mbps system using hubs and switches and running 10 times faster can either have a 
minimum frame length of 5120 bits or a maximum length of 250m, it shortened the maximum length. 
 
2.8.5 Ethernet bridges 
 
A bridge is a way of joining two or more ethernets. It appears to the connected hosts that there is only one 
network, they address, transmit and receive data in the same way, it doesn't affect them if the receiver is 
on the same or the other side of the bridge. The bridge works by receiving all packets from all networks, 
buffering them and passing them on to the other networks. This has the very important consequence that 
the combined networks can be more than 2500m. This is because the bridge deals with the carrier sense, 
collision detection and, if necessary, re-transmission on the other ethernets. 
 

 A  B    C  
                      

                       
1  

b1−2 
 

2 
 
 

D E F G 
 

 
Figure 2.9: Ethernet bridge 

 
 

So if host A on ethernet 1 sends a packet to host F using F's address it will be intercepted by the 
bridge b1-2 (because it grabs everything), retransmitted unchanged by the bridge on ethernet 2, and 
finally get to F.  

Most bridges are adaptive learning bridges. Their basic operation is the same but they also record all the 
sender addresses of all the packets sent on each ethernet, this way they learn which ethernet each host is 
attached to. Then, when the must pass on a packet, they examine the destination address and only forward it to 
the network that the destination host is on. So if host C sends to host A it will be intercepted by the bridge but it 
will not be forwarded on network 2 because the bridge has learnt that host A is on network 1. 
 
2.8.6 Ethernet physical topologies 
 
The basic original topology of the 10Mbps ethernet was the shared bus structure, a coaxial cable, to 
which every host is attached, see figure 2.10.  
 
 
 
 
 
 

Figure 2.10: Original ethernet topology 
 
 

The 100Mbps uses UTP (twisted pair) cables that plug into a a box, either a hub or a switch. The hubs 
or switches can be connected together in a hierarchy or using 10Mbps links, see figure 2.11.  

this looks like a star network topology, it is physically but not logically. Logically and functionally it 
is still a shared bus. When one host sends a packet it goes to all the other hosts.  

Notice, in figure 2.12, that the link goes up the twisted pair, into the hub, back down one link in the 
next twisted pair and back to the hub again. In other words it works exactly like the shared bus. Hubs can 
have between 4 and 64 ports. 



14 CHAPTER 2.  THE DATA-LINK LAYER  
 
 

hub  
uplink to  
another host 

 
hub 

 
 
 
 
 

host 1  host 2  host 3  host 4 
       

 
Figure 2.11: Ethernet hub  

 
 
 
 
 
 
 
 
 
 

1  2  3  4 

       
 

Figure 2.12: Inside an ethernet hub 
 
 

With a hub there is still contention, while one host is using the hub no other host can. By spending a 
bit more money you can get a switch. A switch looks like a hub but internally it is totally different. A 
switch still appears the same as any ethernet to the host but it is almost as every host is on its own 
separate ethernet with bridging between them, see figure 2.13.  

 
host 1 

 
b1−2  

host 2 
                 
                b1−3 

                   
b2−3 b1−4 

b2−4  
host 3 

 
b3−4 

 
host 4 

 
Figure 2.13: An ethernet switch 

 
 

So if host 1 is sending to host 3 the packets go through a type of internal adaptive bridge b1-3 and be-
cause b1-2 and b1-4 are adaptive they will not forward the packet. This means that host 2 can 
communicate with host 4 at the same time without collisions. 



 

Chapter 3 
 

802.11 Local Area Wireless Networks 
 

 

3.1 The 802.11 standard 
 
There are various forms of “wireless” networking, they use d ifferent frequencies, they work over 
different distances, they use different techniques and they are used for different types of network. There 
are long distance links using micro-waves, they are infra-red links between laptops and desktop machines 
and there are wireless local area networks based on the IEEE 802.11 standard (the one considered here). 
The standard is a data-link protocol, it defines: 
 

• the services and behaviour provided to the layer above (to the network layer), hiding the lower 
details, this is common to all 802 LAN standards (like ethernet, rings, etc.), 

 
• the MAC (medium access control) protocols, ie. how the connected systems cooperate together to 

exchange data. This includes messages to support movement of one station between cells 
(networks) and support for authentication and privacy, 

 
• it also specifies hardware behaviour, frequencies, encodin gs, modulation etc.  

 
 
 

 Logical link control   

Datalink 
802.11 MAC protocols 802.3 rings, etc  

 
DCF and PCF 

ethernet  
 CSMA/CD  

Physical 802.11a   802.11b   802.11g 
10Base−T  
and  

  others  

 Figure 3.1: 802 Protocol layers   
 
 

There are various alternative 802.11 standards: 802.11 upto 2Mbps, 802.11a (using orthogonal fre-quency 
division multiplexing) upto 54Mbps, 802.11b (using direct sequence spread spectrum) upto 11Mbps, and 
802.11g upto 54Mbps. They all have similar MAC protocols and only differ in the hardware behaviour. 
 

3.2 802.11 architecture  
A cell is a group of stations (computers) that can communicate with each other using wireless transmission.  
A cell is also called a BSS, basic service set in 802.11.  

A cell can have an access point, AP (often called a “base station”), which connects it to ano ther 
network, usually a LAN like ethernet. The LAN to which a cell is connected is called a distribution 
system or DS. A cell with an AP connection is called an infrastructure BSS. Both cell A and cell B in 
figure 3.2 are infrastructure BSSs.  

A cell with no AP is called an independent BSS, also sometimes called an ad hoc network. In figure 
3.2 stations 11 and 12 are part of an independent BSS.  

In picture 3.2 stations 2 and 3 can communicate directly in cell A, in cell B stations 6 and 8 are too 
distant but can communicate via the base station. All the stations in cell A and cell B can communicate 
with the rest of the world using their APs and the DS. 
 
3.2.1 Connection between wireless and ethernet  
How does the AP access the DS? How do packets from the wireless network travel via the AP over the 
ethernet? They have a different format. Are they encapsulated, like IP packets in data-link packets? No, 
 

15 



16 CHAPTER 3.  802.11 LOCAL AREA WIRELESS NETWORKS  
 

 
 station 2  station 6 

Infrastructure 2 to 3 direct Infrastructure    station 4 
BSS, Cell A station 3 BSS, Cell B 

station 1 
 station 5 6 to 8 via AP 
  

  

station 7    

AP access  AP access 
point A  point B  

station 8 

 
1 to 7 using the DS (ethernet) 

 

 
Figure 3.2: 802.11 cell architecture 

 
 
 
 

 
station 11 
 

11 to 12 direct 
 

station 12 
 

Independent BSS 
Ad hoc network 

 
both 802.11 and 802.3 are data link layers. Does it use some form of routing? No, the AP doesn't look 
inside for IP addresses.  

The AP works in a way similar to an ethernet bridge. The wireless uses the same type of MAC 
address as ethernet. If the destination MAC address is on the other side of the AP the AP passes it on.  

There is only one problem: the format is different. The AP must translate the format of the message 
from 802.11 to 802.3 and vice versa. 

 

3.3 Services and protocols  
In order to cope with the special problems of wireless transmission the 802.11 protocols are quite compli-
cated. They include: 

 
• association and reassociation, this is to enable stations (such as laptops) to find base stat ions when 

they join or leave cells, this supports mobility, 
 

• authentication and encryption, because wireless nets are so intrinsically insecure this allows pass-
words and encryption to be used at the MAC level, 

 
• distribution and integration, this determines how to route frames either via base stations or directly, 

and also how they frames should be carried over an ordinary ethernet if they must be routed 
between cells, 

 
• transmission protocols (MAC) to send packets, there is a basic set of CSMA/CA rules and two 

more advanced protocols: 
 

– DCF distributed coordination function to allow packets to be sent directly between any two 
stations or the base station. These notes will treat the DCF in two stages:  
∗ basic CSMA/CA protocol to avoid packet collisions (or at least reduce them), and  
∗ the RTS/CTS exchange which improves collision avoidance. This is required from all 

802.11 implementations, but does not have to be used,  
– PCF point coordination function this is when the base station takes charge of data transfer for 

inter-cell or intra-cell transfer. The base station “polls ” each station in turn to see if they have 
any data to transfer and it manages the transfer. It is called the “ contention free” part of the 
protocol. It is optional and as far as I can tell (in 2004) it is almost unused, why it is not used I 
do not know since it can actually prevent collisions. 

 

3.4 802.11 frame formats  
The packet (in 802.11 they are called frames but I can't help saying packet) format is very complicated, 
firstly there are alternative formats for different purpose s, and even within one format the meaning and 
use of the fields changes depending on what type of packet it is.  
In figure 3.3 the top frame is the most general form of packet, d ata packets are like this, the lower part of 
the picture is an expansion of the frame control field. Only notice: 

 
• the frame headers (and FCS) are very long, an overhead of about 34 bytes. There is no preamble 

(the 8 bytes of “101010. . . ”) because, unlike ethernet, it is sent by the hardware and not treated as 
part of the data link packet, 



3.4.  802.11 FRAME FORMATS             17

bytes: 2 2   6    6    6   2 6 <= 2312 4 
                        

 frame dura−   address 1    address 2   address 3  seq. address 4 frame FCS 
 control ation  usually Receiver  usually Transmitter sometimes destination control usually missing body  
                     sometimes source   
                        

  bits: 2  2   4 1 1 1 1 1 1 1 1     
                    

   protocol type  subtype  to from more re− pwr more WEPorder     
            DS DS frag try mng data       

                         
 
 

Figure 3.3: A common 802.11 frame (packet) format 
 
 

• the frame format is given by the type field in the  frame control field (see figure 3.3): 

 
1. management, these are normally used for communication with the AP (access point, the base 

station): there are frames for new stations to associate with the network, and for authentication, 
 

2. control, these are used during data transfers but don't contain data, these include acknowledge-
ments and the RTS and CTS messages of DCF (see section 3.7) 

 
3. data, this is like the top packet in figure 3.3, however ther e are some variations for combining 

the control functions of PCF with data. 

 
• the duration field “reserves” the carrier for the length of ti me of the transfer and sometimes 

subsequent packets in a transaction, see a later section about NAV, 

 
• why four addresses? 

 
– For many transfers only two are needed, for example transfers between stations in one cell 

only need two addresses, the first address is the receiver of the wi reless signal and is also the 
final destination, the second is the wireless transmitter and also the sender. 

 
–  If a station, STA1, sends to the MAC address of a system, SVR1, on the DS (distribution system) it 

must go via the AP see figure 3.4,  address 1 is the wireless receiver MAC of the AP, but it is not 
the final destination, that MAC address is put in the fi  eld address 3, the transmitter address and 

the sender STA1 MAC are the same in field  address 2 like between stations in the  
same cell. When a station receives from an outside system via the AP the use of addresses is 
switched: address 1 is the destination and the receiver, address 2, the transmitter is the AP 
MAC address, and address 3,  

 
        gateway  
        

GATE 
 

         
         

station 1     base station     
        

STA1 STA1 AP AP 
    

    

 MAC MAC     
      
          

       SVR1 server  
     distribution  SVR1  

     

MAC
 

     system DS   
        

      a LAN    
         

 
Figure 3.4: Transfers to and from the distribution system 

 

 
–  four addresses are needed if a wireless network is used as a “b ridge” between two LANs, see  

figure 3.5. The wireless nodes are “transparently” passing o n packets from LAN1 to LAN2. 
It is too long to explain but in the packet sent between STA1 and STA2 the destination and 
sender addresses in address fields 3 and 4 are the MAC addresses of the systems HO1 and 
HO2, the MAC addresses in fields 1 and 2 are the MAC addresses of the rece iver and 
transmitter, STA1 and STA2. 



18     CHAPTER 3.  802.11 LOCAL AREA WIRELESS NETWORKS 

    
LAN1 

     
LAN2

   
            
 host              

 

HO1 
           

             

              
              

     station     station     
     STA1 STA2     
     

STA1 STA1 
    

         

     MAC MAC     
           
               

               
              

    

distribution 
    

distribution  host          

         

HO2 
 

    system DS1     system DS2   
            

 
Figure 3.5: Using a wirelesswork net to join two LANs 

 

3.5 CSMA/CA and the problems of wireless MAC  
A wired shared medium protocol like ethernet uses CSMA/CD: Carrier Sense Multi-Access with Collision 
Detection, the wireless protocol uses CSMA/CA: Carrier Sense Multi-Access with Collision Avoidance (it is 
also known as MACAW, Multi Access with Collision Avoidance, for Wireless). What this means is: 

 
multi-access -> collisions like an ethernet, wireless is a shared transmission medium, lots of stations use 

the same frequencies (instead of same wire) to send data. Consequently there is the possibility of 
two or more stations sending at the same time and scrambling the signals, this is a collision, 

 
carrier sense use hardware to listen for signals, if there is traffic, wait u ntil it finishes. Only send when 

the carrier is idle, 
 

collision avoidance don't just detect collisions and then recover like ethernet, instead try to avoid colli-
sions. 

 
The only difference is how they deal with collisions, with ethernet collisions are easy to detect but with 
wireless detecting collisions is difficult: 

 
• there are weak signals, echoes, and interference so detecting a colliding signal is hard, 

 
• in order to detect a collision it is necessary to be “receivin g” at the same time as transmitting, (this 

is called full duplex, send and receive at the same time), this is expensive, very few wireless cards 
can do it, nearly all are half-duplex 

 
• and transmission distance problems, the remote system might get a collision but the sender will not. 

 
Consequently wireless has a protocol that tries to avoid collisions.  

There are further problems due to wireless transmission, one is the unreliable transmission. With a 
wired ethernet the chances of a packet becoming corrupted during transmission are very low, with 
wireless the chances of a packet becoming corrupted are very high. This requires changes to the basic 
protocol, see the next section 3.6. 

 

3.6 The basic DCF CSMA/CA protocol  
The MAC protocol operates at the next level above the hardware, it specifies how data are transmitted, 
packaged and how the stations respond. Basic rules of sending: 

 
acknowledgements every packet sent and successfully received must be immediately acknowledged. If 

after a short timeout period the sender doesn't get an acknowledgement message it will retransmit 
the packet. Every time a packet is re-sent the sender increments a counter, if the counter reaches 
some limit the 802.11 data link tells the higher layer software (usually IP) that the transmission 
failed. This is necessary because wireless cannot detect collisions. 

 
sending when the carrier is idle a station is able to send, but it cannot send immediately, it must wait for a 

short period of time, called the DIFS (to be explained very soon). If two or more stations have been 
waiting to send then when the carrier has been idle for a DIFS time they will all send at the same 
time and cause a collision. So they all add an extra random time to reduce the chance of collision. 

 
backoffs when a sender doesn't get an acknowledgement (probably due to a collision so there will be 

other stations also getting failures) it will retransmit. When the carrier is idle it will wait for a DIFS 
(not sure, EIFS?) period to which it adds a further random time but the random time will probably 
be longer—for every retransmission the range of values used fo r the random time is increased. 
This increasing range of delays is called the contention window. When the packet is acknowledged, 
or it gives up trying, the contention window is reset to its starting value. 



3.7.  THE RTS/CTS PART OF THE DCF PROTOCOL 19

 
SIFS,PIFS,DIFS & EIFS between any two packet transmissions of any type there must be a short delay 

called an inter-frame space IFS. There are 4 different IFS times: SIFS, PIFS, DIFS and EIFS. The 
reason for having four times is to permit higher priority transmissions to use the carrier. When a 
station wants to send a new packet it waits for a DCF IFS (DIFS) time. When a receiver sends an 
acknowledgement it waits for a short IFS (SIFS). This guarantees that the acknowledgement will 
be sent with no collisions from other packets as the SIFS is shorter than the DIFS. The lengths of 
the intervals, in increasing time delay, are: 

 
SIPS short IFS used for acknowledgments and fragments 
PIFS PCF IFS used by the base station polling 
DIFS DCF IFS the “normal” delay 
EIFS extended IFS used after errors in transmission 

 
The PIFS is between the SIFS and DIFS and is used when the base station is coordinating all 
stations by polling, it won't preempt acknowledgements but it will override ordinary transmissions. 

 
In addition to the basic parts of the protocol that allow any stations to send packets there are some extra 
parts of the protocol to help reduce collisions or to cope with packet loss. These extra rules are required 
by all wireless networks. 
 
virtual sensing, NAV nearly all packet transmissions “reserve” time by includin g a duration field in the 

packet, all other stations detecting a transmission set their network allocation vector, NAV, to this 
value. The NAV is basically a timer, once set it counts down to zero. A station will not even try to 
do carrier sense if its NAV is non-zero, it is a sort of virtual carrier sense. Why does this help? 
Some MAC operations require more than one packet so this stops other stations starting to send in 
the middle of a transaction, for example a data packet sets a duration time that is the sum of times 
for the packet transfer and the acknowledgement. It is also used for for fragments, see next item 
and for RTS-CTS, see next section 3.7, 

 
packet fragmentation Because there is a low probability that a long data frame will be sent successfully 

802.11 allows long frames to be broken into fragments and sent and acknowleged separately. Each 
fragment will be sent and acknowledged separately so that only a single damaged fragment needs 
resending. The sender only pauses for a SIFS interval after the acknowledgement before sending 
the next fragment (as always the receiver acknowledges after a SIFS), this way the sender keeps the 
channel. In addition each fragment contains a duration covering the time for the following fragment 
and acknowledgement, so all other stations will set their NAV and not interfere. 

 

3.7 The RTS/CTS part of the DCF protocol 
 
DCF uses RTS/CTS to improve avoidance and solve the hidden station problem. The picture 3.6 shows 
the ranges of station A and station C, which both reach B but not each other. If A wants to send to B and 
carrier sense shows that the medium is idle then it will send, C also wants to send to B, it detects no 
traffic and will send to B aswell, unfortunately B gets the scrambled signal from both. This is called the 
hidden station problem.  
 
 
 
 

A B C 
 
 
 
 
 

Figure 3.6: Host transmission ranges 

 
This can be avoided in the DCF protocol which uses the following messages: 

 
• RTS (request to send), if station A wants to send to B it waits for no traffic then sends RTS to B. 

The RTS contains a duration value covering the whole time of the remaining steps of the 
transaction (SIFS+CTS time+SIFS+data frame time+SIFS+Ack time) so other stations will set their 
NAVs. It then waits, 



20 CHAPTER 3.  802.11 LOCAL AREA WIRELESS NETWORKS 

 
• CTS (clear to send), if B accepts the request it sends CTS back to A, it also sends the NAV duration 

for the remaining time (same as RTS NAV minus time the CTS takes: SIFS+data frame 
time+SIFS+Ack time), 

 
• when A receives the CTS from B it will send the data to B, 

 
• ACK, when the data arrives successfully at B it will send an acknowledgement ACK back to A. 

The transfer is complete. 
 

• between each message there is a SIFS delay so no other stations can interrupt. 
 

If any station hears an RTS from another station it will wait for a time long enough to allow the message 
to finish before attempting to send. If a station hears a CTS fr om another station it will wait for a suitable 
length of time. This will avoid collisions. If collisions occur when two stations send RTS they will not 
know, because they don't try to detect it, but the intended receiver(s) will fail to receive the RTS because 
of the collision so it/they will not send a CTS, consequently the original senders of the RTS will know it 
failed and they must retry.  

Now consider how this deals with the problems of the “hidden s tation” above, if A sends RTS to B it 
will not be detected by C, but C will detect the CTS that B sends back to A and will therefore set its NAV 
and wait until the transfer is over. 



Module-IV 
 

Chapter 4 
 

The network layer (IP) 
 

 

4.1 The Internet  
What “internet” means is interconnected networks, but what happens if you join up a few thousand ether-
nets, point to point links, star networks (like ATM), etc.? Nothing, they all have different packet formats, 
addresses, protocols and capabilities, so they cannot exchange data. It is necessary to have software on 
every machine (hosts on networks and on machines that join networks) that can make them work 
together—this software is IP. It is the network layer protocol IP that is the Internet. How it works: 
 

• every network has a unique address, every machine on each network has a unique address. These 
two addresses are combined together as the IP address, 

 
• all machines that will use the network have the IP protocol software installed, 

 
• data is sent it a fixed format “packet” known as an   IP datagram, 

 
• each separate network is joined to one or more other networks by one or more routers that know 

how to reach any network on the Internet, 
 

• when an ordinary host sends a packet to an IP address the IP protocol software consults its local 
forwarding table that tells it whether to send it direct to a machine on the local network, or to send 
it to a router. 

 
All these topics will be discussed in the rest of this chapter. But first a bit of terminology because the 
word “network” is used in different ways: 
 
general usage a network is any collection of interconnected computers, but this is too imprecise so. . . 
 
physical a network is a just those computers connected by a physical network, ie. all machines on one 

ethernet, the two machines at either end of a PPP (point to point connection). This is what 
“network” means when IP software connects two different data-link networks, but. . . 

 
administrative usage a network is the collection of hosts with the same IP network address. This is another 

way the word is used about the Internet. A network number is allocated to a company or organisation and 
they have the responsibility of allocating the host numbers to their computers. Such a network will 
probably consist of many physical networks, and they will be called subnets in this context. 

 
there are different important usages, there isn't one meaning, so be aware of the context when you meet 
the word. 
 

4.2 IP addresses  
Every host connected to an internet must have a unique IP address on that network. The address in IPv4 is 
a 32 bit number. It is usually represented as 4, 8 bit numbers separated by dots, for example: 
147.197.205.211 In order to address different networks on an internet the address is structured into 
a net-work part and a host part. So the University of Hertfordshire network address is 147.197 and one 
host on it is 205.211. Not all networks have a 16 bit address. The NIC allocates network addresses to 
organisations which in turn are responsible for allocating their own host addresses. 
 
type A If the first bit is 0 (the first 8 bit field is less than 127) then that's the network address and the host 

address is 24 bits, there are only just over 100 of these and each can have over 16 million hosts on 
their nets, 

 
Type B If the first two bits are “10” then the network address is the next 14 bits that means there are 

about 16000 of these networks, each with upto 65000 hosts, 
 
Type C For smaller organisations if the first 2 bits are “110” than the network address is the following 

22 bits and there is only an 8 bit host number, (work it out!). 
 

21 



22 CHAPTER 4.  THE NETWORK LAYER (IP) 

 
Type D and E If the first 3 bits are “111” then the remaining bits are used fo r special broadcast and 

multi-cast addressing 
 
 

This is the original basis of network address allocation but now (2004) type A address ranges are split to make 
more network numbers available. This means finding the n etwork part of the address is not quite so simple, the 
new way is used by CIDR (classless internet domain routing), which you follow up if you wish. 

 

4.3 IP packets  
The IP layer on one machine must send packets to the IP layers on other machines, to do this it uses the IPv4 
(and eventually IPv6) protocol. The format of an IPv4 message is shown in figure 4.1. The important 

 

Version HLen  TOS   Length 
        

 Ident  Flags  Offset 
       

TTL  Protocol   Checksum 
        

   SourceAddress   
     

   DestinationAddress 
    

 Options (variable length)  Pad 
        

   Data    
 
 

 
Figure 4.1: IP packet format 

 
 

fields shown in figure 4.1 are: 
 

HLen The length of the header, can vary because of options, 
 

Length The length of the whole packet, 
 

Flags One job they have is to indicate if this packet was broken up into fragments because it was larger 
than the maximum size allowed for some physical network, if so the offset field is used to indicate 
which fragment. 

 
Protocol Can be TCP or UDP so IP knows which higher layer to pass it to. 

 
TTL “Time To Live”, it is hop-count, every IP layer in each router it passes through decrements it by 1, 

when the count reaches 0 the packet is discarded. 
 

Checksum Computed across the header. 
 

4.4 Forwarding tables  
Not all machines are directly connected to all others, so how does a machine that is only indirectly 
connected to another know which intermediate machine to send to first? T hey look up the address of the 
destination network in a forwarding table, which tells them where to send the packet on the first step of i 
ts journey. In a bit more detail: 

 
• all forwarding is to networks, once the packet gets to the right network it can be directly delivered, 

 
• every host has a forwarding table (sometimes called a routing table) that lists how to get to other 

networks on the Internet, 
 

• a forwarding table specifies for every network what the  next-hop is, 
 

• for ordinary hosts on a stub network (that's us) the forwarding table will have: its own network and 
then any other networks that are linked by routers on its local net, then there will be a default route 
where all other packets are sent, this is usually the organisations internet gateway, 

 
• every machine that is connected to more than one network is a router, on the main backbone of the 

internet routers have gigantic forwarding tables that include the next-hop for every network 
attached to the internet, they don't have default routes. 



4.5.  EXAMPLE OF USING FORWARDING TABLES 23

 
This is the vital function of IP, getting packets across one physical network to another thereby creating an 
internet. 
 

4.5 Example of using forwarding tables 
 
This is a simplified example where the “internet” is just two n etworks connected via a router. The picture 4.2 
illustrates packet forwarding, where 131.9.0.8 (aka. 62.0.0.1) is the router attached to both net 62.0.0.0 and 
131.9.0.0. Note that on an internet a system has one IP address for each network it is connected to. All 
systems have a forwarding table with all the networks it can reach. In this example there are only two 
networks, 131.9.0.0 and 62.0.0.0 so each table has two entries. The format of forwarding table columns:  
 
 
 

eurydice  
131.9.0.11 

network: 131.9.0.0 

     eth1 131.9.0.8     
   Net no. Gateway Mask Dev  
   131.9.0.0 0.0.0.0 255.255.0.0 eth1  
   62.0.0.0  0.0.0.0 255.0.0.0  eth0  
     cerberos      
            

     eth0 62.0.0.1      
network: 62.0.0.0        
           

    62.0.0.2     62.0.0.3 
           

Net no. Gateway Mask  Dev     
131.9.0.0 62.0.0.1 255.255.0.0 eth0     
62.0.0.0 0.0.0.0 255.0.0.0 eth0     
    orpheus       

 
Figure 4.2: Packet forwarding example 

 
 
 

• The first field of a forwarding table is the destination networ k. Every IP address has two parts, 
network and host. Note that 131.9 is a type B address and 62 is type A, 

 
• The second table field contains the gateway to use, this is the next hop, usually a router, if the 

system is directly attached to the network the gateway is 0.0.0.0. In cerberos which is directly 
connected to both networks both gateway fields are 0.0.0.0. In orpheus the gateway for network 
131.9.0.0 has the address of cerberos, 

 
• The third entry is a network mask. It is used by the forwarding software to find which entry to us e. 

The destination address of every incoming packet is and-ed with each mask in turn and the result 
compared with the first column network number to get a match. B ecause of the use of subnets in 
networks and the splitting of type A addresses it is not possible to use the type A, B, or C bits to  
determine the network part, so every network destination has its own mask. In this example it is 
easy, 131.9.0.0 is a type B address and the mask is 255.255.0.0 (first 16 bits all binary “1”, last 
16 bits all “0”) which means any any address such as 131.9.0.11 and-ed with the mask will leave 
just the top 16 bits, 131.9.0.0, for comparison. 

 
• The last field in the forwarding table is the NIC (network inte rface card) address, in other words it 

tells the IP software which datalink to use. 
 
Assume that orpheus, 62.0.0.2, wishes to send to eurydice, 131.9.0.11, then: 
 

• the transport layer passes an IP datagram to the IP software on 62.0.0.2, 
 

• the destination address 131.9.0.11 is compared with each line of the forwarding table in turn (top 
down, order matters). Each time the mask is applied, so: 

 
131.9.0.11 ∧ 255.255.0.0 = 131.9.0.0 

 
this matches on line one, so the packet is sent to 62.0.0.1 via device eth0. NB this doesn't change 
the destination address, it is still 131.9.0.11, just where it is sent. 



24 CHAPTER 4.  THE NETWORK LAYER (IP) 

 
• When the packet arrives at 62.0.0.1 the same procedure is applied, it masks the address 

131.9.0.11 and matches on the first line of the table which says there is no gateway, just send it on 
datalink eth1, and it arrives at the destination. 

 

4.6 Sending on an ethernet: ARP  
If the forwarding (routing) lookup finds the IP address of the next hop is on the same LAN, eg. ethernet, 
then it is necessary to find its ethernet address. This is not d one by the data-link layer it is the job of 
software in the IP layer (though not the IP protocol itself).  

Ethernet MAC addresses are 48 bit numbers built into the hardware of the controllers, they have no 
relationship to the IP addresses being used by the network level.  

One solution would be for every machine to have a fixed table ma pping IP addresses to Ethernet ones 
for its network. However every time systems were added or removed from the net all tables would need 
updating.  

Instead the sending system uses a special protocol called ARP (Address Resolution Protocol) which 
sends an ethernet broadcast message to the whole LAN saying:  

Who is 147.197.236.236? 
 

All systems on the ethernet must check all ARP packets for their number, if it is their's they will respond 
with their Ethernet address, saying: 

 
I am 147.197.236.236, my MAC is: 00:01:02:AE:95:BE 

 
This information is used and then câched in an ARP table by the sender so it won't need to ask again for 
sometime. 

 

4.7 Building forwarding tables: routing  
There must be a way of constructing the forwarding tables. The simplest method that is suitable for many 
systems on local ethernets with one link to the internet is to manually add (or use the DHCP protocol—
look it up!) a default route. 

 
Kernel IP routing table    
Destination Gateway Genmask Metr Iface 
147.197.232.0 * 255.255.248.0 0 eth0 
default 147.197.232.1 0.0.0.0 0 eth0 

 
Which means any address that matches 147.197.232.0 (ie. anything on a local ethernet) is sent directly.  
But anything else default is send to 147.197.232.1.  

If there are lots of separate ethernets or other LANs joined together as subnets of a larger network 
then creating the tables manually won't work, instead each system must run a routing program that can 
talk to other routing programs and together they can build their forwarding tables. For small autonomous 
systems there are two protocols often used: RIP, old and weak but simple, and OSPF which is much 
better but more complicated. In the case of main backbone internet routers completely different routing 
programs are needed, they must have enormous tables so they know for every network which next router 
to send to. The current method is called BGP4 (Border Gateway Protocol 4). 

 
4.7.1 A routing simplification  
Internet routing is between separate networks or subnets and is done by routers to networks not hosts. The 
following sections present the principles of routing algorithms and it is easier to treat routing as occurring 
between host computers. However the principles of routing algorithms are applicable to real networks 
situations.  

Figure 4.3 shows a collection of networks joined by routers. Network d is connected to network c by 
router V, but this is simplified in the graph on the right and is show as a connection (link, edge, arc  
. . . ) between d and c. In other words the networks have become nodes and the routers are links. But in 
the following notes these nodes will often be called “comput ers” or “hosts” not “networks”, however the 
routing issues are still the same. 

 
4.7.2 Note about “distances”  
Most routing decisions depend on the “cost” of using a link be tween any pair of systems, so that they can 
work out the best route. The costs that can be used vary: 

 
• Money cost of using a link 

 
• Speed of the link, so the fastest links are preferred, 



4.8.  SHORTEST ROUTE OR LINK-STATE ROUTING 25 
 
 

 
  b 

 a  
T  U 

  c 

 
V W 

 

e 
d 

 
  

X 
 Y 
   

f 

 
Z 

 

 
g 

 
 
 
 

 

a b  
 

c 
 

d e 
 

f 
 

g 

 
 

Figure 4.3: Two representations of connections between networks 
 
 

• Delay, even though some links are fast they might be overloaded as the “cost” to be minimized is 
delay time, 

 
• The number of links that must be crossed to reach the destination, where the cost of every link is 1, 

this is called hop count and is the commonest. 
 

4.8 Shortest route or link-state routing  
A network can be represented by an undirected graph, where each node represents a host and each edge is 
a network connection, we are using the simplification descri bed in section 4.7.1.  

 

 A   

8 11 5  
  

B C 4 D 
   

5 5 7  

E F 
8 

G 
 6  

 
Figure 4.4: Example network 

 
In figure4.4 node A is connected to node B with a “cost” of 8, (no te: cost might be financial, time-

delay or physical distance), this is written as cost(A,B)=8.  
If a host has all of the above information it can compute the best next-hop for every node in the network 

using Dijkstra's shortest route algorithm developed in the 1960s for any graph, not just computer networks.  
The algorithm keeps a set S of “open” or “unexplored” nodes, an array Dist of distances from the start 

to each node, and an array Rt of the next-hop to all nodes. The arrays are indexed by the node names or 
numbers. On each cycle of the algorithm the closest “unexplo red” node is chosen, it is called u, then each 
of the open nodes v adjacent to u are examined to see if there is a shorter route to them via u. After the 
closest node u has been examined it is “closed”, ie. removed from the set S. 
 
Initialize set S to contain all nodes except source; 



26 CHAPTER 4.  THE NETWORK LAYER (IP) 

 
Initialize array Dist so Dist[v] is the "cost" of the 
edge from source to v, set to infinity if no edge to v; 

Initialize array Rt so Rt[v] is set to v if there is an 

edge from source to v, and set to 0 otherwise; 

 
while(! S.empty() ) {  
select a node u from S so that Dist[u] is 
minimum; if( Dist[u]==infinity ) {  
fail: no path to all nodes in S; exit;  

}  
S.remove(u); // remove u from S  
foreach node v such that there is an edge 
(u,v) { if( S.member(v) ) {  
cost = Dist[u] + cost(u,v);  
if(cost < Dist[v]) {  

Rt[v] = Rt[u]; 
 
Dist[v] = cost;  

}  
}  

}  
}   // done forwarding table is Rt 

 
Now if the algorithm is applied for a couple of iterations:               

1.  initialise S, Dist and Rt                  
giving: S = {B,C, D, E, F, G} A B C D E F G 

 

Dist : 
              

 0  8  11   5      
 Rt : A B C D -  - - 

2.  Choose u = D, remove D from S,               
consider v = C: cost = Dist[D] + cost(D,C) = 5 + 4 = 9 < 11,               

so: Rt[C] = Rt[D], Dist[C] = 9               
consider v = F : cost = Dist[D] + cost(D, F) = 5 + 7 = 12 < ,               

so: Rt[F] = Rt[D], Dist[F ] = 12               
giving: S = {B,C, E, F, G} A B C D E F G 

 

Dist= 
               

  0  8  9   5    12 
 Rt=  A B D  D  -  D - 

3.  Choose u = B, remove B from S,                  
consider v = E: cost = Dist[B] + cost(B, E) = 8 + 5 = 13 < ,               

so: Rt[E] = Rt[B], Dist[E] = 13               
giving: S = {C, E, F, G} A B C D E F G 

 

Dist= 
               

  0  8  9   5   13  12 
 Rt=  A  B  D  D  B  D - 

 
4. Choose u = C, remove C from S, consider 

v = D: ignore, not in S consider v = E: 
cost = 9 + 5 = 14 ≮ 13,  

so: no change         
giving: S = {E, F, G} A B C D E F G 
 

Dist= 
       

 0 8 9 5 13 12 
 Rt= A B D D B D - 

 
5. Choose u = F, remove F from S, 

consider v = D: ignore, not in S 
consider v = E: cost = 12 + 6 = 18 ≮ 13, so: no change       
consider v = G: cost = D[F] + cost(F, G) = 12 + 8 = 20 < ,        

so: Rt[G] = Rt[F], Dist[E] = 20         
giving: S = {E, G}  A B C D E F G 
  

Dist= 
       

  0 8 9 5 13 12 20 
  Rt= A B D D B D D 
(NOTE: Rt[G] = Rt[F] = D, since we want the “next hop”, although         
we found the route to G from F we use the route to F not F itself.) 



4.9.  DISTANCE VECTOR ROUTING 27

 
6. Choose u = E, no changes . . . 

 
7. Choose u = G, no changes . . . 

 
The algorithm continues until there are no nodes left in S with a value less than . 
 
4.8.1 Using shortest route algorithm for routing  
The shortest path algorithm is not, by itself, a routing algorithm or protocol.  

The main problem is that the information about all the link costs that each node uses to find the 
shortest paths is unknown, each node only knows about its own immediate connections. To be useful as a 
routing method there must be a way to collect all link costs. One way to do this is to have a protocol 
where every node sends packets about its links to all its neighbours, they in turn pass these packets on 
unchanged. All systems learn about all the links. In order to stop the packets circulating for ever each has 
a counter (a TTL, time-to-live) that is decremented each time it is passed on, when it is zero the packet is 
dropped. This is called reliable flooding .  

There is a practical routing technique called OSPF (open, shortest path first) that uses the shortest 
route algorithm, and includes a protocol to periodically collect information about network changes using 
reliable flooding. It can be used on quite complicated networ ks (in the administrative sense) consisting of 
many subnets (networks in the physical sense). Because it is designed for large networks OSPF supports 
hierarchical structures of networks. Even OSPF is not suitable for the backbone of the internet, it cannot 
route between administrative networks, only within them. 
 

4.9 Distance vector routing  
The following is a simplified description of a routing algori thm. It is called a distance vector method. 
RIP uses a method a bit like this (but note this is not RIP which has additional features). The whole 
algorithm doesn't require a global picture, all participating routers only know about their direct 
connections to their neighbours and no others. Finding the shortest route is a distributed task, all routers 
exchange information and incrementally improve their forwarding tables until they are stable.  

In this treatment it is assumed that hosts are connected to hosts as described in section 4.7.1. The 
format of the forwarding table used here is:  
 

B 
 

6 7 
    dest cost goto  dest cost goto 

A 2 D A 0 A  A 0 A 
    B 6 B  B 5 C 

3  4 5 C 3 C  C 3 C 
 

C 
 

E 
D    D 7 C 

  E    E 12 C 

 (a) The network  (b) Initial table at A  (c) Final state at A 

 
Figure 4.5: Simple example network 

 
In figure 4.5 a simple network is shown with versions of the for warding table from one node, A. The 

first table shows an initial state based only on knowledge of t he hardware connections. The second table 
represents the optimal routes, the ones we hope will result from a successful routing algorithm, from A to 
all other nodes in the net. Remember that the forwarding table only shows the first node on the best path, 
the next hop. Initially The entry for B says the route is cost 6 and go straight to B. If the route is unknown 
it is infinity . However after the routing algorithm the entry for B says the route is cost 5 and go to C 
first. Notice further that the final state has the routes to all other nodes and the costs. In the forwarding 
table the cost from a node to itself, at A to get to , is 0. 
 
4.9.1 An example network  
Figure 4.6 shows a simple network, it will be the example to explain distance vector routing.  

Notes about the bits in each host that will be used for routing: 
 

• Each node contains at the bottom centre its forwarding table. In figure 4.6 infinity,    is shown as .  
Since this first map shows an initial state only directly conn ected systems are known. 

 
• There is also a small connection list giving the hardware links a node has to other nodes and the 

“cost” of the link. 



28 CHAPTER 4.  THE NETWORK LAYER (IP)  
 

 
              A’s ft   C’s ft   D’s ft     
              A  0    A   3    A ¬      

              B  6    
B 
  2    B 7      

              C  3    C  0    C 4      
              D  ¬    D  4    D 0      
              E  ¬    

E 
  

¬ 
   E 5      

                                   
                   A  6  A    links   

             B    B  0  B    A  6  
                          

 B’s ft  C’s ft            C  2  C    C  2  
 A 6   A  3      

6 
     D  7  D    D  7 

7  B 0   B  2           E  ¬            
 C 2   C  0                            
 D 7   D  4                            
 E ¬   E  ¬          2               
                               

                                   
   A 0 A  links                        
A  B 6 B  B 6   A’s ft   B’s ft    D’s ft      
                                   

   C 3 C  C 3   A 0    A 6   A ¬     
   

D ¬ 
     

3
                    

4         B 6    
B 
  

0 
   B  7    

   E ¬                   

                                 

              C 3    C  2    C  4      
                                 

              D ¬    D  7    D  0      

              E ¬    
E 
  

¬ 
   E  5      

                                   
                  A  3 A    links   
             C   B  2 B    A  3  
                        

                  C  0 C    B  2  
                  D  4 D    D  4  
                  E  ¬             

 
 
 
 
 
 
 
 
 
 
 
 

 B’s ft  C’s ft  E’s ft    
 A 6  A 3  A ¬    
 B 0  B 2  B ¬    
 C 2  C 0  C ¬    
 D 7  D 4  D 5    
 E ¬  E ¬  E 0    
                
    A  ¬     links  
D   B  7  B    B  7 
          

    C  4  C    C  4 

    D  0  D    E  5 

    E  5  E       

   5            
 
 

D’s ft 

A 
¬

 
B 7 
C 4 
D 0 
E 5 

 
     

links  A ¬   
E B ¬   D 5
     

       

 C ¬     
       

 D 5 D    
     

 E 0 E    

 
 

Figure 4.6: An example network for routing 
 
 

• At the “top” of each host is a list of the forwarding tables sen t to a node by each of its immediate 
neighbours. So that as A only has links to B and C (2 entries in the connections table) it has copies 
of their tables, but E only has one neighbour, D, so it has only received one forwarding table. 
Notice that initially each system has its neighbours tables but it hasn't yet used them to update its 
own table, see the next section 4.9.2. 

 
4.9.2 The algorithm  
The basis of the algorithm is: 

 
if your immediately connected neighbours have routes and distances to a place X and you 
add your link cost to each of those distances and select the smallest then your best route will 
be via the neighbour whose distance plus the link cost was the least. 

 
An algorithm based on this idea is called a Bellman-Ford algorithm after two of the inventors. But how do they 
get the shortest routes? Answer: all the nodes in a network do this minimising, basing their forwarding table on 
tables from their neighbours, and in turn sending their forwarding table. This is called distributed Bellman-Ford 
or distance vector. Proving that the distributed version is correct is hard but has been done. 

The steps of the algorithm. Every node x will: 
 

1. initially set its forwarding table distance to the link cost of the direct connections: to the link cost 
from the node x to each neighbour node v, All other entries are set to , infinity. 

 
2. at fixed intervals repeat: 

 
(a) send a copy of its forwarding table to all its neighbours, 

 
(b) receive copies of the forwarding tables from all neighbours, 



4.9.  DISTANCE VECTOR ROUTING 29

 
(c) for each destination on the net y find each neighbour's cost to y (from the copy of their table) 

and add the cost of the link to the neighbour, 
 

(d) select the minimum of all these sums and set x's forwarding table entry for y to the minimum 
distance and set the next hop to the neighbour whose table gave the smallest sum. 

 
Another way of expressing the algorithm. Where dx(y) is the forwarding table distance at node x to 

node y; c(x, v) is cost of the direct link from x to neighbour v. Every node x will:  

1. initially set dx(v) to c(x, v), All other entries in d not in c are set to . 
 

2. at fixed intervals repeat:  

(a) send a copy of dx to all direct neighbours, v, 

(b) receive tables dv from all neighbours v, 

(c) for each y select the minimum of c(x, v) + dv(y) for all neighbours v. Set dx(y) to the minimum: 
 

d x(y) = minv(c(x, v) + dv(y)) 
 

Set the next hop to v. 
 
4.9.3 Using the algorithm with example net  

1. Consider the network in figure 4.6, look at node A, it has initialised its forwarding table to the links 
to neighbours. Further it has just started the first cycle and received copies of the tables from B and 
C (with the “next hops” removed since they are not used). 

 
2. it will consider each host in turn: 

 
(a) A, don't bother we can't get a shorter route, this is us, 

 
(b) B, consider tables:  

B's DV to B is 0 + link(B,6) = 6, 
C's DV to B is 2 + link(C,3) = 5, 
C is the minimum so set table distance to B to 5 and the next hop to C, 

 
(c) C, find the minimum, via  B it is 2 + 6, via C it is 0 + 3, it doesn't change, 

 
(d) D, consider tables:  

B's DV to D is 7 + link(B,6) = 13,  
C's DV to D is 4 + link(C,3) = 7,  
C is the minimum so set table distance to D to 7 and the next hop to C, 

 
(e) E, both table copies from B and C for D are infinity. 

 
This produces the new table at A: 

 

A 0 A 
B 5 C 
C 3 C 
D 7 C 
E   

 
this is the end of cycle one on A. 

 
3. cycle two starts, however realise that A won't get the same forwarding tables a second time from B 

and C because they too have, in parallel, updated their forwarding tables. The forwarding tables at 
B and C now are: 

 
On host B  

A 5 C 
B 0 B 
C 2 C 
D 6 C 
E 12 D 

 
On host C  
A 3 A 
B 2 B 
C 0 C 
D 4 D 
E 9 D 

 
4. A now sends its new table and receives the new tables from B and C. 



30 CHAPTER 4.  THE NETWORK LAYER (IP) 

 
5. it will consider each host in turn: 

 
(a) A, don't bother we can't get a shorter route, this is us, 

 
(b) B, the copied tables are the same as last time for B so the result will be the same, distance 5 

next hop C, 
 

(c) C, find the minimum, via  B it is 2 + 6, via C it is 0 + 3, it doesn't change, same as last time, 
 

(d) D, NB. B's table has changed:  
B's DV to D is 6 + link(B,6) = 12,  
C's DV to D is 4 + link(C,3) = 7,  
C is the minimum so set table distance to D to 7 and the next hop to C, but the outcome is the 
same, 

 
(e) E, consider tables:  

B's DV to E is 12 + link(B,6) = 18,  
C's DV to B is 9 + link(C,3) = 12,  
C is the minimum so set table distance to B to 12 and the next hop to C, 

 
This produces the new table at A: 

 
 

A 0 A 
B 5 C 
C 3 C 
D 7 C 
E 12 C 

 
this is the end of cycle two on A. 

 
6.  this can continue but unless there are changes in the network the tables won't change. 

 
4.9.4 Another way to visualise the algorithm  
Instead of dealing with one node step by step it is possible to picture the tables of all nodes at once. In 
some ways this is more appropriate since all the updates take place concurrently. For the network of 
picture 4.6 the initial state can be shown as: 

 
On host A  On host B  On host C  On host D  On host E 

   

 

   

 

   

 

   

 

   

A 0 A A 6 A A 3 A A   A   
B 6 B  B 0 B  B 2 B  B 7 B  B   
C 3 C  C 2 C  C 0 C  C 4 C  C   
D    D 7 D  D 4 D  D 0 D  D 5 D 
E    E    E    E 5 D  E 0 E 

 
then after all the systems send their tables, and do their updates once the new state of all the systems is: 

 
On host A  On host B  On host C  On host D  On host E 

   

 

   

 

   

 

   

 

   

A 0 A A 5 C A 3 A A 7 C A   
B 5 C  B 0 B  B 2 B  B 6 C  B 12 D 
C 3 C  C 2 C  C 0 C  C 4 C  C 9 D 
D 7 C  D 6 C  D 4 D  D 0 D  D 5 D 
E    E 12 D  E 9 D  E 5 D  E 0 E 

 
after one cycle quite a lot of information has propogated but A and E still don't know about each other. 

 
On host A  On host B  On host C  On host D  On host E 

   

 

   

 

   

 

   

 

   

A 0 A A 5 C A 3 A A 7 C A 12 D 
B 5 C  B 0 B  B 2 B  B 6 C  B 12 D 
C 3 C  C 2 C  C 0 C  C 4 C  C 9 D 
D 7 C  D 6 C  D 4 D  D 0 D  D 5 D 
E 12 C  E 11 C  E 9 D  E 5 D  E 0 E 

 
the tables have reached a stable state. The normal rule for operation as part of a real routing protocol 
would be to periodically send the table to neighbours, or whenever a change occurs. 



4.9.  DISTANCE VECTOR ROUTING 31

 
4.9.5 Broken links  
Nodes monitor their direct connections and if a node goes down they reset their connections table. This 
also means they won't receive a copy of the forwarding table from the node at the end of the broken link. 
This means that when they calculate their new forwarding table it will not use the broken route.  

Sometimes other nodes can pass back incorrect routes to the one that lost a link. Consider that if D's 
link to E is broken, on the next cycle C will send its table to D saying that it can get to E with a cost of 9. 
The simplicity of the algorithm doesn't let D know that the route to E learnt from C actually goes through 
D. This leads to instabilities that take some time to settle down. It is sometimes called the count to infinity 
problem.  

In order to reduce instability a technique called split horizon is used where a node doesn't tell another 
about a route that involves it, ie. when copies of a forwarding table are passed on by node x to neighbour 
v, remove all entries where the next hop is v. So, for example, C will never pass D routes where D is the 
next hop. This can help prevent the algorithm becoming unstable after breaks. There is another version 
where a route is sent to the neighbour that is the next-hop but it contains so it will never be used, this is 
called split horizon with poison reverse. 



32 CHAPTER 4.  THE NETWORK LAYER (IP) 



 

Chapter 5 
 

More about the network layer 
 

 
These are a few additional notes about the network layer, IP. There is a loose structure: subnets, subnet 
masks, CIDR, and routing on the backbone of the internet. 

 

5.1 Subnets and subnet routing 
 
Many Internet networks, in particular type A and type B, can be quite large with many hosts, they must be 
separated into sub-nets, because it is not workable to have thousands of hosts on one physical LAN. In 
many ways one administrative internet network (an autonomous system) with subnets is itself an internet, 
there must be subnet routers. 
 
5.1.1 Subnet addresses 
 
The first problem is to divide the host address space, this mus t (like type A, B and C nets) be a power of 
two. Consider figure 5.1. So if the herts.ac.uk net address is 147.197.0.0, 16 bits give the network 
address and 16 bits the host, the host is further divided into a 5 bit subnet number (giving upto 32 
subnets) and an 11 bit host address (giving upto 2048 hosts on each subnet). 
 

a) type B IP address 
16 bits  16 bits   

1 0 0 1 0 0 1 1  1 1 0 0 0 1 0 1 1 1 1 0 1 1 0 0  1 1 1 1 0 0 0 0  
147 197 236 240 

 
 

b) same IP showing subnet address 
 16 bits   5 bits  11 bits   

1 0 0 1 0 0 1 1  1 1 0 0 0 1 0 1 1 1 1 0 1 1 0 0  1 1 1 1 0 0 0 0  
147 197 29 1264 

(but NEVER written like this!) 

 
c) 21 subnet mask 

16 bits   5 bits  11 bits   

1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0  0 0 0 0 0 0 0 0  
255 255 248 0 

 
 

d) (b) & (c) = 21 network/subnet address  
 16 bits   5 bits  11 bits   

1 0 0 1 0 0 1 1  1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0  0 0 0 0 0 0 0 0  
147 197 232 0

 Figure 5.1: Subnet addresses  
 
 

An example herts.ac.uk address (B type) is given in part (a) of the picture, 147.197.236.240. 
The subnet part is shown in part (b), note that this is just a simple 32 bit number, it is only by convention 
that it is written as four 8 bit numbers in decimal, therefore we could say this is subnet 29 (the 5 bits), 
host 1264 (given by the 11 bits), but that would be confusing so it is still written conventionally. 
 

33 



34 CHAPTER 5.  MORE ABOUT THE NETWORK LAYER 

 
5.1.2 Packet forwarding with subnets 

 
The rest of the Internet doesn't know or care about the subnets on individual networks, routing from 
outside is still to the whole network but all the systems on the network must be aware of the subnets—
they must forward to the correct subnet.  

The way that packet forwarding occurs is to compare the network part of the address with entries in 
the forwarding table to select the destination, but what is the network part?  

It is only possible to send directly to a system on a LAN if it is on the same subnet, so it is necessary to 
examine the net and subnet number, at Hatfield the network and subnet part is 21 bits long, but how does the IP 
routing software know? It must be provided with a mask that when and-ed with the address leaves only the 
net+subnet part which can be compared with the network numbers. For the Hatfield subnet the subnet mask is 
21 bits long, when written in conventional IP notation is is 255.255.248.0, sub-picture (c) shows the 
binary value of the mask. The result of and-ing the mask with the example address 147.197.236.240 is 
shown in binary in (d), in conventional IP notation it is 147.197.232.0.  

It is also possible to examine the forwarding table on host 149.197.236.240, it shows the local 
subnet number and the subnet mask applied to destination addresses. 

 
Destination Gateway Genmask Flags Metric Use Iface 
147.197.232.0 0.0.0.0 255.255.248.0 U 0 0 eth1 
0.0.0.0 147.197.232.1 0.0.0.0 UG 0 0 eth1 

 
If this machine 149.197.236.240 sends to 149.197.239.69 then the forwarding table will mask 
the desti-nation address with the subnet mask 255.255.248.0 giving 147.197.232.0 which will 
be sent out directly (no gateway). If, however, the destination is 147.197.200.44 the mask will 
produce 147.197.200.0, this won't match the first network destination so the last line wil l be used 
instead and the packet will be for-warded to the gateway 147.197.232.1. Note that this treats the 
problem of routing to other subnets and to other networks in the same way, in both cases the packets go to 
the gateway and it must decide to forward to another subnet or go out to the Internet. 

 
5.1.3 Another notation for subnet addresses 

 
Note that forwarding with subnets blurs the distinction between the network and host parts of an address. 
If subnets are used it is not enough to recognise a type A, B or C address and know what the network 
address is. Consequently there is a different way to write network addresses that makes absolutely clear 
what the network (maybe with subnet) part is: 

 
full-network-address/number-of-bits-of-network-part 

 
for example the address of the subnet my machine uses is: 147.197.232.0/21 which gives the length 
of the network+subnet part. It gives two things: the subnet mask (length 21), ie. 255.255.248.0, and 
it gives the value of the 21 bits—the network number. 

 

5.2 The backbone of the Internet 
 

There is an important concept on the backbone of the internet: that of an autonomous system (abbreviated 
as “AS”), which is a network or group of networks administere d collectively. Autonomous systems are of 
two main types: 

 
stub this is an autonomous system, usually of only one network, with only one router connection to the 

rest of the internet, a network like Hatfield, or an ISP that ju st supports direct customer lines, 
 

transit this is an autonomous system, usually made of many networks, that has many connections to 
other ASs and its primary job is to carry through traffic (usually fo r profit), 

 
there are some autonomous systems that are hybrid, called multi-homed, they have more than one connec-
tion to the rest of the internet but they don't permit through traffic.  

Figure 5.2 shows an internet with stub and transit ASs. It tries to show that the transit ASs on the 
backbone of the internet have complicated internal structure consisting of many networks each with its 
own internal structure. In addition the geography is not localised, some long haul telecomms companies 
have autonomous systems that span continents. Also notice that each autonomous system has a unique 16 
bit network number, an ASN, only transit AS need numbers, they are not assigned to stub ASs. Another 
thing to note about the picture is that within backbone networks only some routers are connected to 
neighbouring networks, others are purely internal. 



5.2.  THE BACKBONE OF THE INTERNET  35

211.4.6.0/24 222.112.112.0/24  
  

 147.197.0.0/16  
AS2 AS7 172.111.0.0/16  

16.0.0.0/8   
AS3   

AS5 
AS6  

  

AS1   
211.199.44.0/24   

 133.77.0.0/16 

AS4 131.411.0.0/16  
81.101.128.0/18 99.0.0.0/8  

235.11.8.0/24 235.11.9.0/24 
 

   
 
 
 
 
 

Figure 5.2: The structure of Internet 

 

5.2.1 Routing on the backbone of the Internet  
From the point of view of routing all the stub networks are just destinations they do not participate in the 
routing, only the transit ASs do internet routing. The job of routing on the backbone of the internet is two-
level: firstly there are routes between ASs, this routing is called exterior routing, and then there is the 
problem of routing within each AS, this is called interior routing. There need to be two levels of routing 
protocol: 
 

• to manage the complexity, any router that handles inter-AS routing needs a forwarding table of all 
the possible network destinations, currently (2004) about 150,000, to make thousands of routers 
handle this and exchange the information would be impossible, so restricting it to a few makes it 
more manageable, 

 
• because each AS is managed by a different organisation and therefore runs its own internal 

networks differently, the routing algorithms within adjacent ASs might be incompatible 
consequently the sep-aration is necessary, and 

 
• because interior protocols within one organisation just fin d the best route but exterior routing needs 

protocols that can implement policies, for example: “don't use AS9999 because it hasn't paid us for 
six months”, or “don't send US government traffic through an A S in Iran”. 

 
The interior routing protocols can be whatever the operator of the autonomous system wants, but OPSF is 
the most widely used, it is powerful enough to cope with routing between and within the separate 
networks that might make up one autonomous system. The current (2004) exterior routing protocol used 
on the internet is called BGP-4 (the Border Gateway Protocol). It is sometimes called a path vector 
protocol it has some similarities with distance vector like exchanging table changes with its neighbours 
but it exchanges the full paths to destinations not just the next-hops. 
 
5.2.2 How BGP-4 works  
Each BGP-4 router has a forwarding table with an entry for every distinct network address on the internet, 
each entry has a path of AS numbers between itself and the destination. The reason for the path is so that 
policy decisions can be made by the administrator of the AS, chosing a route through certain systems and 
avoiding others. For example, here is an edited textual representation of part of a BGP table: 
 
PREFIX: 147.197.0.0/16  
FROM: 129.250.0.232 AS2914  
ASPATH: 2914 3356 786  
NEXT_HOP: 129.250.0.232  
... 



36 CHAPTER 5.  MORE ABOUT THE NETWORK LAYER 

 
PREFIX: 147.197.0.0/16  
FROM: 168.209.255.2 AS3741  
ASPATH: 3741 702 786  
NEXT_HOP: 168.209.255.2  
...  
PREFIX: 147.198.0.0/16  
FROM: 64.211.147.146 AS3549  
ASPATH: 3549 209 568 721 1505  
NEXT_HOP: 64.211.147.146  
... 

 
There are no metrics or costs (or in other words the metric is always 1), this is because they are 
meaningless, each “hop” means crossing a whole AS which could be using any i nterior routing protocol 
that attached totally different meaning to its metrics from any other AS.  

Each AS has at least one BGP speaker that exchanges information with BGP speakers in other au-
tonomous systems; there may be many more BGP routers in an AS but not all will exchange information 
with neighbouring ASs. Each BGP speaker establishes semi-permanent TCP connections to its neighbour 
AS BGP speakers to exchange information. If changes occur to a table it will pass the changes to its 
neigh-bours, they will update their tables to find alternative rout es that satisfy their policies. Note that a 
whole AS becomes just one point in an AS route, so from a routing point of view figure 5.3 is equivalent 
to the previous picture: As an example of route propogation: 

 
 211.4.6.0 147.197.0.0 222.112.112.0 
   

   133.77.0.0 

16.0.0.0/8 
AS3

AS7 
 

  

AS2   172.111.0.0
   AS6 

211.199.44.0    

AS1  AS5  

81.101.128.0    
 

AS4 
 99.0.0.0 

   

  131.411.0.0  
 

235.11.8.0 235.11.9.0 

 
Figure 5.3: Routing through Autonomous Systems 

 
 
 

• AS6 will tell its neighbours, AS3 and AS5 that it has a network 172.111.0.0, 
 

• AS3 will tell AS4, AS7, AS2 that it has a path: 
 

172.111.0.0: AS3, AS6 

 
• AS4 will in turn tell AS1 that it has the path: 

 
172.111.0.0: AS4, AS3, AS6 

 
• Also, AS5 will tell AS1 it has a route: 

 
172.111.0.0: AS5, AS6 

 
• now AS1 has a choice of routes: [AS5, AS6] or [AS4, AS3, AS6] and it will choose one depending 

on its site's policy. 
 

Also notice that the sending of full paths makes the protocol quite stable, if an AS receives a route that 
contains its own number it will discard the route.  

The figure 5.4 shows the paths from AS786 (Janet) to other tran sit ASs, notice the average AS path 
length is only 3 or 4. 



5.3.  ADDRESS SPACE EXHAUSTION 37 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.4: AS routes from Janet 

 

5.3 Address space exhaustion  
In the 1990s it was realised that the internet would run out of addresses, so a new internet protocol was 
agreed to replace the IPv4 protocol which used 32 bit addresses. The new protocol is IPv6 which uses 128 
bit addresses, however there has been a delay in moving to the new standard. In the meantime two 
measures have enabled the internet to keep growing: 
 

• CIDR, Classless Internet Domain Routing, which allows routing to occur to network addresses that 
do not conform to the standard IP address classes, and 

 
• connection sharing or masquerading which allow a small network to share (or hide behind) one 

internet address. 
 
5.3.1 CIDR  
BGP-4 doesn't use the address classes to select network addresses, all destination networks are written in 
the subnet format: network-number/length-of-address. When the forwarding table is searched for a 
destination address every entry has an implied mask which is used to mask the incoming address and see 
if it matches the table entry. Longer masks are always tested first to ensur e that small networks are not 
missed. This means that a fragment of a type A address can be allocated as a new network and will be 
found in the routing table.  

One reason for the exhaustion of addresses was the wasteful allocation of type A and B network ad-
dresses (7 and 14 bits respectively) to organisations that would never fully use them. CIDR has allowed 
some of these to be sold off and broken into smaller network ranges, for example here are some real 
network numbers taken from part of one type A address space: 
 
12.0.17.0/24  
12.0.19.0/24  
12.0.28.0/24 



38 CHAPTER 5.  MORE ABOUT THE NETWORK LAYER 

 
12.0.48.0/20  
12.0.153.0/24  
12.0.252.0/23  
12.1.83.0/24  
... 

 
This works well but it does have the consequence that BGP routers have a very very difficult job to match an 
address, the incoming address must be masked with masks generated from each (or many) entries and the result 
compared with the table entry. It is no longer possible to select a network number by looking at the first bit or 
the first two bits. Many BGP routers have specia l hardware to help them search their tables.  

It also means that tables get longer as type A networks are fragmented. However using CIDR can in 
some cases shorten the tables, consider the previous sample network picture, in the AS4 there are two 
close type C addresses: 235.11.8.0/24 and 235.11.9.0/24. These have the same network prefix 
if the a 23 bit mask is used, they are both: 235.11.8.0/23. This is called aggregation, all other ASs' 
routers need only one entry in their tables: 

 
235.11.8.0/23: ..., AS4 

 
because it will match both network addresses and forward them towards AS4, when the destination is 
reached AS4 can use a 24 bit mask to find the correct one. 

 
5.3.2 Connection sharing  
There are some addresses called “private” addresses that ca n be used for “disconnected” networks, they 
must not be used on the internet, 192.168.10.0 is one of them. A firewall or gateway has a single 
legal IP address and a private network behind it, see figure 5.5. 

 

connection 

Firewall/Gateway 
192.168.10.2  

 
   

   

       
       

       

       

       
       

to internet 
       

       
81.101.163.108    192.168.10.1 192.168.10.3  

         

         

          
 

192.168.10.4  
 
 
 
 

 src: 81.101.163.108  source  src: 192.168.10.4 
    network    

 dst: 147.197.200.44   dst: 147.197.200.44   address  
       

    translation    
         

 
 

 
src: 147.197.200.44  
dst: 81.101.163.108  

 
 

 
src: 147.197.200.44 
dst: 192.168.10.4  

 
 
 

 
Figure 5.5: Connection sharing 

 
 

The gateway machine translates the sender address of every packet sent from the private net to the 
internet. It changes the private network address to its own IP address and records this in a network 
address translation table. When reply packets arrive back it looks up the table and reverses the 
translation, changing the destination from its own IP address to the correct private network address. 



Module-V 
 

Chapter 6 
 

The transport layer (TCP & UDP) 
 

 

6.1 The function of the TCP layer  
From “above” application programs require that the transport layer provide reliable streams of data to 
spe-cific services on specific systems. The network layer (IP), “below”, provides for the unreliable 
transmission of fixed-sized packets, in any order to specific remote systems (not ports) and any protocol 
family (not just TCP). It is the job of the transport protocol software to bridge the gap. 
 

application socket, bind,   streams of characters 
programs 

    

 
 accept or   to and from ports on    

Transport layer   connect calls   remote systems 
          

           
 

transport protocol code 
   packets to and from 

Network layer 
 protocol code 
 on remote systems 

     
 

network protocol code 
 
The functions of the TCP protocol software are therefore: 
 

• create and bind sockets for local applications and await connection request packets from remote 
programs, 

 
• to establish connections from local programs to remote sockets, 

 
• from programs, accept streams of characters on established connections and reliably transmit them 

to remote programs using “unreliable” packets provided by the network layer below. 
 

6.2 End-to-end communication: ports  
TCP connections are between processes, IP datagrams are between hosts. Therefore the TCP layer must 
support distributing the arriving datagrams to the appropriate server program. It uses port numbers, This 
is not a process number because they are transitory and vary, it is a “conventional” number that selects a 
service, there are fixed numbers for well known services like 21 for FTP, 80 for WWW and 23 for telnet. 
Numbers below 1024 are reserved, higher numbers can be used by anybody (but might clash with 
existing services, see the file /etc/services). A process that provides a service informs the system that it 
will accept connections to a given port number. When a remote process tries to ask for a service on the 
machine it must give the port number aswell as the address and the transport layer uses this to select 
which process to connect to.  

TCP must record for every connection which process is bound to a port. It uses a unique 4 tuple to 
identify all connections:  

< src-port, src-ipaddr, dst-port, dst-ipaddr >  
a server port is obvious but the port of the client is not obvious, what TCP does is to create a unique port 
number for every outgoing client connection. Consequently if one computer makes 2 telnet connections to 
the same remote machine each connection will have a different 4-tuple to identify it, here is part of the 
output from the netstat program: 
 
rabbit(318)$ more netstat-n.out  
Active Internet connections (w/o servers)  
Pro RQ SQ Local Address Foreign Address State 
tcp 0 0 192.168.1.2:1513 192.168.1.1:23 ESTAB 
tcp 0 0 192.168.1.2:1514 192.168.1.1:23 ESTAB 
tcp 32 0 62.252.84.12:1486 62.253.162.16:119 CLS_WT 
...      

 
39 



40 CHAPTER 6.  THE TRANSPORT LAYER (TCP & UDP) 
 

6.3 TCP message format  
In order to create the reliable data stream the TCP layer exchanges messages with its “peer”. These mes-
sages are sent in IP datagrams and have a fixed format. They are used to establish connections, send data, 
send acknowledgements and close connections. 

 
0 4 10 16 24 31

 SOURCE PORT   DESTINATION PORT  
      

  SEQUENCE NUMBER  
      

 ACKNOWLEDGEMENT NUMBER  
       

HLEN RESERV CODES  WINDOW  
        

 CHECKSUM   URGENT POINTER  
       

 OPTIONAL OPTIONS  PADDING 
        

   DATA    
        

   ...    
        

 

6.4 Streams in packets 
 

The transport software, if it only has a packet-based network layer, must accept characters from the layer 
above and send them in a sequence of packets. However because on wide area networks there are 
alternative routes the first packet sent might arrive after the second one so for checking it will include a 
sequence number. In addition the network link (IP) can only send to a remote system so the transport 
layer must include the sender and recipient port numbers.  

In the following picture the application on the right is attempting to send the stream of characters: 
abcdefghijk to a program on the system on the left:  

 
application         

k l application a b     
Transport layer j Transport layer c      

Network layer      Network layer  

IP dest src seq 
def 

IP dest src seq 
ghi 

stuff port port 4 stuff port port 7    
 

6.4.1 Problems  
There can be problems: (i) the packets can go out of sequence, (ii) packets might get lost and never arrive,  
(iii) they might arrive but be corrupt, and (iv) packets might arrive faster than the receiver can deal with them. 
All of these are problems that must be solved by the transport (TCP) level software. The solution is to require 
acknowledgement of receipt of the packets and to retransmit them if they are not acknowledged. 

 

6.5 Packet acknowledgement & retransmission  
The simplest solution is that the sender can only transmit the next packet when the previous one has been 
acknowledged (ACK-ed):  

sender time receiver   
send 1 

 
get 1  
send ack 1 

 
get ack 1 

send 2 

 
get 2  
send ack 2 

 
get ack 2 



6.6.  PACKET “WINDOWS”, THE CONCEPT 41

 
Whenever a packet is sent a timer is started, if a timeout occurs before an acknowledgement is received 
(which suggests a lost packet) the sender must re-transmit the last packet. 
 

However this is very slow and wasteful, there might be several packets to send but they cannot be sent 
until the ACK is returned, that means waiting for the full RTT (round trip time) for the packet to reach the 
receiver and the ACK to get back. 
 

 

6.6 Packet “windows”, the concept 
 
An improvement is to have a window of packets awaiting acknowledgement. Both ends will agree a 
window size of n packets (in the next example n=3), this is the number of packets the sender can send 
without an acknowledgement. In the following diagram the sender sends 3 packets but must then wait for 
an ACK for packet 1 from the receiver. As soon as it gets the ACK it can continue to transmit packet 4. 
 

 
sender receiver 

send 1
 

 

  

   

send 2    
send 3   get 1. send ack 1     

    get 2, send ack 2 

get ack 1, send 4   get 3, send ack 3 

get ack 2, send 5    

get ack 3, send 6   get 4, send ack 4 

    get 5, send ack 5 

get ack 4, send 7   get 6, send ack 6 
      

 
 

 
The additional overheads of this are that the sender must keep all the packets sent but not yet 
acknowledged. Packet windows also cope with out of sequence packets. This requires that the receiver 
will save packets got ahead of the sequence number it expects and further that it doesn't acknowledge 
until it has got all the ones up to the current sequence number. 
 

 
sender receiver 

send 1
 

 

  

   

send 2    
send 3   get 1. send ack 1     

    get 3 out of seq 

get ack 1, send 4   get 2, send ack 3 

get ack 3, send 5   get 4, send ack 4 

send 6    
get ack 4, send 7   get 5, send ack 5 

      
 
 
 

6.7 Packet “windows” in TCP 
 
TCP does not use a packet count for its sliding window, it uses the number of bytes in the stream of data 
it is sending; the acknowledgements are not for packets, they are for receipt of all bytes upto a position in 
the sequence. Depending on the speed of generation of data and the maximum packet size a sliding 
window of 4000 bytes might go in 40 packets or 1000 packets. However the basic operation is exactly the 
same as for packet based windows. 



42 CHAPTER 6.  THE TRANSPORT LAYER (TCP & UDP) 

host 1 
time 

host 2  
 

send 2000−2499 
 

send 2500−3499 
 

send 3500−3999  
wait...  

get ACK 2500 so  
send 4000−4499 

 
 

seq=2000 

seq=2500 

seq=3500 

ACK 2500
 

ACK 3500
  

ACK 4000
  

 
 
 

 ACK 2500 
 

 ACK 3500 
 

ACK 4000 

 

 
current window size=2000 bytes 

 
In the above picture the sequence at the start is 2000. The window size is 2000 bytes, sent in 3 packets: 
500 bytes, 1000 bytes and 500 bytes, then the sender had to wait until the acknowledgement of the bytes 
2000–2499 (they were acknowledged by sending the number of t he next byte expected: 2500). When the 
ACK was received the sender could send upto 500 more bytes. 

 

6.8 End to end flow control  
If the receiving host on one connection cannot keep up with the rate of arrival of packets because it has 
limited buffer space and its application isn't consuming the data fast enough then it can ask the sender to 
reduce the window size so it will not receive so much data, it can, if necessary, reduce the window to 
zero. It does this by using the WINDOW field in ACK packets. 

 

6.9 Network congestion  
DO NOT confuse with flow control. Sometimes Internet IP packe t routers get overloaded and congested, 
if that happens they will have to discard some packets. What could happen, if the sliding window packet 
retransmission software is too simple, is that it will immediately respond by retransmitting all the lost 
packets. This will make the congestion worse! All “good” imp lementations of TCP should respond more 
gently—if packets timeout then the TCP sender will reduce th e window size and delay before 
retransmitting, if it still has timeouts it delay even longer. It will only start increasing the window size and 
cutting the delay when it starts receiving acknowledgements again. 

 

6.10 Opening and closing connections  
To open a TCP connection the server executes listen and accept, this causes the TCP layer to 
“passively” open a connection, later a client executes connect, this is an “active”. The TCP code 
carries out a 3-way hand-shake: 

 
time 

active   
 SYN   

send 
 seq=x   

    

SYN     

  
x+1 SYN 

seq=y 
 

ACK 
 

   

get SYN 
   

ACK   
   

and ACK  y+1  
    

send ACK     

     

 
passive 
 
 
 

get SYN  
send SYN  
and ACK 

 
 
 

get ACK 

 
• A special packet flag is used SYN, 

 
• each participant must select a random starting number for its sequence number (reduces risk of 

acci-dental capture of old packets from previous connections), 
 

• the 3 messages ensure both sides know the connection is established, a lost SYN or ACK will cause 
retransmission. 

 
Closing a connection is even more complicated: 



6.10.  OPENING AND CLOSING CONNECTIONS 43

 
time 

initiator responder  
 

close  
from app 

 
FIN seq=x 

 
 
 

get ACK  
 

data 

 
 

ACK x+1  
    

   
goother 

way 
 

still 
 

can 
  

   
     

 
get FIN  
send ACK 
 
tell app 

 
 

FIN seq=y 
 

wait..  
ACK 

 y+1

 
this side  
closes 

 

 
• the close sequence uses a special flag: FIN, 

 
• a close is only complete when both ends agree to close it, 

 
• a connection is full duplex, one side might close its sending end of a connection if it has no more to 

send, but the other side might continue to send to it until it is finished, 
 

• delays are needed to guarantee that no final packets are wande ring around and might be picked up 
by a later connection, 

 
• the intermediate ACK, from responder, even though it is not ready to send a FIN is to prevent the 

initiator resending the FIN. 



44 CHAPTER 6.  THE TRANSPORT LAYER (TCP & UDP) 



Module -VI 
 
It is covered by only 2 lectures. However it can be taught after network and transport layer 
for the benefit of students.. Thats why it is covered in this module 
 

Chapter 7 
 

Java Network programming with sockets 
 
The “ socket” interface to TCP/IP dates from the early BSD Unix systems that first implemented TCP/IP 
about 1980. It is the primary interface between application programs and the transport layer. The 
transport layer is usually in the kernel of operating systems whereas higher level protocols are 
implemented by programs so the socket interface is usually a set of system calls (although on some 
systems like Sun Solaris or Windows Winsock it is a library with slightly different transport layer system 
calls below). In Java the socket library provides a slightly higher level view of sockets but is still quite 
close to the underlying system calls. 

 

7.1 Addressing 
 
A server must offer a service on a port address, and a client must connect to the servers host address and 
port. 

 
7.1.1 The host address  
Is a 32 bit number. It is usually represented as 4, 8 bit numbers separated by dots, for example: 

 
147.197.205.101 

 
all TCP/IP socket connections only use the IP number, there are no host names in TCP/IP (they are 
provided for users by a higher level application protocol). However under certain circumstances Java 
allows names or numbers to be used. 

 
7.1.2 The port number: 

 
The port number is used to select a process on a host. It is a “conventional” number that selects a service, there 
are fixed numbers for well known services like 21 for FTP, 80 for WWW and 23 for telnet. Numbers below 
1024 are reserved, higher numbers can be used by anybody (but might clash with existing services, see the file 
/etc/services). A process that provides a service informs the system that it will accept connec-tions to a given 
port number. When a remote process asks for a service on the machine it must give the port number aswell as 
the address and the transport layer uses this to select which process to connect to. 

 

7.2 Socket usage is asymmetric 
 
No matter whether the network application is client-server or peer-to-peer whenever one program must 
contact another there is asymmetry in the use of sockets. One will wait to accept a connection and another 
must connect to it. 

 

7.3 Socket streams and datagrams  
There are 2 forms of transport level network interprocess connection with the TCP/IP family of protocols: 

 
TCP a bi-directional stream connection. The stream is “reliable” which means the underlying network 

level requires acknowledgement of each packet sent in the stream, if any are lost then they are re-
transmitted transparently to the process using the stream. 

 
UDP a connectionless single message, or datagram. There is no guarantee of delivery of a UDP datagram 

(although in practice nearly all packets get through). 
 

7.4 Unix sockets system call interface 
 
A socket appears to a user process as a file descriptor on which reads and writes can be performed. 
There are various calls to set up a connection on a socket and use it: 

 
fd=socket(proto,type,?) creates an unconnected socket, 

 
45 



46 CHAPTER 7.  JAVA NETWORK PROGRAMMING WITH SOCKETS 

 
bind(fd,struct sockaddr *ptr,len) associates a port number with a socket. It is used by a process to 

inform the operating system it will deal with any connections to a port and provide the service. 
 

listen(fd,conn_q) used by a process to indicate that it is prepared to receive connections, that it is 
a server. It doesn't wait, accept does that . . . 

 
fd2=accept(fd1,struct sockaddr *sender,len) this causes a process to wait for a 

connection. When if arrives the connecting process's address is returned in the sockaddr address 
structure. Also a new file descriptor is created that can be used to talk to the remot e process, 

 
connect(fd,struct sockaddr,len) this is used by a process to make a connection on a socket 

to an address contained in the sockaddr structure. 
 

Once the connection is established characters can be written to and read from it using the read() and 
write and other system calls.  

Notice that the asymmetry of the client server communication is reflected in which system calls are 
used. This is is illustrated in the picture 7.1. 

 
Server  

 
 

socket() 
 
 
 

bind() 
 
 
 

listen() 
 
 
 

accept() 
 

 
process blocks  

until a connection  
is made from a client 

 
 
 
 

 
read() 

 
 

process request  
lots of reads & writes  

 
write() 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Client 

 
 

socket() 
 
 
 

connect() 
 
 
 

write() 
 

 
make reuest  

lots of reads & writes 
 
 
 

read() 
 
 

Figure 7.1: System call sequence 
 
 
 

7.5 Java sockets API  
The BSD sockets are available in Java through the java.net.* package. There are two main classes: 
Socket for connected sockets, and ServerSocket for listening sockets. 

 
• ServerSocket when created it is bound to a port and it will receive incoming connections to 

that port. It uses the BSD calls: socket, bind and listen. The main operation is:  
connSock = serverSock.accept(); 



7.6.  A CLIENT EXAMPLE 47
 

 
which waits for an incoming connection. When one arrives it returns an ordinary Socket 
connected to the remote program. 

 
• Socket a connected socket, a bi-directional communication stream between two possibly remote 

programs. There are 2 ways to create a connected Socket: 
 

–  get one back from a ServerSocket accept, 
 

–  to create one and attempt to connect to a remote system: 
 

Socket sock;  
sock = new Socket(hostname,port); 

 
which will attempt to establish a connection to the remote system hostname on their port. 

 
• whichever way a connected socket is produced there are methods to get an InputStream and an  
OutputStream from it using getInputStream and an getOutputStream respectively. These 
streams are exactly the same as the streams returned when you open file s, and they can be used in the same  
way with read and write. Except reading and writeing these streams will receive and send 
data to the other program to which the socket is connected. 

 

7.6 A client example  
The following example just illustrates a simple client program, it takes as arguments: an internet address 
and a WWW page name. 
 
import java.io.*;  
import java.net.*; 
 
public class HTTPGet2 {  

public static void main(String[] args) { 
 

final int BUFSIZ=8192;  
Socket socket = null;  
OutputStream toServer = null;  
InputStream fromServer = null;  
int rc, port = 0;  
String request;  
byte buffer[] = new byte[BUFSIZ]; 

 
if( args.length == 0 ) {  

System.out.println(  
"Usage: HTTPGet2 server file [port]");  

System.exit(1);  
} else if( args.length == 3 ) { port 

= Integer.parseInt(args[2]); 

} else {  
port = 80;  

}  
try {  

socket = new Socket(args[0], port);  
toServer = socket.getOutputStream();  
fromServer = socket.getInputStream();  
request = "GET " + args[1] + " HTTP/1.1\r\n"  

+ "Host: " + args[0] + "\r\n"  
+ "Connection: Close\r\n\r\n"; 

 
toServer.write(request.getBytes()); 

 
rc = fromServer.read(buffer,0,BUFSIZ);  
while (rc > 0) {  

System.out.write(buffer,0,rc);  
rc = fromServer.read(buffer,0,BUFSIZ);  

}  
toServer.close();  
fromServer.close();  
socket.close(); 



48 CHAPTER 7.  JAVA NETWORK PROGRAMMING WITH SOCKETS 

 
} catch (UnknownHostException e) { 

System.err.println("Can’t find: " + 
args[0]); System.exit(1);  

} catch (IOException e) {  
System.err.println("IO error");  
System.exit(1);  

}  
}  

} 
 

The program is in the file HTTPGet2.java. This program will act as a dumb client. It will send a request 
to a remote http server. To compile and run the program: 

 
sally(373)$ javac HTTPGet2.java  
sally(374)$ java HTTPGet2 slink.feis.herts.ac.uk 
/tiny.html HTTP/1.1 200 OK  
Date: Sun, 16 Mar 2003 23:32:10 GMT  
Server: Apache/1.3.26 (Unix) Debian GNU/Linux  
Last-Modified: Wed, 08 May 2002 23:45:10 GMT  
Accept-Ranges: bytes  
Content-Length: 492  
Content-Type: text/html; charset=iso-8859-1  
Connection: close 

 
<H1> Example Page </H1>  
This is the first paragraph, it is terminated by a  
... 

 
which will get tiny.html from slink.feis.herts.ac.uk. Notes: 

 
• first it checks the command line arguments, if there is no port  number provided the program will use  
80, 

 
• all the code to open the connection and read and write the streams might produce horrible 

exceptions so the body of the program is surrounded by try{..}catch{..}, 
 

• first attempt to connect to the server by creating a new socket using the remote system name (or 
number) and the port: 

 
socket = new Socket(args[0], port); 

 
if this fails an exception will be raised, 

 
• now extract the input and output streams: 

 
toServer = socket.getOutputStream();  
fromServer = socket.getInputStream(); 

 
• now build a full HTTP file request as a string in  request, 

 
• and send it to the server: 

toServer.write(request.getBytes()); 

note that since it is a stream we use write which requires an array of bytes, getBytes will get 
such an array out of the string request. Now the message is sent to the server, 

 
• if the server exists and if it reads the request, and if it thinks our request well-formed and if it has 

such a file then it will send it down the same connected socket. We must read the socket to get the 
returning file: 

 
rc = fromServer.read(buffer,0,BUFSIZ); 

 
read puts the characters read into a pre-allocated array of bytes, here called buffer. The return 
result, put in rc, is the number of characters actually put in buffer. The client cannot know how 
big the file is (if it's an MPEG video it might be megabytes), so it r eads in “chunks” of 8k, that is 
why there is a loop, that reads and then prints to System.out, 

 
• when we can read no more (rc > 0 is not true) we close everything and finish. 



7.7.  A CUTDOWN VERSION 49
 

7.7 A cutdown version  
This is the same as the previous version but all the checking of arguments and exception handling is re-
moved. Not good, but maybe it is easier to focus on the network code: 
 
import java.io.*;  
import java.net.*; 
 
public class HTTPGet0 {  

public static void main(String args[])  
throws Exception {  

Socket socket = null;  
OutputStream toServer = null;  
InputStream fromServer = null;  
int rc, port = Integer.parseInt(args[2]);  
String request;  
byte buffer[] = new byte[8192]; 

 
socket = new Socket(args[0], port);  
toServer = socket.getOutputStream();  
fromServer = socket.getInputStream(); 

 
request = "GET " + args[1] + " HTTP/1.1\r\n"  

+ "Host: " + args[0] + "\r\n"  
+ "Connection: Close\r\n\r\n"; 

 
toServer.write(request.getBytes()); 

 
rc = fromServer.read(buffer,0,8192);  
while (rc > 0) {  

System.out.write(buffer,0,rc);  
rc = fromServer.read(buffer,0,8192);  

}  
toServer.close();  
fromServer.close();  
socket.close();  

}  
} 
 
The program is in the file  HTTPGet0.java. 
 

7.8 Client server example echo  
This example consists of a server and a client. They do very little except show how a stream connection is 
set up. The server awaits (accept) a connection, reads lines from the client and immediately sends them 
back again. When the connection from a client is closed (a null return from readLine) the server 
loops to accept the next connection from another client. The client makes a connection and then loops 
each time: reading from the user, writing this text to the server, reading the server's response (which 
should be the same) and then printing it. The server: 
 
import java.io.*;  
import java.net.*; 
 
public class EchoServer {  

public static void main(String[] args) { 
 

ServerSocket serverSock = null;  
Socket connSock = null;  
PrintWriter out = null;  
BufferedReader in = null;  
int echoPort = -1;  
String fromUser; 

 
if( args.length != 1 ) {  

System.out.println("Usage: EchoServer port");  
System.exit(1);  

} else {  
echoPort = Integer.parseInt(args[0]); 



50 CHAPTER 7.  JAVA NETWORK PROGRAMMING WITH SOCKETS 

 
}  
try {  

serverSock = new ServerSocket(echoPort, 10); 
 

while(true) {  
connSock = serverSock.accept();  
System.out.println("Got connection from "  
+ connSock.getInetAddress().getHostName()); 

out = new PrintWriter( 

connSock.getOutputStream(), true); in 

= new BufferedReader(new InputStreamReader( 

connSock.getInputStream())); 
 

fromUser = in.readLine();  
while (fromUser != null) {  

out.println(fromUser);  
fromUser = in.readLine();  

}  
out.close();  
in.close();  
connSock.close();  

}  
} catch (IOException e) { 

System.err.println("EchoServer: error opening," 

+ " accepting or reading socket");  
System.exit(1);  

}  
}  

} 
 

The program is in the file  EchoServer.java. 
 

• notice that the server loops forever: 
 

while(true) {  
... 

 
nearly all servers are like this, deal with one request and loop to “ accept” the next, 

 
• this is a server so it must create a ServerSocket bound to a port number. The port number to 

use is provided as an argument. It then waits by calling accept, 
 

• this network program reads and writes lines not single characters, it could have used characters but I 
thought a bit of variety would be fun. So it has to create a BufferedReader and a PrintWriter, 

 
• it then loops reading lines from the client and writing them back again.  When it gets null from 
readLine (which would be end of file for a file) it means the client closed  the connection. 

 
Now the client, this is a cutdown, non-error checking one: 

 
import java.io.*;  
import java.net.*; 

 
public class EchoClient0 {  

public static void main(String[] args)throws 
Exception{ Socket echoSocket = null;  
PrintWriter out = null;  
BufferedReader in = null; 

 
echoSocket = new Socket(args[0], 

Integer.parseInt(args[1])); 

out = new PrintWriter(  
echoSocket.getOutputStream(), true);  

in = new BufferedReader(new InputStreamReader( echoSocket.getInputStream())); 

 
 

BufferedReader stdIn = new  
BufferedReader(new InputStreamReader(System.in)); 



7.9.  THREADS 51

 
String userInput; 

 
userInput = stdIn.readLine();  
while (userInput != null) {  

out.println(userInput);  
System.out.println("echo: " + in.readLine());  
userInput = stdIn.readLine();  

}  
out.close();  
in.close();  
stdIn.close();  
echoSocket.close();  

}  
} 
 
The program is in the file EchoClient0.java. This is very similar to HTTPGet.java except, of course, it 
reads from a user, writes to the server, reads the response and displays it. To test the client server 
programs: compile them both, run the server with an arbitrary port number: 
 
tink(257)$ java EchoServer 3333  
Got connection from 147.197.236.188 

 
Then in another xterm run the client: 
 
slink(258)$ java EchoClient0 tink 3333  
hello  
echo: hello  
... 

 
the line “ hello” is read from the user, sent to the server returned by it, read from the socket by the 
client and then printed “ echo: hello”. Unlike the server the client only deals with one session, i t 
only has one loop to read and echo, when the user finishes (by typing contro l-d “ ^d” on Unix) the loop 
finishes and the program finishes. 
 

7.9 Threads  
A thread enables one part of a program to be executed logically in parallel with another part. If we create 
a new thread and start it then it will share CPU time with the main program (also a thread) and any other 
threads. There are two ways to write Java threads (i) to implement the Runnable interface, or (ii) to 
inherit from the Thread class. We will show the second because it is slightly simpler.  

In order to write a thread it is necessary to provide (i) a constructor to set any attributes, and (ii) a 
single function: public void run() which will be the separately scheduled code. Here is a very 
simple example that declares one thread class, then creates and starts two thread objects: 
 
import java.net.*;  
import java.io.*; 
 
class Loopy extends Thread {  

String message; 
 

Loopy(String mess) {  
message = mess;  

}  
public void run() {  

while(true) {  
System.out.println(message);  

}  
}  

}  
public class Threads0 {  

public static void main(String[] args) {  
Thread thread1 = new Loopy("One  
Thread thread2 = new Loopy("  
thread1.start();  
thread2.start(); 

 
 
 
");  

Two")
; 

 
}  

} 



52 CHAPTER 7.  JAVA NETWORK PROGRAMMING WITH SOCKETS 

 
The program is in the file Threads0.java. When the threads are started they execute their run routine for 
ever repeatedly printing out their message. If this is compiled and run it can produce almost any output 
sequences deoending on how the threads are scheduled, which means how they are allocated a share of 
the CPU time. Here is part of one sequence: 

 
Two  
Two  
Two  
Two  

One  
Two  

One  
Two  

One 
 

7.10 A concurrent server  
If a server has to deal with a long transaction for a client, involving lots of waits for reading and writing 
files and sockets, it will be unable to accept new requests. One simple solution is to change the server 
so that after the accept it creates a “child” thread. This new thread uses the new “connected” socket to 
service t he clients request, and then dies. The parent thread goes back to accept to await another 
connection. This is called a concurrent server. 

 
import java.io.*;  
import java.net.*; 

 
class ServiceThread extends Thread {  

Socket conn; 
 

public ServiceThread(Socket c) {  
super("EchoServer service thread");  
conn = c;  

}  
public void run() {  

String fromUser;  
PrintWriter out = null;  
BufferedReader in = null;  
try {  

System.out.println("Got connection from "  
+ conn.getInetAddress().getHostName());  

out = new PrintWriter(conn.getOutputStream(), 
true); in = new BufferedReader( 

new InputStreamReader(conn.getInputStream())); 
 

fromUser = in.readLine();  
while (fromUser != null) {  

out.println(fromUser);  
fromUser = in.readLine();  

}  
out.close();  
in.close();  
conn.close();  

} catch (IOException e) { 
System.err.println("EchoServer: socket 
error"); System.exit(1);  

}  
}  

}  
public class EchoServerConc0 {  

public static void main(String[] args)throws Exception{ 
 

Socket connSock = null;  
int echoPort = Integer.parseInt(args[0]);  
ServerSocket serverSock = new ServerSocket(echoPort, 
10); ServiceThread serve = null; 

 
while(true) { 



7.10.  A CONCURRENT SERVER 53

 
connSock = serverSock.accept();  
serve = new ServiceThread(connSock);  
serve.start();  

}  
}  

} 
 
The program is in the file  EchoServerConc0.java. 
 

• After the accept a new thread is created and given the connected socket connSock, 
 

• the new thread is now started, and runs in parallel with other threads and main, 
 

• the parent (main) thread loops to do accept again, 
 

• the child thread runs and handles the client transaction, when this is finished it reaches the end and 
terminates. 



54 CHAPTER 7.  JAVA NETWORK PROGRAMMING WITH SOCKETS 



Module-VII 
 

This is covered by only 4 lectures. 
 

Chapter 8 
 

WWW, HTTP, HTML, CGI and PHP 
 
These notes are an introduction to how the World-wide-web works. The treatment of topics is not 
uniform, the notes are meant to survey nearly all aspects of the Web and in addition a more detailed 
treatment of CGI programs work. The material is organised as follows: 
 

• A brief description of HTML, used for writing Web files, 
 

• Something on HTTP, 
 

• Quite a lot about CGI, the way in which programs are executed on a web server. 
 

8.1 Overview of WWW 
 
The World-Wide Web is based on a simple protocol called HTTP that allows browser programs such as 
netscape, kfm or internet explorer, to fetch files from remote server programs, for example apache, 
and to view them (the files are often called pages, which is odd because they are files!). WWW files are 
named by URIs which have a special format that includes the remote server name and the name of the file 
(note: a URI is sometimes called a URL). The files can be written in a special document description 
language called HTML that is interpreted by the browser to give an appealing visual effect on a graphical 
display. The HTML files can contain embedded URIs that refer to other WWW files, these are usually 
highlighted by the browser and if selected will cause retrieval of the named file. Such references are 
sometimes called hyper-links, it is the use of these that produce a “web” and give the web (HTTP, URIs, 
and HTML) its power.  
 
 
 

Example Page 
 

This is an example page. 

 
This is a new paragraph. 

a link 

 
 render page on screen 

 
Client program  
eg. netscape  
fetching tiny.html  
from blink 

 
Client system 

 
 
 

file.html 
 

 

www.xy.net  
 

Server program, 
 
 
   tiny.html 
   

  <H1> Example Page </H1>  
  This is an example page  
  <p>  
  This is a new  

Client request  paragraph.  
  <p>  
  <A HREF="http://www.xy.net/file.html">  
   a link</A>  
       
   

Server System, blink.cs.herts.ac.uk    
Server response and file. 

      

  Server program,   
     

   eg. apache   

       
 

Figure 8.1: A client and a server 
 
 

Figure 8.1 shows a client program requesting a file, tiny.html from a server system. The file is a text 
file on the server's disc, it contains source HTML. The client has sent an HTTP protocol request to the 
 

55 



56 CHAPTER 8.  WWW, HTTP, HTML, CGI AND PHP 

 
server, the server sent the file to the client, and the client p rogram (netscape) has interpreted the HTML and 
displayed the result on the client computer's screen. The file tiny.html contains an HREF, a hyper-link: 

 
<A HREF="http://www.xy.net/file.html"> a link</A> 

 
that if selected will cause the browser to retrieve a file from  www.xy.net. 

 

8.2 HTML  
Any type of file can be retrieved by a browser from a server: ima ges, sound files, text files, or PDF; the 
action taken depends on settings in the browser and its capabilities. For example most browsers can 
interpret JPEG files themselves but with an MPEG movie they will execute a separate viewer program.  

However, by far the commonest content of web files is HTML. HTM L is a mark-up language, which 
means it describes the layout of pages that can be interpreted to produce a readable image. Other 

examples of mark-up language are TEX, LATEX, SGML (which is a meta markup language) and XML. 
Nearly all web browsers can interpret and display HTML, though there are some text-oriented browsers 
like lynx that interpret HTML but only display the results in a non-bitmapped display form.  

HTML is a simple language: 
 

• ordinary text is interpreted as itself and rendered in the current font and size, 
 

• anything surrounded by <..> brackets is a formatting instruction. 
 

Many formatting instructions “bracket” the text they apply to. For example: 
 

<H1> This is a Heading </H1> 
 

Will cause the text This is a Heading to be set as a “level one heading”, meaning bold and large. Not 
ice that the formatting is introduced by <H1> and ended by the same directive with “ /” in front: </H1>. 

 
8.2.1 HTML file example  
These notes are not intended to provide a proper introduction to HTML, they are just an overview so the 
simplest way is by example. The result of looking at the file wi th netscape is presented first followed by 
the text of the file:  



8.3.  URIS AND WHERE FILES ARE KEPT 57

 
The above picture used the URI http://localhost/example.html to retrieve the file from the server on my 
own machine but http://blink.feis.herts.ac.uk/example.html should get a very similar file. Now the 
source of the file: 
 
<body bgcolor="#FFFFFF" > 

 
<h1 align="center"> Tux’s web page </h1>  
<p>  
This is a simple example web page, it contains a 
picture, a list and a few links.  
<p>  
Here is a picture of Tux:  
<p>  
<img width=128 height=150 
src="PenguinMascot.gif"> <p>  
Some of Tux’s links in a list:  
<ul>  
<li>  
<A HREF="http://freshmeat.net/"> http://freshmeat.net</A> 

for news about new Linux software, 

<li>  
<a href="http://sunsite.org.uk/"> http://sunsite.org.uk/</A> 

is a site with copies of the files from many other sites, 

<li>  
<A HREF="http://www.linuxgazette.com/"> 
linuxgazette.com</A> Linux Gazette Front Page,  

<li>  
<A HREF="http://www.linuxlinks.com/"> linuxlinks.com</A> 

Linux Links - The Linux Portal Site 

</ul> 
 
</body> 

 
Notes: 
 

1. The language is not case-sensitive, <H1> means the same as <h1>. 
 

2. The file contents are surrounded by <body> .. </body>; the opening declaration is followed by an 
option that sets the background colour: <body bgcolor="#FFFFFF">. Other options can be set. 

 
3. The <h1> surrounds text that will be set large and bold, <h2> is slightly less large, etc. Like the 

body declaration it can be followed by an option, in this case to centre the heading. 
 

4. The <p> starts a new paragraph, it is one of the few directives that doesn't need a matching 
“slash” terminator. 

 
5. Images can be included using the <img ..> directive. Once again there is no terminator. 

 
6. The <ul>..</ul> is a “bullet” list. Each item of the list is introduced by  </li>. 

 
7. The <a..>..</a> is a link. The HREF selects the destination of the link, the rest of the text 

between <a ..> and </a> is displayed underlined so: 
 

<a href="http://freshmeat.net/"> freshmeat</A> 
will display: freshmeat on the screen, which will, if clicked, retrieve the index file from fresh-
meat.net. 

 

8.3 URIs and where files are kept  
8.3.1 URI  
URI stands for universal resource identifier, they are are of ten called URLs but according to the HTTP 
standard they are URIs and there is no important difference. The format is: 

scheme :// hostname [ : port ] / path  
where scheme is the protocol, http or ftp, hostname can be a fully qualified domain name or a 
numeric IP address, the port number is optional and if omitted defaults to 80, and path is a “ /” separated 
list of names selecting the required file or directory. For example: 
 

http://humbolt.nl.linux.org/Linux-MM/internals.html 
 
The URI is taken apart by the browser which uses the scheme to select the protocol, the hostname and 
port to make the connection so all it actually sends in a request is the path. 



58 CHAPTER 8.  WWW, HTTP, HTML, CGI AND PHP 

 
8.3.2 Where files are stored  
The server program chooses how to interpret the path. Usually it has a special directory tree where all its 
files are kept and the requested path is prefixed by that. Th e “root” can be anywhere, some common 
examples are: /home/www, /usr/local/htdocs. So the requested path /Linux-MM/internals.html might 
map to a host file /home/www/Linux-MM/internals.html.  

Some servers allow files to be requested from users “home” dir ectories. If the path contains a “ ~username” 
this is interpreted as a request for a file in username's home directory. To avoid remote access to all a user's files 
the request is usually mapped to a sub-directory of the h ome directory called public_html, so: 

 
http://blink.cs.herts.ac.uk/~aa9zz/my.html 

 
might be mapped to: 

 
/home/student/aa9zz/public_html/my.html 

 
8.3.3 Directories and index.html  
Very often URI request paths actually name directories. What is returned in these cases? Some servers 
will look for a file called index.html in the named directory and return that file. So the simple requ est 
http:/www.w3.org/ will retrieve a file called index.html from the “root” of www.w3.org's 
server file hierarchy. If a directory is named and there is no index.html then some servers will read the 
directory contents and turn it into HTML form with each name turned into an “href” and return that. 

 

8.4 HTTP  
HTTP is the protocol used to communicate between a client and a server. HTTP defines what characters 
can be sent along the socket stream connection.  

The basic protocol is request and response. The server accepts a connection and the client sends a 
request command line, various optional MIME lines and then a blank. The server must then send a 
response line giving a success or failure code, followed by additional optional lines, then the blank line 
and finally, if a file was successfully requested, the file contents (wheth er HTML, GIF or whatever).  

That's it. Except to look at a request and a response...  
Using a “dumb server” it is possible to capture and print the H TTP sent by clients. The program binds a 

high numbered port, say 8080, and accepts connections. It then just reads all the data from the socket and prints 
it on the standard output. Then it just closes the socket and causes the client to report an error. 

This is the HTTP request and options sent from netscape when it was given a URI like: 
 

http://localhost:8080/abc.html 
 

The standard output from the “dumb server” was: 
 

GET /abc.html HTTP/1.0  
Connection: Keep-Alive  
User-Agent: Mozilla/4.7 [en] (X11; I; Linux 2.3.34 i686)  
Host: localhost:8080  
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*  
Accept-Encoding: gzip  
Accept-Language: en  
Accept-Charset: iso-8859-1,*,utf-8 

 
There are only 2 really essential parts: 

 
1. the request line. It include the command, in this case GET, the request file name, here /abc.html 

and the protocol version. 
 

2. the other essential part is the blank line at the end. 
 

The other lines are optional. Some are very important and useful but are not obligatory.  
Similarly it is possible to examine the responses from servers by using a “dumb client” that sends a 

request to a server and prints out the complete response. This will show the HTTP response line with the 
status code, various optional lines, a blank line then the retrieved file if any. It is not possible to see the 
reponse from servers using a normal browser because they process the response lines and don't show 
them. The example apache responded to: 

 
GET /tiny.html HTTP/1.0 



8.5.  CLIENT AND SERVER ADDITIONAL SERVICES 59

 
By sending back: 
 
HTTP/1.1 200 OK  
Date: Wed, 19 Jan 2000 01:43:00 GMT  
Server: Apache/1.3.9 (Unix)  
Last-Modified: Sun, 09 Jan 2000 23:41:23 GMT  
ETag: "d112-1ec-38791ca3"  
Accept-Ranges: bytes  
Content-Length: 492  
Connection: close  
Content-Type: text/html 

 
<H1> Example Page </H1> 

 
This is the first  
paragraph, it is terminated by a  
... 

 

8.5 Client and server additional services  
Very early in the history of the web it was discovered that just returning HTML pages was very limited. 
People wanted to add more computational power so that users could interact with the web. One of the 
first such additional features added were CGI programs that allow browser requests to cause programs to 
execute on the web server. This revolution enabled people to develop search engines, database access 
through the web, and sites providing e-commerce. In addition more interesting web pages were provided 
by allowing programs, sent in web pages, to be executed by the browser. This allowed animation and 
other dynamic features. There are different forms of these extensions to web functionality: 
 

• server-side facilities, these allow programs to be executed on the web server that can access and 
update databases or carry out financial transactions. There are two main ways this is now provided: 

 
– CGI programs, these can be written in any language, and, within certain security limits, carry 

out almost any task. When a client request is sent the URI can name a CGI program rather 
than an HTML page, it is then executed. They are very powerful but can be hard to write.  

– server-side includes, or SSI, these are HTML files with special additions that allo w other files 
to included. This facility permits, for example, a site to use standard headers and footers on all 
their pages and to change the appearance of all of them without having to edit them all 
separately. However they do not have the power to execute programs, they provide a different 
functionality.  

– executable web pages, also called active-server pages. These consist of HTML and a program-ming 
language interleaved in the same file (or page). When one of these files is named by a URI, sent 
with a client request, the server program itself (or a special interpreter run by the server  
program) “executes” the page. This “execution” involves se nding any HTML straight back to 
the client browser and executing any bits of the programming language found. This allows a 
simple way of sending back HTML and and at the same time executing commands that can 
for example access a database.  
There are alternative languages available, some examples are: 

 
∗ PHP, an open source, free system that works with the Apache web server on any platform, 
∗ Microsoft's ASP which uses VBScript, and  
∗ JSP, Java Server Pages. 

 
• client-side services, these involve extensions to, or commands in, the HTML file sent to the client's 

browser. When the browser encounters these it will “execute ” them. This has entirely different 
advantages from the server side facilities: they can be used to animate pages, they can check user's 
input before it is sent back to the server, and many other tasks. They cannot be an alternative to 
central server programs, they are executed in the browser. There are two forms: 

 
– languages that can be embedded in the page and executed by the browser, Javascript (not 

related to Java) is the most widely used example of this, 
 

– special purpose languages or programs that need a browser “p lugin” to interpret them. Flash 
is one example of this as is Java. 

 
In the following sections some of these will be examined a bit further. First, CGI, and then some PHP, a 
bit of SSI and lastly a tiny bit of Javascript. 



60 CHAPTER 8.  WWW, HTTP, HTML, CGI AND PHP 
 

8.6 Server side: using forms for interaction 
 

Before starting on the details of CGI or PHP this section will summarise how “executable” server-side features 
are invoked and how users interact with them. In nearly all cases server-side programs require some input from 
the user, this must be sent from the browser, the commonest method is to use the HTML form. A form displays 
boxes or buttons on the browser screen that the user can fill in. There is a button to send the values from the 
form back to the server along with a URI as part of an HTTP request. The requested file (page) is usually an 
executable (CGI, PHP or AS P), the server program executes it and gives it the input from the form. The 
executable will run, carrying out its task, and send some HTML back to the browser as a response. See figure 
8.2. Here is an example of a ve ry simple HTML file with a form in it: 

 
 

server client browser  
 
 
 
 
 

initial request 

 
 

  HTML page with form    
  <HTML>    
  ... 

user fills in form fields   <FORM ACTION=      

  <INPUT NAME=    

  
</FORM> 

   
  

name: Jo Smith 
 

    
  

request to execute 

   

     
  CGI with    
  form data    

 CGI program GET /cgi ..name="jo Smith" 
 executes     

  response from    
  CGI program    
    

   Thank you Jo 
   Smith 
   1000000 pounds 
   has been 
   taken from your 
   account 

time 
    
     

 

 
Figure 8.2: Interaction using a form 

 
 
 
 
 
 

 
<H1 ALIGN="CENTER">Silly form</H1> 

 
<FORM ACTION="http://localhost/~bob/cpp-print.cgi/" 
METHOD=GET> Name <INPUT NAME="name" SIZE=64> <P>  
Address <INPUT NAME="address" SIZE=64> <P>  
<INPUT TYPE=SUBMIT VALUE="Send"><P>  

</FORM> 
 
 
 

the above form is the sort of thing sent to the browser first. Th is produces a simple screen like: 



8.7.  SERVER SIDE: CGI PROGRAMS 61 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
If data is entered and the “Send” button is pressed the browse r will generate a GET request and send name 
and address values to localhost. The requested URI will normally be for an “executable”, CGI or PHP, 
which will run, get the arguments (see later for how it gets them), and send back so response to the client. 
 

8.7 Server side: CGI programs  
Very early on in the history of the web additional functionality was added to the server. One of the first 
simple enhancements was the Common Gateway Interface (CGI) to enable programs to be executed on 
the server and their output sent back to the browser. The programs are started by the server but not 
interpreted “inside” the server so they can be written in any language tha t will execute on the machine 
that runs the server. CGI programs can be used to access central databases, send back the results of 
searches, carry out online transactions and many other jobs. 
 
8.7.1 Starting a CGI program  
The browser sends a normal HTTP request but the name of the requested file is used to decide if it is a 
CGI program. There are different ways CGI programs are named: 
 

• Historically servers have a special directory called /cgi-bin/ where programs are kept and any 
request for one of those files results in its execution. So: 

 
http://blink.cs.herts.ac.uk/cgi-bin/printenv 

 
would result in running the program printenv (if there is one on blink). Normally this server 
directory is protected from users. 

 
• Some servers enable ordinary users to have cgi-bin sub-directories in their public_html directories. 

This is not always permitted on some safety conscious systems because CGI programs are regarded 
as potential security risks. So if allowed: 

 
http://blink.cs.herts.ac.uk/~fred/cgi-bin/hello 

 
would run user fred's hello CGI program. 

 
• Lastly files in any accessible directory with a name ending in the extension .cgi are treated as CGI 

programs. Once again this is sometimes not allowed for security reasons. So: 
 

http://www.cs.herts.ac.uk/~bill/test.cgi 
 

might run the program test.cgi from bill's public_html directory. 
 
8.7.2 “scripts”  
On Unix systems there are lots of types of file that can be execu ted in addition to binary machine code 
“a.out” files. When a file is “exec-ed” the kernel examines the first line of the file to find the name of a 
language interpreter, if there is one it is run and given the fi le to interpret. The format of the first line is 
!# followed by the full path to the interpreter, so: 
 
#!/bin/bash  
.. 

 
will cause the shell bash to be executed and given the file of shell commands to interpre t.  

Very often such programs in interpreted languages are called scripts, it is because such “scripts” are often 
used for CGI that the programs are sometimes called “cg i-bin scripts”. There are loads of interpreted 
languages used on Unix: Unix shell (or bash) command files, PERL, TCL, Awk, Python, and many more. 



62 CHAPTER 8.  WWW, HTTP, HTML, CGI AND PHP 

 
8.7.3 A small CGI program  
The following shell command script hello.cgi will be used as an example: 

 
#!/bin/bash  
echo "Content-type: text/html"  
echo  
echo "<H1> Hello </H1>"  
echo "<H3> from $SERVER_NAME </h3>"  
echo "<p>"  
echo "the date and time are: ‘date‘" 

 
Notes:  

• For now ignore Content-type:, that will be discussed soon. 
 

• The echo command just writes its arguments to standard output; the server must put the connected 
client socket on the standard output (using dup or dup2) for the script before it is executed (using 
exec) so that all the standard output will go down the connection to the client. 

 
• Unix shells have variables (and environment variables, more later) their value can be accessed by 

preceding them with a dollar, so 
 

$SERVER_NAME 
 

is replaced by the value of SERVER_NAME which is set by the server to the hostname. 
 

• In a Unix shell script ‘prog-name‘ is replaced by the standard output that results from executing 
the command named: prog-name. Amazing! (Well I think so). The command: 

 
echo "the date and time are: ‘date‘" 

 
will be transformed during execution to: 

 
echo "the date and time are: Wed Jan 19 10:30:07 GMT 2000" 

 
and then of course written to the standard output. 

 
• for a shell script to be run by the server it must have execute permissions set for 

all: chmod a+x hello.cgi 

 
If, to test your script, you run it directly from your home directory, the output will be: 

 
rabbit(2133)$ public_html/hello.cgi  
Content-type: text/html 

 
<H1> Hello </H1>  
<H3> from </h3>  
<p>  
the date and time are: Wed Jan 19 10:30:07 GMT 2000 

 
Notice that there was no value for SERVER_NAME because it was not executed by a web server. If you 
invoke it via a browser it might look like:  

 
 
 
 
 
 
 
 
 
 
 
 
 

Alternatively you can use binary executable files instead of shell scripts. The following C++ program, 
cpp-hello.cc, will produce output almost identical to the hello script. 



8.7.  SERVER SIDE: CGI PROGRAMS 63

#include <iostream.h>  
#include <stdlib.h>   
int main(int argc, char *argv[]) {  

cout << "Content-type: text/html\n";  
cout << "\n";  
cout << "<H1> C++ Hello </H1>\n";  
cout << "<H3> from " << getenv("SERVER_NAME") << 
"</h3>\n"; cout << "<p>\n";  
cout << "the date and time are: "; cout.flush();  
system("date");  
cout << "\n";  

}  
Note: 

• If users' home directories are networked and NFS mounted by different types of machine there can 
be problems with binary executable files. If you compile the C ++ program on a Sun computer but 
test it by calling a web server on an Intel system it will fail! Wrong binary machine instructions. So 
make sure that both the system you compile on and the system the server runs on are the same. 

 
• The system library routine system(..) causes the named shell command to be executed (by a 

hidden sub-shell) and the results sent to the standard output. 
 

• The system function getenv() returns the string value (actually it's char *) of the named 
environ-ment variable. (more on environment variables next). 

 
8.7.4 The program environment and Environment variables  
In the high virtual memory of every process there is a list of pairs of names and values called the envi-
ronment variables. A program can lookup the value of a variable and might then use the value to change 
its behaviour. The current settings of all environment variables can be examined with the shell command 
printenv, try it.  

The variables are used to modify or tailor a user's programming environment. One very important 
variable is PATH which is used by shells (and other programs) to search for executable programs. If the 
user types g++ .. to a shell prompt the shell will use the value of PATH to look for g++. This is 
necessary because there are many directories that hold programs. A typical value might be: 
 

rabbit(2121)$ echo $PATH  
/usr/local/bin:/usr/X11R6/bin:/bin:/usr/bin:/usr/local/java/bin:. 

 
Note that this PATH contains “ .” which means the shell will look in the current directory. So me systems 
don't, by default, have “.”, you must add it to your own start- up dot files. Environment variables can be 
set in bash by using export: 
 

export PATH=~/bin:$PATH 
 
will prefix the bin directory in your home directory to the current value of PATH and then re-assign to 
PATH. Environment variables are automatically “inherited” fro m the parent process whenever a new 
process is started. So environment variables usually only need to be set once during login, they are then 
passed automatically to every program run thereafter. Users normally use the file .bash_profile or 
.profile to set their environment. However if necessary a program can add or change environment 
variables after fork but before exec using the system library routine putenv so that the environment 
of the new process will be different, or to pass extra information to it.  

Web servers must set certain environment variables for CGI programs. Here is a little CGI program 
that prints out some of the environment variables set by the server: 
 

#!/bin/sh  
echo Content-type: text/plain  
echo  
echo CGI/1.0 part of the environment:  
echo  
echo SERVER_SOFTWARE = $SERVER_SOFTWARE  
echo SERVER_NAME = $SERVER_NAME  
echo SERVER_PROTOCOL = $SERVER_PROTOCOL  
echo SERVER_PORT = $SERVER_PORT  
echo REQUEST_METHOD = $REQUEST_METHOD  
echo SCRIPT_NAME = "$SCRIPT_NAME"  
echo QUERY_STRING = "$QUERY_STRING"  
echo REMOTE_HOST = $REMOTE_HOST  
echo REMOTE_ADDR = $REMOTE_ADDR 



64 CHAPTER 8.  WWW, HTTP, HTML, CGI AND PHP 

 
And its output in a browser:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notice that this program doesn't send HTML and therefore was considerate enough to tell the browser by 
sending Content-type: text/plain and not text/html. 

 
8.7.5 How CGI programs are executed  
When a server receives a request and determines that it is for a CGI program it must: 

 
• fork to produce a child process (it may already have done this to deal with the request if it is a 

simple concurrent server, if so it doesn't need to do it again). 
 

• Check what sort of HTTP request it is. It might be the GET or the POST method (for the CS2 
coursework assume it can only be GET, say “not implemented” o therwise). 

 
• It then prepares the environment by setting special environment variables, eg:  

putenv("SERVER_SOFTWARE=MyServer version 0.1"); 
 

or if a value is in a variable read from the connection: 
 

char env_str[64];  
sprintf(env_str,"REQUEST_URI=%s",file); putenv(env_str); 

 
• Send the correct HTTP response down the new socket to the client. Eg: 

 
HTTP/1.0 200 OK  
Date: Wed, 19 Jan 2000 13:13:44 GMT  
Server: MyServer version 0.1 

 
NB it is the job of the server to send the response line and maybe a couple of MIME lines. But it 
doesn't send the vital Content-type: and blank line, it can't, it doesn't know what content will 
be generated by the CGI program. These lines must be sent by the CGI program immediately it 
starts, that's why all the scripts start with: 

 
echo "Content-type: text/html"  
echo 

 
• “re-plumb” the input and output for the CGI program. This wil l involve closing and duplicating 

file descriptors. At the very least put the new socket on the standard output, dup2(newsock,1). 
 

• Finally exec the requested program. 
 

8.7.6 CGI input, forms, GET and POST  
It is important and useful for input or arguments to be passed from the client to the program. This is 
solved by providing extra data from the client at the end of the URI. Here is an example of the type of 
URI generated for a search engine request: 

 
http://www.altavista.com/cgi-bin/query?pg=q&what=web&q=j+s+bach 

 
• The proper URI is terminated by “ ?”, 

 
• The actual path sent in the GET request will not have the hostname etc., it is 

just: cgi-bin/query?pg=q&what=web&q=j+s+bach 



8.8.  SERVER SIDE: PHP 65

 
• The query consists of name value pairs: pg=q, what=web and q=j+s+bach, The pairs are 

separated by “ &”. 
 

• Spaces have been replaced by “ +”. 
 
The query string is split from the program file name by the serv er and given to the program via an envi-
ronment variable: QUERY_STRING. There are numerous packages and library functions available for CGI 
programs to carry out the separation of all the name value pairs and the re-replacement of “ +” by spaces. 
 
HOW FORMS GENERATE THE GET QUERY STRING  
Because it is so complicated to formulate the query strings in the client there is a facility in HTML to get 
input from the user and send it to a remote CGI program, it is the <form>..</form>. Here is an 
example of a very simple HTML file with a form in it: 
 
<H1 ALIGN="CENTER">Silly form</H1>  
<FORM ACTION="http://localhost/~bob/cpp-print.cgi/" METHOD=GET>  
Name <INPUT NAME="name" SIZE=64> <P>  
Address <INPUT NAME="address" SIZE=64> <P>  
<INPUT TYPE=SUBMIT VALUE="Send"><P>  

</FORM> 
 
this is the same form as used in section 8.6. If data is entered and the “Send” button is pressed the 
browser will generate the following URI query string: 
 
/~bob/cpp-print.cgi/?name=Jo+Bloggs&address=11+The+Avenue 
 
and send it in a GET command to localhost. 
 
HOW FORMS SEND DATA WITH POST  
An alternative way to send data to a CGI, ASP or PHP program is to use the POST in HTTP, this is 
similar to GET but is normally only used to invoke executable pages and send them data. The POST does 
not encode the data as an extension to the URI but rather it sends it in the body of the request. It can be 
used to send larger quantities of more complicated data. So if the previous little form was changed to: 
 
<H1 ALIGN="CENTER">Silly form</H1>  
<FORM ACTION="http://localhost/~bob/cpp-print.cgi/" 
METHOD=POST> Name <INPUT NAME="name" SIZE=64> <P>  
... 

 
everything else is the same but the METHOD attribute has been changed to POST. If this is filled in and 
then sent by a browser the HTTP request might look like this: 
 
POST /cpp-print.cgi HTTP/1.1  
Host: localhost  
User-Agent: Mozilla/5.0 Gecko/20030624 Netscape/7.1  
Accept: text/xml,application/xml,...  
...  
Connection: keep-alive  
Referer: http://localhost/~bob/fp.html  
Content-Type: application/x-www-form-urlencoded  
Content-Length: 41 

 
name=Tony+Blair&address=10+Downing+Street 

 
the CGI, PHP or JSP program must know how the data is sent, or check the method used. 
 

8.8 Server side: PHP  
PHP is a programming language, it looks a bit like C (as do many programming languages), it has 
dynamic typing (a variable can hold any type, the type is checked at runtime). What makes it different is 
that is is designed to be embedded in HTML files (pages). The PHP inter preter processes the file, any 
HTML is sent to standard output (connected by the web server to the client browser), any PHP is 
executed. Here is a simple example: 
 
<html>  
<head> <title>PHP Test</title> </head>  
<body>  
<h2> Powers of 2 </h2>  
<p> 



66 CHAPTER 8.  WWW, HTTP, HTML, CGI AND PHP 

 
<?php  

$pot = 1;  
while($pot < 10000) {  

print(" $pot <br>\n");  
$pot = $pot * 2;  

}  
?>  

</body>  
</html> 

 
and here is the output when it is requested from a browser:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note that: 

 
• a PHP file is basically HTML with bits of code in the middle, 

 
• PHP code is surrounded by: 

<?php  
...  

?>  
• variable names are preceded by $, and they don't need to be declared, 

 
• the output of the print statement goes down the connection to the client with the surrounding HTML. 

 
Here is another example, this one examines an element in a pre-defined array. When PHP programs are 
executed many special values are set, this one is the type of the HTTP request, either GET or POST. 
Further note that PHP arrays can be indexed by numbers or by strings (this type of array is sometimes 
called an associative array). 

 
<html>  
<head> <title>PHP Test</title> </head>  
<body>  
<h2> Which method was used </h2>  
<p>  
<?php  

$rm = $_SERVER["REQUEST_METHOD"];  
if( $rm ) {  

print("Request method was: $rm <br>\n" );  
} else {  

print("REQUEST_METHOD not set <br>\n" );  
}  

?>  
</body>  
</html> 



8.9.  CLIENT SIDE (BROWSER) SERVICES 67

 
and here is the output when it is requested from a browser:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The PHP interpreter can be run outside the web server. It can be a good way to debug programs. Also, in 
this case, it shows the HTML being sent to the standard output which will normally be the browser 
connection, but here is the console. 
 
sally(309)$ php4 method-check.php  
X-Powered-By: PHP/4.1.2  
Content-type: text/html 

 
<html>  
<head> <title>PHP Test</title> </head>  
<body>  
<h2> Which method was used </h2>  
<p>  
REQUEST_METHOD not set <br>  

</body>  
</html>  
sally(310)$ 

 

8.9 Client side (browser) services  
Client side web facilities are sent from the server but they are executed or interpreted in the browser. 
 
Javascript which is a language that can be embedded in HTML code between <script> and 

</script>. Javascript source code is interpreted by the browser. The language has no existence 
outside HTML. It is usually used to add checking or animation to an HTML file. Al l attributes of 
the currently displayed HTML: links, images, colours etc., are accessible from Javascript making it 
a very powerful tool for manipulating pages. 

 
browser plugins these vary from movie players that are run when a video is downloaded, to complicated 

interpreters for animations like flash that are integrated i nto the display. In fact Java is 
implemented using a Java byte code interpreter plugin. 

 
Java Java is a complete programming language, it exists outside browsers and HTML. However most 

browser have a built-in interpreter for the byte-code form of Java. Java is less closely integrated 
into HTML and the browser however it is musch more general purpose language than Javascript 
making it better for more complicated applications. 

 
8.9.1 Javascript example  
Apart from making the page display more interesting client side services can reduce network traffic. The 
following Javascript example checks the values entered into a form, this can reduce the need for a server 
to check and send back an error page from the server. Here is a form with Javascipt checking code: 
 
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 
transitional//EN"> <HTML>  
<HEAD>  
<TITLE>Test Page for Post args to cgi-bin</TITLE>  
<SCRIPT LANGUAGE = "JavaScript"> 

 
function checkage() {  
var a;  
a = parseInt(document.okform.age.value); 



68 CHAPTER 8.  WWW, HTTP, HTML, CGI AND PHP 

 
if (a<=2 || a>=110) {  

window.alert("age between 3 and 109 please");  
document.okform.name.value = "";  
document.okform.age.value = "";  
return false;  

} else { return 

true; 

}  
}  

</SCRIPT>  
</HEAD>  
<BODY>  
<H1 ALIGN="CENTER">Silly form</H1> 

 
<FORM NAME="okform" ONSUBMIT="return checkage()" 

ACTION="http://localhost/~bob/show-env.cgi" METHOD=POST> 

Name <INPUT TYPE="text" NAME="name" SIZE=64> <P>  
Age <INPUT TYPE="text" NAME="age" SIZE=4> <P>  
<INPUT TYPE=SUBMIT VALUE="Send"><P>  

</FORM>  
</BODY>  
</HTML> 

 
This is the output if the form is loaded into a browser, given unsuitable input and then the “send” button 
is pressed:  



 

Chapter 9 
 

The Domain Name Service DNS 
 
 
 

9.1 Domain names 
 
The DNS (Domain Name Service) maps host names to addresses. At the level of TCP/IP connections on 
the Internet all addresses are the (IPV4) 32 numbers, there are no host names, the names are provided by 
the DNS. Once upon a time very large central tables were kept on the network, but now this has become 
impossible due to their size and rapidity of change. Now the Internet uses a protocol between systems 
called the DNS which queries remote systems about how to map a name to a number.  

Names are read left-to-right from smallest domain (or unit) to widest: 
slink.feis.herts.ac.uk is a system, slink in the domain administered by the our faculty, 
.feis., in the campus network domain administered by the University of Hertfordshire, herts in the 
UK academic community, ac.uk. Now although the University has a class B address, there is no 
structure, correspondence or mapping between parts of it and the ac.uk bit of the name.  

Usually there is a domain for every separate autonomous system or network administrative authority, 
ie. 147.197 (a B address) is herts.ac.uk. But above that level the domains have a structure not related to IP 
addresses. The actual domains have grown up over time and the “top-level” domains are countries or the 
US names: .com, .edu, .org etc. Figure 9.1 is a picture of part of the domain name hierarchy.  
 
 
 
 
 

de uk gov mil com edu net org  
 

 
co ac google sun debian  

 

 
packages uk www   

ic herts ucl   
www 

 
feis www gemini  

 

 
pclab099  lawn slink 

 
Figure 9.1: Domain name hierarchy 

 
 
 

9.2 Zones and name servers 
 
The hierarchy is divided into zones, each zone belongs to some administrative authority, either a 
company, university or network organisation. A zone is responsible for: 
 

• allocating names and numbers to systems that belong in the zone, or pointing (delegating) to the 
name servers in sub-zones, 

 
• maintaining two or more name servers to translate name requests to addresses of systems or of 

name servers for sub-zones. 
 

69 



70 CHAPTER 9.  THE DOMAIN NAME SERVICE DNS 

 
This organisation can cope with the dynamic distributed nature of the network structure, the responsibility 
for translating names is passed down to the groups who allocate names and numbers to systems.  

In order to enable end user zones to be found various network organisations provide intermediate zones, at 
the “top” there are about 20 name servers that know about ho w to find the next level name servers, .com, .uk 
etc. A zone doesn't always correspond to one domain name level. It is possible for one zone to have 
two or more levels of name hierarchy supported by its name servers. In picture 9.2 there is one zone to  

 
 
 
 

 
de 

 
 
 
 

 
uk 

 
 
 
 

 
gov 

 
 
 
 

 
mil 

 
 
 
 

 
com 

 
 
 
 

 
edu 

 
 
 
 

 
net 

 
 
 
 

 
org 

 

 
co 

 

 
ac 

 

 
google 

 

 
sun 

 

 
debian 

 

 
packages 

 

 
uk www  

ic 
 
herts 

 
ucl 

 
www 

 
feis www gemini 

 

 
pclab099  lawn slink 

 
Figure 9.2: DNS zones 

 
 

manage all the levels of the debian hierarchy.  
The name servers in each zone hold a table mapping host names to numbers, or sub-domain names to 

their name servers. The responsibility of a name server is to deal with requests from two sources: 
 

• local applications in that zone that need to begin resolve a local or remote name, the name server 
must, if necessary, contact other name servers on their behalf, or 

 
• other name servers that need to find out about the names in the n ame servers domain. 

 

9.3 Resolving a name  
Every system connected to the internet has address(es) of one or more local name servers and software libraries 
to contact this server if any program wants to resolve (translate) a name. The server then deals with the request. 
There are alternative programs to provide the DNS but the basic operation of all is probably: 

 
• if it is a local name in this system's zone, lookup the table and return the number, 

 
• search the cache to see if it has been recently requested and saved, 

 
• contact a “top-level” server (all DNS programs know these nu mbers), and ask for the name, 

 
• the top-level server will probably not know the full answer but it will know somebody who does 

know, in other words it will match the rightmost part of the domain name and provide the address 
of the name server for the next zone, 

 
• the original name server then sends the same query to this next name server, and either get the 

answer or another name server address, 
 

• this continues until it either fails or gets the answer. 
 

For example consider the picture 9.3. 
 

• Some system on the internet has an application that asks its local name server for the address of 
slink.feis.herts.ac.uk. 



9.3.  RESOLVING A NAME 71 
 

application asks local  
nameserver for  
slink.feis.herts.ac.uk 

 

147.197.236.188   .uk   198.41.0.4 uk 
       

     ac       
     .   

. 

   

    
.herts 

     

slink...  .feis    131   

   .164     
      79      
 

slink 
   .       

   217   .uk 217.79.164.131co     try    
   uk    .ac  

    .herts     
  .       

 

for 
  .feis       

local  slink        
      .5.32     

           
     .16      

name− for ac.uk. 128       
        

server slink.feis.herts.ac.uk    

    

 for herts.ac.uk 147.197.200.2 
128.16.5.32

herts

 
gov mil com 

 
 
 
ac google 
 
 
 

 

ucl 

 
for 

 

feis.herts.    
slink. ac.uk 147.197. 236.64

  

feis.    

 herts. 

uk 
 

147.  ac.  
197.    

 236.   

  188   

 
 

helios  feis www gemini 

lawn  pclab099 slink 
 

Figure 9.3: DNS query 
 
 

• it isn't a local name and the name is not cached so 
 

• the name server contacts a top-level server, in this case 198.41.0.4. The top-level server knows 
the zone servers for .uk so returns one of the addresses 217.79.164.131 

 
• the local name server then sends the full request to 217.79.164.131 which doesn't know the 

answer but does know the name servers for .ac.uk one of which is: 128.16.5.32, 
 

• the local name server again sends the full name and gets the address of helios on our campus, 
147.197.200.2, 

 
• it contacts helios which returns the address of the server for feis.herts.ac.uk, this is lawn in 

computer science and its address is 147.197.236.64, 
 

• the poor tired local server then sends its request again, this time to lawn, now lawn does know the an-swer, 
it is in its zone. It replies with 147.197.236.188, the number for slink.feis.herts.ac.uk 

 
• the server passes this address to the program that asked, (it then collapses from exhaustion). 

•  • slink.fei
s.herts.ac.uk 



72 CHAPTER 9.  THE DOMAIN NAME SERVICE DNS 



 

Chapter 10 
 

Peer to peer networks 
 

 

10.1 Application architecture  
There are two contrasting network application architectures: client-server and peer-to-peer. The 
definition of what actually constututes peer-to-peer can be a bit unclear. The important characteristic 
seems to be that a in client-server the client system always initiates the interact by sending a request, the 
server accepts the connection and sends a response:  
 

client 
 

response 
 

request 
request  

client server   
response  

response 
request  

 
client 

 
With the peer-to-peer architecture any system can initiate requests or act as a server and receive requests: 

 
request  

servent servent 
B   C  

response 
response 

request  
 

servent 
A 

 
in the above picture each participant is called a servent

1
, and servent B is acting as a server for servent C, 

receiving a request and sending a response, but also behaving as a client and sending a request to servent A.  
The definition concerns the way the parts of a network applica tion interact, the nature of their protocol, it 

is not necessarily about how the user perceives the system. It is possible to have a person-to-person system 
such as a network message exchange where each participant seems both to send and receive messages, however 
the program implementation could involve a central server that routes the messages, the client programs initiate 
the connections to the central server, they don't receive incoming requests.  

In addition the difference between client-server and peer-to-peer is not anything to do with the under-
lying network operation or topology below the application layer where all systems can be considered to to 
uniformly connected and all can open or receive connections. 
 

10.2 Instant message systems 
 
These are systems that allow people to hold remote conversations with each other using typed text messages, 
example are Micros**t Messenger, ICQ (bought out by AOL), AIM from AOL, Yahoo Messenger, and the 
open standard Jabber. In some ways most of these are not fully peer-to-peer systems as suggested above. 
However some have more peer-to-peer features than others. In most the conversations between client   

1
 “servent” is a term used in the Gnutella file sharing system, t he word seems to be a mixture of “server” and “client”. 

 
73 



74 CHAPTER 10.  PEER TO PEER NETWORKS 

 
programs go through special purpose central servers but will support direct client to client connections for 
file transfers or video links.  

 

client 
client 

A 
              C 

 
p−2−p  
for file server  

transfer  
 interactive messages 

client A−B and B−A via 
 

B the server 

 
Possible reasons for using a central server might be that: 

 
• if extra clients (people) can be invited to join a conversation then the required number of inter-

client links would rise very fast if peer-to-peer connections were used, 
 

• there is less need to avoid legal attacks on a central system than with file sharing systems (see later), 
 

• the actual data passing through the central server is not very high 
 

• a central server is essential for notifying other when a new user logs in. 
 

10.3 File sharing  
These systems are quite recent but have spread and evolved quite fast. They enable users to search for and 
download files (usually music or film files) from other user s' systems on a network. Examples are (or 
have been, because with fast evolution there seem to quite a few deaths): Napster, Gnutella, Freenet, 
Audiogalaxy and the Fastrack-Kazaa-(old)Morpheus family.  

The earliest widely used system was Napster, it was used to provide access to mp3 music files. How 
it operated: 

 
• a client program would login to one of several central servers and upload a list of files the client 

was prepared to make available, 
 

• when a user wanted to search for a file they would send the searc h request to the central server and 
receive a list of client machine addresses, 

 
• the user would choose one of the systems and the client program would download directly from the 

other system. 
 

Initially because files were transfered from one individual to another it was hoped it would avoid copy-
right laws however the American music industry paid enough lawyers enough money for long enough 
that eventually the Napster site was forced to close. This encouraged more decentralisation in peer-to-
peer ap-plication design, newer systems do not have a central server with a list of all available files, the 
search became peer-to-peer aswell as the file transfers. With a redu ced role (or no role at all) for a central 
server it is hoped that the systems are less vulnerable to attack by lawyers. 

 

10.4 Gnutella  
Gnutella is an application network sitting on the internet, it has a continually changing topology as systems are 
turned on and join or are disconnected, in addition it seems to generate a lot of traffic. Each active node 
(servent, client or wahtever it is called) tries to maintain a small number of open TCP connections to other 
nodes, usually between 3 and 10, this produces the network structure, if connections break (systems turned off) 
a node establish new connections. There is no central server, and at the moment, no login procedure. 

 
10.4.1 Distributed search  
This section describes just the distributed search and file t ransfer, how the connections are found, set up 
and maintained will be summarised afterwards. So to search: 

 
• a node transmits a search request to all its connected neighbours (3–10), the search request has a 

unique number, it also has TTL (time to live) count, 



10.4.  GNUTELLA 75

 
• the neighbours propogate or forward the message, each will: 

 
–  record the unique message number in a table with the address from which it was received, 

 
–  decrement the TTL count, and if it is not zero. . . 

 
–  pass the request on to all their neighbours (except on the link they received it on), 

 
Note that if the same search request is received on another connection, which is highly likely 
because of the tangled, arbitrary structure of the net, it can easily be discarded because the search 
request's unique number has been recorded in the table. 

 
• each node that receives the search request also performs the search on its files, and forms a search 

response with a variable length list of files satisfying the s earch. The response will include the 
search request's unique identifier and also the address of node form ing the reply. The response will 
be sent back only on the connection from which it was received, 

 
• any intermediate node will, in addition to forming its own search response, receive responses from 

other systems it propogated the original search to. It will then forward these responses back to the 
originator by using the unique number to look up its table to see which connection it got the 
original request on. 

 
• When the responses arrive back at the initiator they will be shown to the user who will select which 

one to fetch. The file transfer uses the HTTP protocol's GET re quest; each node program contains 
its own code to act as a little HTTP server and client to deal with the file transfers. The HTTP 
connection will be a single new direct connection to the selected file's n ode–no viral propogation 
this time; this is possible because the necessary IP address was included in the search response. 

 
10.4.2 Finding and maintaining connections 
 
There is an unsettled question: how does a servent (node) get its connections? There is a special message: 
“GNUTELLA CONNECT” that is sent to any other existing node th at can be accepted “GNUTELLA 
OK” or rejected. But how does a new node known what system to send this to? There has to be a handful 
of “well-known addresses” of systems that are always running a nd connected. These are the initial 
contact points. In some sense these are like special servers although there role is very limited; that is the 
problem of a very distributed system–how to contact it. So some “server ” is still needed until some 
efficient broadcast method can be devised.  

The whole problem is not solved, the new node only has one connection, where does it get the others? 
There is a special message called “PING” (not the ICMP ping) w hich works like a contentless search 
request, it: 
 

• has a unique number 
 

• has a TTL field 
 

• is propogated like a search request, every node recording its incoming connection and number it the 
table, 

 
The use is that recipients respond to it with “PONG” replies. A PONG reply contains: 
 

• the unique number of the PING it's replying to, 
 

• the IP address of the node that is replying, and 
 

• the number, and total size of offered files on the replying sys tem 
 
These PONG messages get returned to the iniiator just like search replies. When PONGs get back the 
system that started the PING it will have loads of IP addresses, it can then use these to try to open 
connections using “GNUTELLA CONNECT”.  

Additionally PINGs can be sent out later to get more IP addresses if nodes that are used for 
connections are turned off. 



76 CHAPTER 10.  PEER TO PEER NETWORKS 

 
10.4.3 Summary of protocol  

• to open a new TCP connection there is the GNUTELLA CONNECT message, these is a before the 
real protocol can be used, 

 
• once a connection is open fixed format binary messages can be s ent, these constitute the real protocol. 

They all have a unique number, a TTL, a length field and a messag e type. The message types are: 
 

–  PING, to discover more addresses, they are propogated, 
 

–  PONG, the reply to PING containing the reponders IP address, 
 

–  SEARCH, containing a file search string, propogated like PIN G, 
 

– SEARCH REPLY, that contains the names of files, and machine ad dress, from each node re-
sponding to the search, 

 
– PUSH, used to start data transfers from systems that are behind firewalls, necessary but not a 

major part of the operation. 
 

These constitute the messages sent along the TCP connections. 
 

• Lastly there are HTTP GET request and replies that will be sent directly between systems to fetch 
files once they have been found. 

 
10.4.4 Issues in Gnutella  

• It is very decentralised, it is very robust, connections and nodes come and go but the network is 
always there, 

 
• it is an open published protocol and there are many client programs (servents) available, 

 
• it is more secure against attacks from lawyers, the lack of a permanent central server containing all 

the search functions means it is harder to find anybody to take to court, 
 

• at the moment it doesn't contain much internal security, anybody can connect (good) but anybody 
could write programs that flood the system with corrupt searc hes or pings (bad), 

 
• additionally this basic version of Gnutella might not scale up very well as the number of users in-

creases the traffic they produce rises exponentially. Each s earch spreads across the net like a virus 
(until the TTL gets to zero). Also each machine that runs a Gnutella client (servent) program is 
going to be used by other systems to search and pass on searches; you run the program, sit back, do 
nothing, but your machine and network connection are immediately very busy. 

 
• there are already some improvements and suggestions for improvements in the protocol that might 

reduce the load on the internet, 
 

• it is a very new idea and there is not yet enough experience to know exactly how things like this 
will evolve. 

 
There are a couple or links for further information:  
http://www.gnutelliums.com/, http://www.limewire.com/, 
http://www.rixsoft.com/Knowbuddy/gnutellafaq.html, 
http://www.gnutelladev.com/protocol/gnutella-
protocol.html, and the current home of the standard:  
http://rfc-gnutella.sourceforge.net/. 



 

Chapter 11 
 

Network security 
 

 

11.1 Some cryptographic concepts 
 
A very important component in any secure system will be some form of encryption, the use of a key to 
“mangle” a message so that nobody else can read it except some body else having a suitable decoding key. 
There are many different encryption schemes and algorithms with very different properties. The following brief 
notes summarise three schemes (no details of the actual algorithm, I'm not a mathematican). 
 

11.1.1 Secret key encryption 
 
This scheme uses one algorithm and key that can both encode and decode a message. So if Alice wants to 
send a message to Bob, she encrypts the message: 
 

E = encry pt(K, M) 
 
where M is the “plain-text” message, K is the key, E is the encrypted message, and encry pt is the secret key encryption 
algorithm, for example DES. The only way the message can be decrypted is with the same key K, Bob has the key aswell so 
he does: 
 

 
and can read the message. Nobody else can read it, unless they know the secret key. Features of secret key: 
 

• quite efficient and fast, can encode streams of data, 
 

• has the problem of key distribution, how do you pass secret keys around safely? 
 

11.1.2 Public/private key encryption 
 
This scheme generates a complementary pair of keys, called the public key and the private key, with the 
property that anything encrypted with the private key can only be decrypted using the matching public 
key and vice versa. One of the most famous algorithms is RSA.  

Public private key pairs belong to individuals, and they will publish, or make available, their public 
key but hide their private key. 

E = encry pt(Kpriv, M)  
where M is the “plain-text” message, Kpriv is the key, E is the encrypted message, to decrypt: aswell so 
he does: 

M = decry pt(Kpub, E)  
Also the converse holds: 

M = decry pt(Kpriv, encry pt(Kpub, M)) 
 
How can it be used? Firstly if Alice wants to send a message to Bob that only he will be able to read she 
encodes it using Bob's public key knowing that nobody but Bob (the owner of the matching private key) 
will be able to decode it. So Alice does: 
 

 
and sends it to Bob, he decodes it: 

 

E = encry pt(Kpub−bob, M) 

 

M = decry pt(Kpriv−bob, E) 
 
Alternatively Alice might want to send a message to Bob in such a way that he will know she is the only 
one that could have sent it, this is message authentication. Also she will not be able to deny that she sent 
it, this is non-repudiation. (These are only the case so long as her private key is not disclosed.) So she 
will encrypt it with her private key: 

E = encry pt(Kpriv−alice, M) 
 
and Bob (or anybody else) will be able to decode it:  

M = decry pt(Kpub−alice, E) 
 
The 2 can be put together. Alice will encrypt with her private key and then encrypt the result with Bob's 
public key: 
 

77 

 
M = decry pt(K, E) 



78 CHAPTER 11.  NETWORK SECURITY 
 

E = encry pt(Kpub−bob, encry pt(Kpriv−alice, M)) 
 

so that only Bob can decode it. Secret and authenticated.  
Features of secret key: 

 
• quite inefficient and slow, can only encode small amounts of d ata, 

 
• provides a solution to the problem of key distribution, 

 
• there still remains the problem of knowing that the person who claims to own a public key really 

does own it. 
 

11.1.3 Message digests 
 

A message digest is a a special hash code formed from a message, a sort of cryptographic checksum. One 
widely used digest algorithm is MD5. If:  

D = MD(M) 
 

where M is the message, the document, the file, MD is a message digest function and D is the computed 
message digest hash code. The digest D is usually at least 128 bits long, it is not possible to infer anything 

about M from D, it is almost impossible that any other document M
′
 will produce the same D, any change 

to M, however small, will change D. You could almost say it is a unique fingerprint.  
One use of message digest is to reassure users of the safety and authenticity of files and programs that 

are being distributed. If the file distributor, Alice, has a fi le F to distribute they calculate the digest D and 
“sign” it using their private key producing E D which they put on the server along with F . 

 

E D = encry pt(Kpriv−alice, MD(F ) 
 

Now Bob wants to download the program F and be confident nobody has altered it or added a virus, so he 
dowmloads F and E D. He first computes the D of F using the same algorithm MD, then decrypts E D 
using Alice's public key, and finally compares them. 

 

MD(F ) = decry pt(Kpub−alice, E D) 
 

If they are the same he knows nobody has tampered with F since Alice calculate D, and nobody but Alice 
could have done it. 

 
11.1.4 Certificates 

 
There is a remaining problem: how to you know that a public key belongs to the person who presents it? 
The solution is to use a “well known authority” to verify that a public key belongs to a specific person. It 
uses a certificate . If Bob wants a certificate he: 

 
• goes to a well known authority (there are many, including companies like Verisign) 

 
• proves who he is using an ID card, a driving license or something else, 

 
• has a public-private key pair generated for him 

 
• pays some money, and receives a certificate consisting of his public key and a statement of his 

identity (name, email, address etc.) all hashed and signed with the private key of the authenticating 
company (the “well known authority”). 

 
Then Alice (or anybody else) can verify his public key belongs to him, they compute the hash key, and 
compare it with the “signature” decoded with the public key o f the authenticator. 

 
11.1.5 SSL 

 
There are many protocols and applications of encryption, PEM and PGP can be used to encrypt e-mail, 
IPSec encrypts IP network connections, Kerberos deals with user authentication, and many others. One of 
the best known protocols is SSL (and its newer standardised version TLS), it is used for authenticating 
and encrypting program to program (transport) connections. It is nearly always used by Web servers that 
require a credit card number to be submitted.  

The server system (being run by Bob) has its own certificate (y es computers can have certificates). 
Alice wants to buy a Linux palm computer from his site so she will initiate an HTTPS connection (one 
using SSL): 



11.2.  SYSTEM SECURITY WITHOUT NETWORKING 79 

 browser message server 
     

 → algo. preferences + Rc → 
 ← algo. choice + Rs ← server chooses algorithm 
 check certificate  ← server certificate ← 
 ← request client cert. or done ← 
 assume no req. → encry pt(Kpub−serv, SK

′
) → 

 SK = f (SK
′
, Rc, Rs)  SK = f (SK

′
, Rc, Rs) 

 → use encryption with SK → 
 → done SSL handshake → 
 ← acknowledge done SSL ← 
  exchange data encypted with SK   
 

• the client sends initial request and suggests some encryption preferences, also a random number Rc, 
the random number is used later, 

 

• server responds with a choice from encryption preferences, and its random number Rs 
 

• server sends certificate which is checked by the client, if th e server wants the client to authenticate 
itself using its certificate it asks for it now, the process wi ll be similar, otherwise it says “done” so 
they can move on to the next step, 

 
• client sends a value to be used as a secret key (stage 1) for encrypting the whole session after the 

handshake is complete. This is encrypted with the server's public key. 
 

• now both ends can compute the final secret session key based on the random numbers exchanged 
earlier and the stage 1 session key sent by the client, 

 
• client says switch to using session key, server acknowledges, 

 
• all the transaction messages encrypted using the symmetric secret key just generated. 

 

11.2 System security without networking 
 
Without networking the problem of policing an operating system is relatively simple. If users can only access 
the system through local terminals then they are easier to physically protect (no link tapping). Users can only 
access the system through terminals (no network servers accepting connections from elsewhere), so good 
password security can stop unauthorised users. The main problems arise from enforcing the different access 
policies and authorisation within the system (often called “protection” in opsy textbooks). 

 

11.3 System security with networking 
 
With networking there are thousands of ways in. 
 

• Use of stolen or unprotected user accounts via telnet and similar programs, 
 

• At the data-link layer, for example Ethernet, packets can be observed and examined by any system 
attached to the Ethernet. These are called packet sniffers. Passwords, credit card numbers or confi-
dential data are stolen. 

 
• At the network layer people can install false routing systems to intercept and even change packets. 

This can be done by masquerading as DNS servers. 
 

• Systems can be flooded with traffic at the application or the tr ansport layer causing services to fail. 
These are “denial of service attacks”. 

 
• At the application layer there are many types of attack. 

 
–  CGI programs on WWW servers are often insecure, 

 
–  network filesystems (NFS, SMB etc.) can be very insecure, 

 
–  many server programs have known vulnerabilities that allow intruders in, 



80 CHAPTER 11.  NETWORK SECURITY 
 

11.4 How can networking be more secure?  
• Install audit programs so that attacks can be detected (and sometimes) repaired. They usually work 

by recording the state of important files and checking for une xpected changes, 
 

• Use better authentication for passwords and remove old or unused accounts, 
 

• Many systems have network servers that are not used or are badly configured: remove any unused 
services, 

 
• check that all local network fileservers are secure (don't pe rmit setuid programs from insecure file 

systems), 
 

• Use authenticated and encrypted network connections, this means that the only people making or 
receiving connections to or from your systems are ones that can be authenticated and afterwards 
you are safe from sniffer attacks because of encryption. 

 
• Use firewalls to filter and monitor all network traffic enterin g and leaving a local network. A 

firewall is a system between a local network and the rest of the Internet that can monitor all packet 
traffic. It can recognize attacks and reject packets. 

 
• read regular network security reports about newly discovered weaknesses in any server programs 

you use and get new, fixed versions. 
 

11.5 Firewalls, Proxies, and Masquerading  
• Many related solutions depend on a “box” between the network to be protected and the rest of the 

internet. 
 

• The “box” provides more functions than a simple gateway or ro uter, it must provide some privacy 
or prevent some of the forms of attack from the outside, 

 
• The sorts of protection it can give are: 

 
–  to hide services and make it harder for port scanners, 

 
–  to prevent some of datagram fragment attacks, 

 
–  to prevent incorrect source address spoofing, 

 
–  to hide machine and their identities 

 
–  to prevent ICMP flooding, 

 
• Sometimes fancy routers also provide firewall functions, so metimes they are separated. 

 
• Very often firewalls are used to monitor and restrict outgoin g security so that employers and 

owners of networks can spy on, or control what their employees or users are doing. 
 

11.6 Position of firewall     
  __________ +--- ...  
 _/\__/\_ | PPP gate/| | _______________  

| | | Firewall | (LAN) | |
/ Internet \----|  System |--(HUB)--| Workstation |
\_ _  _  _/ |__________|  |_______________| 

 \/ \/ \/   | _______________  
    | | |
    +----| Workstation |
     |_______________| 

 
• Here is a simple ISDN, cable modem or phone line linking a small network to the internet. 

 
• I've got one at home, 

 
_________ __________  

_/\__/\_ | Router | | | ____________  
| | | or | (DMZ) | Firewall | (LAN) | |  
/ Internet \--|Cable Mdm|-(HUB)-| System |-(HUB)-|Workstations|  
\_ _ _ _/ |_________| | |__________| |____________| 



11.7.  ENCRYPTING NETWORK CONNECTIONS 81

\/ \/ \/ |   
(Outside)  
(Server) 

 
• Here is a more complicated system with a special router 

 
 

• there is a separate firewall to do packet filtering 
 
 

• this is suitable for a large net with legal addresses. 
 
 

11.7 Encrypting network connections 
 
Use authenticated and encrypted network connections, this means that the only people making or 
receiving connections to or from your systems are ones that can be authenticated and afterwards you are 
safe from sniffers and man-in-the-middle attacks because of encryption. There are 2 levels: 

 
• application level authentication and encryption of connections, such as SSL between WWW 

servers and browsers. The data is encrypted by the network applications. 
 
 

–  these are between individual programs, not systems or sites, 
 

–  it is used by secure servers and browsers for passing credit card numbers. 
 

–  a system needs no special encryption or prior arrangement with another system. 
 
 

• network level authentication and encryption, called IPSec (also called: Virtual Private Networks 
VPNs). All traffic leaving a site to one or more remote sites is encrypted. 

 
 

–  typically done on a firewall system as traffic enters and leave  s a site, 
 

–  no extra work for applications, all traffic encrypted by firew  all 
 

– IPSec must be arranged between sites so it cannot be used for arbitrary connections to single 
remote server programs, 

 
– traffic emerging from the firewall is vulnerable to attack ins ide the local network before it 

reaches the application 
 
 

11.8 Encrypting network traffic: IPSec 
 

• IPSec is also known as VPN virtual private networks, 
 
 

• all IP packets to or from given destinations are encrypted and decrypted at a gateway or firewall 
system. Applications making connections to systems and programs on the remote destination site 
will have all their packets made secure as they leave the site. 

 
 

• this only works between sites or dialup systems that have made prior arrangements, for example: 
different sites of a company of salesmen contacting their home site. 

 
 

• It supports traffic encryption and authentication of the rem ote sites to establish the secure link. Key 
exchange and management is vital for links to be established safely. 

 
 

• systems often change the public key used to encrypt the connection to reduce the risk of cracking. 



82               CHAPTER 11.  NETWORK SECURITY 

11.9   Encrypting network traffic: IPSec 

              other site 
              network other  site            

               network            
                               

                               

                                 
Firewall with    Firewall with 
IPSEC  IPSec   encrypted packets IPSEC 

   

site A    site B
    

other site 
  other  site 
  

network network  Dialup  
   

  system with   
  IPSEC   

  Remote host C other  site 
  

network 
 

    

 
 
 

• Here sites A and B and the remote host C share a secure private network. 
 

 
• no other systems on the network can spy on their traffic as it cr osses the internet, 

 

 
• any computer on site A contacting a computer on site B will have its traffic encrypted, 

 

 
• connections can be made from computers on sites A or B to systems elsewhere on the internet but 

their traffic won't then be encrypted. 
 
 
 

11.10 Application level encryption (SSL) 
 

• SSL is a library of routines that applications can use to make secure connections, 
 

 
• the best known example is “HTTPS”, secure WWW connections, 

 

 
• another example is OpenSSH (and the original SSH) that provides secure encrypted login sessions, 

it is a secure replacement for telnet, 
 

 
• it uses secret key encryption for traffic and provides routines to support auth entication using public 

key encryption, 
 

 
• with WWW servers there are usually two main goals: encrypted traffic and authenication of the 

server, so you don't give your credit card number to the wrong system. The validation and authen-
tication of the server is done using certificates recognised by browsers and issued by well known 
authorities. This is support by SSL but is really part of the application. 



11.11.  USING SSL 83
 

11.11 Using SSL   
other site 
network other  site 

 network 

client 
server 

using 
using 

SSL SSL  

site A site B 
 

other  site other  site 

network network  

 

 
other  site  
network 

 
• the client program on a computer on site A connects to a program on a computer on site B, 

 
• no other programs or systems on each site know about this or are needed to support it. 

 

11.12 Openssh  
• openssh is an end to end secure replacement for telnet, rlogin and rsh, 

 
• it authenticates the human client and the remote server, 

 
• it encrypts all the network traffic transmitted between the c lient and the server, 

 
• openssh is an open source derivative of ssh that has become a commercial product, 

 
• it supports 1024 bit user RSA public/private keys for authentication 

 
• it has a choice of conventional cyphers for encrypting, currently 3DES and Blowfish, 

 
• it is implemented on top of openssl the open source Secure socket layer, it is SSL that encrypts the 

data that is transmitted. 
 

• (unfortunately it doesn't seem very easy to set up!). 
 

11.13 Structure  
There are two main programs: 
 

• sshd the daemon that must be running on the server that receives connections. It must be run privi-
leged (as root). This program is responsible for: 

 
–  accepting connections 

 
–  authenticating itself to clients 

 
–  authenticating clients, 

 
–  establishing the session: starting a shell etc. 

 
• ssh the client program that makes the connection. It is not privileged. It does: 

 
–  authenticating the remote server computer, 

 
– depending on various local files and the users configuration i t selects and tries different user 

authentication methods on behalf of the user, 
 

–  it requests other secure channels from the server, if required, for X display etc. 


