
GURUNANAK INSTITUTE OF TECHNOLOGY

157/F, Nilgunj Road, Panihati
Kolkata -700114

Website: www.gnit.ac.in
Email: info.gnit@jisgroup.org

Approved by A.I.C.T.E., New Delhi

Affiliated to MAKAUT, West Bengal

Online Course Ware (OCW)

Course: Artificial Intelligence

Course Level: Undergraduate

Credit: 3

Prepared by:

Mr. Amrut Ranjan Jena (CSE)

Mr. Nirupam Saha (CSE)

Artificial Intelligence CS703C Page 1

ARTIFICIAL
INTELLIGENCE

Artificial Intelligence CS703C Page 2

 INTRODUCTION

Artificial Intelligence CS703C Page 3

OVERVIEW OF ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) has become a common term this days. Almost everyone from every
domain seems to be aware of this term. It is almost impossible to avoid its importance in our
daily life. Its presence is visible in every part of our life. For example it is visible in the
applications especially in mobile apps we use on daily basis, it is visible in the movies that the
film industries made. We can see its presence while we made purchases on e-commerce sites, or
we are availing the facilities of medical systems. Manufacturing of an intelligent robot is
possible today due to advance application of AI. Even, today the latest model of mobiles are
coming equipped with a separate processing unit named as AI processor to manage the use of
limited resources of a mobile device intelligently and what not.

The history of AI is very rich though it is one of the newest fields in science and engineering.
Even, its presence can be seen long before the development of modern digital computers.
Actually its inception had taken place while Gottfried Leibniz and Blaise Pascal constructed the
mechanical machine for calculation and following it Charles Babbage introduced the very first
machine with the capability of storing and manipulating symbols. However, the credit for the
name “Artificial Intelligence” goes to John McCarthy who along with Marvin Minsky and
Claude Shanon, organized the Dartmouth Conference in 1956. This conference was a major
turning point that helps to refuel the research on AI to move forward. But it is to be mentioned
that Alan Turing was the first to carry out substantial research in the field now known as
Artificial Intelligence or AI though he originally termed it as “Machine Intelligence”.

WHAT IS AI?

It is important to understand that AI doesn’t really have anything to do with human intelligence
despite the fact that some simulators try to mimic the human intelligence. However, some
definitions of AI focus on human intelligence while the others on hard problems. Let us see some
of such definitions:

According to Herbert Simon “We call programs ‘intelligent’, if they exhibit behaviours
that would be regarded intelligent if they were exhibited by human beings”.

In the words of Avron Barr and Edward Feigenbaum - “Physicists ask what kind of place
this universe is and seek to characterize its behavior systematically. Biologists ask what it means
for a physical system to be living. We (in AI) wonder what kind of information-processing
system can ask such questions.”

Elaine Rich explained that – “AI is the study of techniques for solving exponentially
hard problems in polynomial time by exploiting knowledge about the problem domain.”

Artificial Intelligence CS703C Page 4

And according to Eugene Charniak and Drew McDermott – “AI is the study of mental
faculties through the use of computational model.”

John Haugeland described the researches in this field as follows – “The fundamental goal of this
research is not merely to mimic intelligence or produce some clever fake. “AI” wants the
genuine article; machines with minds.”

A better way to describe AI is to categorize it in the following four ways:

Thinking Humanly: When a computer thinks as a human, it performs tasks that require
intelligence from a human to succeed, such as driving a car. To determine whether a program
thinks like a human, you must have some method of determining how humans think, which the
cognitive modeling approach defnes. This model relies on three techniques: introspection,
psychological testing and brain imaging.

Acting Humanly: When a computer acts like a human, it best reflects the Turing test, in which
the computer succeeds when differentiation between the computer and a human isn’t possible.

Thinking Rationally: Studying how humans think using some standard enables the creation of
guidelines that describe typical human behaviors. A person is considered rational when
following these behaviors within certain levels of deviation. A computer that thinks rationally
relies on the recorded behaviors to create a guide as to how to interact with an environment
based on the data at hand. The goal of this approach is to solve problems logically, when
possible.

Acting Rationally: Studying how humans act in given situations under specifc constraints
enables you to determine which techniques are both efcient and effective. A computer that acts
rationally relies on the recorded actions to interact with an environment based on conditions,
environmental factors, and existing data.

Finally we can say, AI is about “Methods and algorithms by constraints exposed by
representation that support models targeted at thinking, perception and action.”

TURING TEST

Consider the following setting. There are two rooms, A and B. One of the rooms contains a
computer. The other contains a human. The interrogator is outside and does not know which one
is a computer. He can ask questions through a teletype and receives answers from both A and B.
The interrogator needs to identify whether A or B are humans. To pass the Turing test, the
machine has to fool the interrogator into believing that it is human. For more details on the
Turing test visit the site http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

Artificial Intelligence CS703C Page 5

PROBLEMS OF AI

Generally, problems, for which straightforward mathematical /logical algorithms are not readily
available and which can be solved by intuitive approach only, are called AI problems. The 4-
puzzle problem, for instance, is an ideal AI Problem. There is no formal algorithm for its
realization, i.e., given a starting and a goal state, one cannot say prior to execution of the tasks
the sequence of steps required to get the goal from the starting state. Such problems are called
the ideal AI problems. The well known water-jug problem, the Travelling Salesperson Problem
(TSP), and the n-Queen problem are typical examples of the classical AI problems. Among the
non-classical AI problems, the diagnosis problems and the pattern classification problem need
special mention. For solving an AI problem, one may employ both AI and non-AI algorithms.

For better understanding we can divide the problems of AI into two categories, common AI
problems and expert AI problems. For example, common AI problems may include identification
of people, objects/things, communication using natural languages, smartly moving around on the
road to avoid traffic and other obstacles etc. these are the kind of problems which can be solved
through regular practice and intelligence. Whereas, expert AI problems includes those which
demands specialized skills such as solving difficult mathematical or logical problems, defining
strategies or solutions for games requiring higher and complex level of logical thinking and
reasoning power, medical diagnosis etc. What is interesting here is that computer systems are
able to solve many sophisticated and expert level AI problem quite efficiently although many
times they failed to solve regular or common problems which are easily solvable with human
intelligence without applying any sophisticated AI techniques.

AI TECHNIQUES

The subject of AI spans a wide horizon. It deals with the various kinds of knowledge
representation schemes, different techniques of intelligent search, various methods for resolving
uncertainty of data and knowledge, different schemes for automated machine learning and many
others. Among the application areas of AI, we have Expert systems, Game-playing, and
Theorem-proving, Natural language processing, Image recognition, Robotics and many others.
The subject of AI has been enriched with a wide discipline of knowledge from Philosophy,
Psychology, Cognitive Science, Computer Science, Mathematics and Engineering. All the
researches in AI makes one thing clear, that intelligence requires knowledge. Most of the time
knowledge possesses some less desirable properties, including:

 It is voluminous.

 It is hard to characterize accurately.

 It is constantly changing.

 It differs from data by being organized in a way that corresponds to the ways it will be
used.

Artificial Intelligence CS703C Page 6

Based on all these information it can be concluded that AI technique is a method that exploits
knowledge that should be represented in such a way that,

 The knowledge captures generalization.

 It should be perceivable by the people who provide it.

 It should be easily modifiable to correct errors and to reflect changes.

 It should be useful in many situations though it is incomplete or inaccurate.

 It can be applied on itself to narrow down the range of possibilities for better processing
and consideration.

Whatsoever, an AI problem is solvable without applying AI techniques although it may not
assure perfect or at least a good solution or result. Similarly, non AI problems can also be solved
by applying AI techniques.

TIC - TAC - TOE PROBLEM

Two people play Tic Tac Toe with paper and pencil. One player is X and the other player is O.
Players take turns placing their X or O. If a player gets three of their marks on the board in a
row, column or one of the two diagonals, they win. When the board fills up with neither player
winning, the game ends in a draw.

From AI point of view, the problem of playing Tic-Tac-Toe will be formulated as follows:

The start state is all blank squares out of 9 squares. Player 1 can play in one square. As

the game proceeds, blank squares remain the choice, which can be marked by the players. The
data structure used to represent the board is a 9-element vector, with element position shown in
Fig. 1.1:

Board position: = {1,2,3,4,5,6,7,8,9}
An element contains the value 0, if the corresponding square is blank; 1, if it is filled with “O”
and 2, if it is filled with “X”.
Hence starting state is {0,0,0,0,0,0,0,0,0}
The goal state or winning combination will be board position having “O” or “X” separately in

Fig. 1.1: Element positions of tic-tac-toe

Artificial Intelligence CS703C Page 7

the combination of {1,2,3}, {4,5,6}, {7,8,9},{1,4,7},{2,5,8},{3,6,9}, {1,5,9}, { 3,5,7}) element
values. Hence two goal states can be
{2,0,1,1,2,0,0,0,2} and {2,2,2,0,1,0,1,0,0}. These values correspond to the goal states shown in
the figure.The start and goal state are shown in Fig. 1.2.

Any board position satisfying this condition would be declared as win for corresponding player.
The valid transitions of this problem are simply putting ‘1’ or ‘2’ in any of the element position
containing 0. In practice, all the valid moves are defined and stored. While selecting a move it is
taken from this store. In this game, valid transition table will be a vector (having 39 entries),
having 9 elements in each.

Fig. 1.2: Start and goal states of tic-tac-toe

Artificial Intelligence CS703C Page 8

INTELLIGENT
AGENTS

Artificial Intelligence CS703C Page 9

AGENTS & ENVIRONMENT

An agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators. The current percept or a sequence of percepts
can influence the actions of an agent. We use the term percept to refer to the agent’s perceptual
inputs at any given instant. An agent’s percept sequence is the complete history of everything
the agent has ever perceived. In general, an agent’s choice of action at any given instant can
depend on the entire percept sequence observed to date, but not on anything it hasn’t perceived.
The agent can change the environment through actuators or effectors. An operation involving an
actuator is called an action.

We can also consider the agents as autonomous systems. They would be persistent, goal
oriented, pro-active and would sense the situations and surroundings. They would maintain the
social ability by communicating with the owners and the other agents. For an agent to act out its
decision, it must be embodied in some environment.

An agent can be looked upon as a system that implements a mapping from percept sequences to
actions. A performance measure has to be used in order to evaluate an agent. An autonomous
agent decides autonomously which action to take in the current situation to maximize progress
towards its goals. The agent function for an artificial agent will be implemented by an agent
program. It is important to keep these two ideas distinct. The agent function is an abstract
mathematical description; the agent program is a concrete implementation, running within some
physical system.

NATURE OF ENVIRONMENT

Fig. 2.1: Agents interacting with environment

Artificial Intelligence CS703C Page 10

Some programs operate in the entirely artificial environment confined to keyboard input,
database, computer file systems and character output on a screen. The most famous artificial
environment is the Turing Test environment, in which one real and other artificial agents are
tested on equal ground. This is a very challenging environment as it is highly difficult for a
software agent to perform as well as a human.

In spite of the difficulty of knowing exactly where the environment ends and the agent begins in
some cases, it is useful to be able to classify AI environments because it can predict how difficult
the task of the AI will be. Russell and Norvig (2009) introduce seven ways to classify AI
environments, which can be remembered with the mnemonic "D-SOAKED." They are:

 Deterministicness (deterministic or stochastic or Non-deterministic): An environment is
deterministic if the next state is perfectly predictable given knowledge of the previous
state and the agent's action.

 Staticness (static or dynamic): Static environments do not change while the agent
deliberates.

 Observability (full or partial): A fully observable environment is one in which the agent
has access to all information in the environment relevant to its task.

 Agency (single or multiple): If there is at least one other agent in the environment, it is a
multi-agent environment. Other agents might be apathetic, cooperative, or competitive.

 Knowledge (known or unknown): An environment is considered to be "known" if the
agent understands the laws that govern the environment's behavior. For example, in
chess, the agent would know that when a piece is "taken" it is removed from the game.
On a street, the agent might know that when it rains, the streets get slippery.

 Episodicness (episodic or sequential): Sequential environments require memory of past
actions to determine the next best action. Episodic environments are a series of one-shot
actions, and only the current (or recent) percept is relevant. An AI that looks at radiology
images to determine if there is a sickness is an example of an episodic environment. One
image has nothing to do with the next.

 Discreteness (discrete or continuous or): A discrete environment has fixed locations or
time intervals. A continuous environment could be measured quantitatively to any level
of precision.

In each case, the job of the AI (and for the programmer making the AI) is easier if the first of the
two options is the best descriptor for each category. That is, an AI that has a much more difficult
job if it works in an environment that is stochastic, dynamic, partially observable, multi-agent,
unknown, sequential, and continuous.

Artificial Intelligence CS703C Page 11

STRUCTURE OF AGENTS

The job of AI is to design an agent program that implements the agent function — the mapping
from percepts to actions. We assume this program will run on some sort of computing device
with physical sensors and actuators — we call this the architecture:

agent = architecture + program .

architecture = the machinery that an agent executes on.

agent program = an implementation of an agent function.

AGENT PROGRAM

The agent program takes just the current percept as input because nothing more is available from
the environment; if the agent’s actions need to depend on the entire percept sequence, the agent
will have to remember the percepts.

AGENT ARCHITECTURE

There are various agent architectures are available. Such as:

 Table based agent

 Percept based agent or reflex agent

 Subsumption Architecture

 State-based Agent or model-based reflex agent

 Goal-based Agent

 Utility-based Agent

 Learning Agent

Table based agent. In table based agent the action is looked up from a table based on
information about the agent’s percepts. A table is simple way to specify a mapping from percepts
to actions. The mapping is implicitly defined by a program. The mapping may be implemented
by a rule based system, by a neural network or by a procedure. There are several disadvantages
to a table based system. The tables may become very large. Learning a table may take a very
long time, especially if the table is large. Such systems usually have little autonomy, as all
actions are pre-determined.

Percept based agent or reflex agent. In percept based agents, information comes from sensors
i.e. percepts which changes the agents current state of the world and triggers actions through
the effectors.

Artificial Intelligence CS703C Page 12

These kinds of agents are also called reactive agents or stimulus-response agents. They have no
notion of history. The current state is as the sensors see it right now. The action is based on the
current percepts only.

The percept base agents are efficient but they don’t have any internal representation for
reasoning inference. Besides this, these agents don’t follow any strategic planning or learning.
Finally they are not good for multiple opposing goals.

Subsumption Architecture. This architecture is based on reactive systems, also known as
Brook’s architecture. The main features of Brooks’ architecture are as follows:

1. There is no explicit knowledge representation.
2. Behaviour is distributed, not centralized
3. Response to stimuli is reflexive.
4. The design is bottom up, and complex behaviours are fashioned from the combination

of simpler underlying ones.
5. Individual agents are simple.

The Subsumption Architecture built in layers. There are different layers of behaviour. The higher
layers can override lower layers. Each activity is modeled by a finite state machine. The
subsumption architecture can be illustrated by Brooks’ Mobile Robot example.

State-based Agent or model-based reflex agent. State based agents differ from percept based
agents in that such agents maintain some sort of state based on the percept sequence received so
far. The state is updated regularly based on what the agent senses, and the agent’s actions.
Keeping track of the state requires that the agent has knowledge about how the world evolves,
and how the agent’s actions affect the world.

Thus a state based agent works as follows:

 information comes from sensors – percepts

 based on this, the agent changes the current state of the world

 based on state of the world and knowledge (memory), it triggers actions through the
effectors

Goal-based Agent. Knowing something about the current state of the environment is not always
enough to decide
what to do. As well as a current state description, the agent needs some sort of goal information
that describes situations that are desirable. The agent program can combine this with the model
(the same information as was used in the model based reflex agent) to choose actions that
achieve the goal. Sometimes goal-based action selection is straightforward—for example, when
goal satisfaction results immediately from a single action. Sometimes it will be more tricky—for

Artificial Intelligence CS703C Page 13

example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search and planning are the subfields of AI devoted to finding action
sequences that achieve the agent’s goals.

Although the goal-based agent appears less efficient, it is more flexible because the knowledge
that supports its decisions is represented explicitly and can be modified. For the reflex agent, on
the other hand, we would have to rewrite many condition–action rules. The goal-based agent’s
behavior can easily be changed to go to a different destination, simply by specifying that
destination as the goal. The reflex agent’s rules for when to turn and when to go straight will
work only for a single destination; they must all be replaced to go somewhere new.

Utility-based Agent. Goals alone are not enough to generate high-quality behavior in most
environments. Goals just provide a crude binary distinction between “happy” and “unhappy”
states. A more general performance measure should allow a comparison of different world states
according to exactly how happy they would make the agent. Because “happy” does not sound
very scientific, economists and computer scientists use the term utility instead. An agent’s utility
function is essentially an internalization of the performance measure. If the internal utility
function and the external performance measure are in agreement, then an agent that chooses
actions to maximize its utility will be rational according to the external performance measure. A
rational utility-based agent chooses the action that maximizes the expected utility of the action
outcomes—that is, the utility the agent expects to derive, on average, given the probabilities and
utilities of each outcome.

Fig. 2.2: Structure of Goal based agent

Artificial Intelligence CS703C Page 14

Utility based agents provide a more general agent framework. In case that the agent has multiple
goals, this framework can accommodate different preferences for the different goals. Such
systems are characterized by a utility function that maps a state or a sequence of states to a real
valued utility. The agent acts so as to maximize expected utility.

Learning Agent. Learning allows an agent to operate in initially unknown environments. The
learning element modifies the performance element. Learning is required for true autonomy.
Alan Turing in his one famous paper proposed the method to build learning machines and then to
teach them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate in
initially unknown environments and to become more competent than its initial knowledge alone
might allow.

A learning agent can be divided into four conceptual components, as shown in Figure 2.4. The
most important distinction is between the learning element, which is responsible for making
improvements, and the performance element, which is responsible for selecting external
actions. The learning element uses feedback from the critic on how the agent is doing and
determines how the performance element should be modified to do better in the future. The
design of the learning element depends very much on the design of the performance element.
The last component of the learning agent is the problem generator. It is responsible for
suggesting actions that will lead to new and informative experiences.

Fig. 2.3: A model-based, utility-based agent.

Artificial Intelligence CS703C Page 15

Fig. 2.4: A general learning agent.

Artificial Intelligence CS703C Page 16

 PROBLEM
SOLVING

Artificial Intelligence CS703C Page 17

PROBLEMS

A problem can be defined formally by five components:

 The initial state that the agent starts in. For example, the initial state for our agent in
Romania might be described as In(Arad).

 A description of the possible actions available to the agent. Given a particular state s,
ACTIONS(s) returns the set of actions that can be executed in s. We say that each of
these actions is applicable in s. For example, from the state In(Arad), the applicable
actions are {Go(Sibiu), Go(Timisoara), Go(Zerind)}.

 A description of what each action does; the formal name for this is the transition model,
specified by a function RESULT(s, a) that returns the state that results from doing action
a in state s. We also use the term successor to refer to any state reachable from a given
state by a single action.2 For example, we have

RESULT(In(Arad), Go(Zerind)) = In(Zerind) .

 The goal test, which determines whether a given state is a goal state.

 A path cost function that assigns a numeric cost to each path.

To build a system to solve a particular problem, we need to do four things:

1. Define the problem precisely. This definition must include precise specifications of what
the initial situation(s) will be as well as what final situations constitute acceptable
solutions to the problem.

2. Analyze the problem. A few very important features can have an immense impact on the
appropriateness of various possible techniques for solving the problem.

3. Isolate and represent the task knowledge that is necessary to solve the problem.
4. Choose the best problem-solving technique(s) and apply it (them) to the particular

problem.

Searching is the universal technique of problem solving in AI. Problem solving requires two
prime considerations: first representation of the problem by an appropriately organized state
space and then testing the existence of a well-defined goal state in that space.

PROBLEM SPACE & SEARCH

PROBLEM STATE SPACE

Together, the initial state, actions, and transition model implicitly define the state space of the
problem—the set of all states reachable from the initial state by any sequence of actions. The
state space forms a directed network or graph in which the nodes are states and the links
between nodes are actions. (The map of Romania shown in Figure 3.1 can be interpreted as a

Artificial Intelligence CS703C Page 18

state-space graph if we view each road as standing for two driving actions, one in each
direction.) A path in the state space is a sequence of states connected by a sequence of actions.

PRODUCTION SYSTEM

‘Production systems’ is one of the oldest techniques of knowledge representation. A production
system includes a knowledge base, represented by production rules, a working memory to hold
the matching patterns of data that causes the rules to fire and an interpreter, also called the
inference engine, that decides which rule to fire, when more than one of them are concurrently
firable.

The production system is a model of computation that can be applied to implement search
algorithms and model human problem solving. Such problem solving knowledge can be packed
up in the form of little quanta called productions. A production is a rule consisting of a situation
recognition part and an action part. A production is a situation-action pair in which the left side is
a list of things to watch for and the right side is a list of things to do so. When productions are
used in deductive systems, the situation that trigger productions are specified combination of
facts. The actions are restricted to being assertion of new facts deduced directly from the
triggering combination. Production systems may be called premise conclusion pairs rather than
situation action pair.

A production system consists of:

Fig. 3.1: A simplified road map of part of Romania.

Artificial Intelligence CS703C Page 19

 A set of rules, each consisting of a left side (a pattern) that determines the applicability of
the rule and a right side that describes the operation to be performed if the rule is applied.

 One or more knowledge/databases that contain appropriate information for the particular
task. Some parts of the database may be permanent, while other parts of it may pertain
only to the solution of the current problem. The information in these databases may be
structured in a appropriate way.

 A control strategy that specifies order in which the rules will be compared to the database
of rules and a way of resolving the conflicts that arise when several rules match
simultaneously.

 A rule applier, which checks the capability of rule by matching the content state with the
left hand side of the rule and finds the appropriate rule from database of rules.

The important roles played by production systems include a powerful knowledge
representation scheme. A production system not only represents knowledge but also action. It
acts as a bridge between AI and expert systems. Production system provides a language in
which the representation of expert knowledge is very natural.

FEATURES OF PRODUCTION SYSTEM

Some of the main features of production system are:

Expressiveness and intuitiveness: In real world, many times situation comes like “if this
happen-you will do that”, “if this is so-then this should happen” and many more. The
production rules essentially tell us what to do in a given situation.

 Simplicity: The structure of each sentence in a production system is unique and
uniform as they use “IF-THEN” structure. This structure provides simplicity in
knowledge representation. This feature of production system improves the readability
of production rules.

 Modularity: This means production rule code the knowledge available in discrete
pieces. Information can be treated as a collection of independent facts which may be
added or deleted from the system with essentially no deletetious side effects.

 Modifiability: This means the facility of modifying rules. It allows the development
of production rules in a skeletal form first and then it is accurate to suit a specific
application.

 Knowledge intensive: The knowledge base of production system stores pure
knowledge. This part does not contain any type of control or programming
information. Each production rule is normally written as an English sentence; the
problem of semantics is solved by the very structure of the representation.

DISADVANTAGES OF PRODUCTION SYSTEM

Artificial Intelligence CS703C Page 20

 Opacity: This problem is generated by the combination of production rules. The
opacity is generated because of less prioritization of rules. More priority to a rule
has the less opacity.

 Inefficiency: During execution of a program several rules may active. A well
devised control strategy reduces this problem. As the rules of the production
system are large in number and they are hardly written in hierarchical manner, it
requires some forms of complex search through all the production rules for each
cycle of control program.

 Absence of learning: Rule based production systems do not store the result of the
problem for future use. Hence, it does not exhibit any type of learning
capabilities. So for each time for a particular problem, some new solutions may
come.

 Conflict resolution: The rules in a production system should not have any type of
conflict operations. When a new rule is added to a database, it should ensure that
it does not have any conflicts with the existing rules.

PROBLEM CHARACTERISTICS

A problem may have different aspects of representation and explanation. In order to choose
the most appropriate method for a particular problem, it is necessary to analyze the problem
along several key dimensions. Some of the main key features of a problem are given below.

 Is the problem decomposable into a set of independent smaller or easier sub
problems?

 Can solution steps be ignored or at least undone if they prove unwise?

 Is the problem’s universe predictable?

 Is a good solution to the problem obvious without comparison to all the other possible
solutions?

 Is the desired solution a state of the world or a path to a state?

 Is a large amount of knowledge absolutely required to solve the problem, or is
knowledge important only to constrain the search?

 Will the solution of the problem required interaction between the computer and the
person?

The above characteristics of a problem are called as 7-problem characteristics under which
the solution must take place.

ISSUES IN THE DESIGN OF SEARCH PROGRAMS

Every search process can be viewed as traversal of a tree structure in which each node represents
a problem state and each are represents a relationship between the states represented by the node

Artificial Intelligence CS703C Page 21

it connects. The search process must find a path or paths through the tree that connects an initial
state with one or more final states. The tree that must be searched could, in principle, be
constructed in its entirety from the rules that define allowable moves in the problem space. But,
in practice, most of it never is. It is too large and most of it need never be explored. Instead of
first building the tree explicitly and then searching it, most search programs represent the tree
implicitly in the rules and generate explicitly only those parts that they decide to explore.

Following are some of the issues that arise in all general purpose search techniques:

 Direction in which to conduct the search. We can search forward through the state space
from the start state to goal state, or we can search backward from the goal.

 Production systems typically spend most of their time looking for rules to apply, so it is
critical to have efficient procedures for matching rules against states.

 How to represent each node of the search processs (the knowledge representation
problem and the frame problem).

Artificial Intelligence CS703C Page 22

 SEARCH
TECHNIQUES

Artificial Intelligence CS703C Page 23

SOLVING PROBLEMS BY SEARCHING

PROBLEM SOLVING AGENTS

Problem solving in AI may be characterized as a systematic search through a range of possible
actions in order to reach some predefined goal or solution. The problem solving agents decide
what to do by finding sequence of action that lead to desirable states.

Intelligent agents are supposed to maximize their performance measure. achieving this is
sometimes simplified if the agent can adopt a goal and aim at satisfying it. Goals help organize
behavior by limiting the objectives that the agent is trying to achieve and hence the actions it
needs to consider. Goal formulation, based on the current situation and the agent’s performance
measure, is the first step in problem solving. Whereas, Problem formulation is the process of
deciding what actions and states to consider, given a goal. If the agent has three different path to
reach its goal then may be the agent will not know which of its possible actions is best, because it
does not yet know enough about the state that results from taking each action. If the agent has no
additional information—i.e., if the environment is unknown then it is has no choice but to try
one of the actions at random. In such situation, an agent with several immediate options of
unknown value can decide what to do by first examining future actions that eventually lead to
states of known value.

SEARCHING FOR SOLUTIONS

The process of looking for a sequence of actions that reaches the goal is called search. A search
algorithm takes a problem as input and returns a solution in the form of an action sequence.
Once a solution is found, the actions it recommends can be carried out. This is called the
execution phase. Thus, we have a simple “formulate, search, execute” design for the agent, as
shown in Figure 4.1.

After formulating a goal and a problem to solve, the agent calls a search procedure to solve it. It
then uses the solution to guide its actions, doing whatever the solution recommends as the next
thing to do—typically, the first action of the sequence—and then removing that step from the
sequence. Once the solution has been executed, the agent will formulate a new goal. It is to be
noted that while the agent is executing the solution sequence it ignores its percepts when
choosing an action because it knows in advance what they will be. According to the control
theorists it is called open-loop system.

Artificial Intelligence CS703C Page 24

UNIFORM SEARCH STRATEGIES

Uniform search also known as blind search. The term means that the strategies have no
additional information about states beyond that provided in the problem definition. All they can
do is generate successors and distinguish a goal state from a non-goal state. Intuitively, these
algorithms ignore where they are going until they find a goal and report success.

BREADTH FIRST SEARCH (BFS)

Breadth first search is a general technique of traversing a graph. Breadth first search may use
more memory but will always find the shortest path first. In this type of search the state space is
represented in form of a tree. The solution is obtained by traversing through the tree. The nodes
of the tree represent the start value or starting state, various intermediate states and the final state.
In this search a queue data structure is used and it is level by level traversal. Breadth first search
expands nodes in order of their distance from the root. It is a path finding algorithm that is
capable of always finding the solution if one exists. The solution which is found is always the
optional solution. This task is completed in a very memory intensive manner. Each node in the
search tree is expanded in a breadth wise at each level.

Concept:

Fig. 4.1 A simple problem-solving agent. It first formulates a goal and a problem, searches for a sequence of actions
that would solve the problem, and then executes the actions one at a time. When this is complete, it formulates
another goal and starts over.

Artificial Intelligence CS703C Page 25

Step 1: Traverse the root node
Step 2: Traverse all neighbours of root node.
Step 3: Traverse all neighbours of neighbours of the root node.
Step 4: This process will continue until we are getting the goal node.

Algorithm:

Note that in breadth first search the newly generated nodes are put at the back of fringe or the
OPEN list. What this implies is that the nodes will be expanded in a FIFO (First In First Out)
order. The node that enters OPEN earlier will be expanded earlier. This amounts to expanding
the shallowest nodes first.

BFS illustrated:

We will now consider the search space in Figure 1, and show how breadth first search works on
this graph.

Step 1: Initially fringe contains only one node corresponding to the source state A.

Breadth first search
Let fringe be a list containing the initial state
Loop

If fringe is empty return failure
Node ← remove-first (fringe)
if Node is a goal

then return the path from initial state to Node
else generate all successors of Node, and

(merge the newly generated nodes into fringe)
add generated nodes to the back of fringe

End Loop

Artificial Intelligence CS703C Page 26

FRINGE: A

Step 2: A is removed from fringe. The node is expanded, and its children B and C are generated.
They are placed at the back of fringe.

FRINGE: B C

Step 3: Node B is removed from fringe and is expanded. Its children D, E are generated and put
at the back of fringe.

(ii)

(i)

Artificial Intelligence CS703C Page 27

FRINGE: C D E

Step 4: Node C is removed from fringe and is expanded. Its children D and G are added to the
back of fringe.

FRINGE: D E D G

(iv)

(iii)

Artificial Intelligence CS703C Page 28

Step 5: Node D is removed from fringe. Its children C and F are generated and added to the back
of fringe.

FRINGE: E D G C F

Step 6: Node E is removed from fringe. It has no children.

(vi)

(v)

Artificial Intelligence CS703C Page 29

FRINGE: D G C F

Step 7: D is expanded, B and F are put in OPEN.

FRINGE: G C F B F

Step 8: G is selected for expansion. It is found to be a goal node. So the algorithm returns the
path A C G by following the parent pointers of the node corresponding to G. The algorithm
terminates.

We can easily see that it is complete—if the shallowest goal node is at some finite depth d,
breadth-first search will eventually find it after generating all shallower nodes (provided the
branching factor b is finite). The shallowest goal may not necessarily be the optimal one. If the
path cost is a non-decreasing function of the depth of the node then we can say that the breadth-
first search is optimal.

Imagine searching a uniform tree where every state has b successors. The root of the search tree
generates b nodes at the first level, each of which generates b more nodes, for a total of b2 at the
second level. Each of these generates b more nodes, yielding b3 nodes at the third level, and so
on. Now suppose that the solution is at depth d. In the worst case, it is the last node generated at
that level. Then the total number of nodes generated is

b + b2 + b3 + ··· + bd = O(bd) .

(vii)

Artificial Intelligence CS703C Page 30

If the algorithm were to apply the goal test to nodes when selected for expansion, rather than
when generated, the whole layer of nodes at depth d would be expanded before the goal was
detected and the time complexity would be O(bd+1).

Advantage

Finds the path of minimal length to the goal.

Disadvantage

Since each level of nodes is saved for creating next one, it consumes a lot of memory space.
Space requirement to store nodes is exponential. Its complexity depends on the number of nodes.
It can check duplicate nodes.

DEPTH-FIRST SEARCH (DFS)

It is implemented in recursion with LIFO stack data structure. It creates the same set of nodes as
Breadth-First method, only in the different order. As the nodes on the single path are stored in
each iteration from root to leaf node, the space requirement to store nodes is linear. With
branching factor b and depth as m, the storage space is bm.

Algorithm

The depth first search algorithm puts newly generated nodes in the front of OPEN. This results in
expanding the deepest node first. Thus the nodes in OPEN follow a LIFO order (Last In First
Out). OPEN is thus implemented using a stack data structure.

DFS illustrated:

Depth First Search
Let fringe be a list containing the initial state
Loop

if fringe is empty return failure
Node ← remove-first (fringe)

if Node is a goal
then return the path from initial state to Node

else generate all successors of Node, and
merge the newly generated nodes into fringe
add generated nodes to the front of fringe

End Loop

Artificial Intelligence CS703C Page 31

Let us now run Depth First Search on the search space given in Figure 34, and trace its progress.

Step 1: Initially fringe contains only the node for A.

(viii)

Artificial Intelligence CS703C Page 32

FRINGE: A

Step 2: A is removed from fringe. A is expanded and its children B and C are put in front of
fringe.

FRINGE: B C

Step 3: Node B is removed from fringe, and its children D and E are pushed in front of fringe.

(x)

(ixi)

Artificial Intelligence CS703C Page 33

FRINGE: D E C

Step 4: Node D is removed from fringe. C and F are pushed in front of fringe.

FRINGE: C F E C

Step 5: Node C is removed from fringe. Its child G is pushed in front of fringe.

(xii)

(xi)

Artificial Intelligence CS703C Page 34

FRINGE: G F E C

Step 6: Node G is expanded and found to be a goal node. The solution path A-B-D-C-G is
returned and the algorithm terminates.

FRINGE: G F E C

This algorithm takes exponential time. If N is the maximum depth of a node in the search space,
in the worst
case the algorithm will take time O(bd). However the space taken is linear in the depth of the
search tree, O(bN).

(xiv)

(xiii)

Artificial Intelligence CS703C Page 35

Note that the time taken by the algorithm is related to the maximum depth of the search tree. If
the search tree has infinite depth, the algorithm may not terminate. This can happen if the search
space is infinite. It can also happen if the search space contains cycles. The latter case can be
handled by checking for cycles in the algorithm. Thus
Depth First Search is not complete.

Disadvantage

 This algorithm may not terminate and go on infinitely on one path. The solution to this issue is
to choose a cut-off depth. If the ideal cut-off is d, and if chosen cutoff is lesser than d, then this
algorithm may fail. If chosen cut-off is more than d, then execution time increases. Its
complexity depends on the number of paths. It cannot check duplicate nodes.

DEPTH LIMITED SEARCH

The embarrassing failure of depth-first search in infinite state spaces can be alleviated by
supplying depth-first search with a predetermined depth limit. That is, nodes at depth are treated
as if they have no successors. This approach is called depth-limited search. The depth limit
solves the infinite-path problem. Unfortunately, it also introduces an additional source of
incompleteness if we choose l < d, that is, the shallowest goal is beyond the depth
limit. (This is likely when d is unknown.) Depth-limited search will also be nonoptimal if we
choose l > d. Its time complexity is O(bl) and its space complexity is O(bl). Depth-first search
can be viewed as a special case of depth-limited search with l = ∞.

BIDIRECTIONAL SEARCH

Depth limited search (limit)
Let fringe be a list containing the initial state
Loop

if fringe is empty return failure
Node ← remove-first (fringe)

if Node is a goal
then return the path from initial state to Node

else if depth of Node = limit return cutoff
else add generated nodes to the front of fringe

End Loop

Artificial Intelligence CS703C Page 36

It searches forward from initial state and backward from goal state till both meet to identify a
common state. The path from initial state is concatenated with the inverse path from the goal
state. Each search is done only up to half of the total path.

The idea behind bidirectional search is to run two simultaneous searches—one forward from the
initial state and the other ackward from the goal—hoping that the two searches meet in the
middle (Figure 3.20). The motivation is that bd/2 + bd/2 is much less than bd, or in the figure, the
area of the two small circles is less than the area of one big circle centered on the start and
reaching to the goal.

Bidirectional search is implemented by replacing the goal test with a check to see whether the
frontiers of the two searches intersect; if they do, a solution has been found. It is important to
realize that the first such solution found may not be optimal, even if the two searches are both
breadth-first; some additional search is required to make sure there isn’t another short-cut across
the gap.

COMPARING UNIFORM SEARCH STRATEGIES

Figure 3.21 compares search strategies in terms of the four evaluation criteria set forth in Section
3.3.2. This comparison is for tree-search versions. For graph searches, the main differences are
that depth-first search is complete for finite state spaces and that the space and time complexities
are bounded by the size of the state space.

Fig. 4.2: A schematic view of a bidirectional search that is about to succeed when a branch from the start
node meets a branch from the goal node.

Artificial Intelligence CS703C Page 37

Fig. 4.2: Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is
the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is

finite; b complete if step costs ≥ ϵ for positive ϵ; c optimal if step costs are all identical; d if both directions use

breadth-first search.

Artificial Intelligence CS703C Page 38

HEURISTIC
SEARCH

STRATEGIES

Artificial Intelligence CS703C Page 39

Heuristic Search

From the Greek word “Heuriskein” the word heuristic comes. It means “to discover”. Heuristic is
a technique that improves the efficiency of a search process by guiding the user towards the goal.
Heuristics are like tour guide. Heuristic search uses an evaluation function or heuristic function
which gives an estimate of each solution i.e. evaluate the path to know whether it leads to goal or
not. In the next example, a heuristic function is designed for 8 puzzle problem. At each step, the
heuristic function is applied and it estimates the state to discover that whether the state is in the
desired path, i.e. in the path which leads to goal or not. The cost of evaluating the heuristic
function is an extra overhead to the searching process, but a well designed heuristic function
saves a lot of time and effort of the user to search a specific goal state.

One example of a good general purpose heuristic for traveling salesman problem discussed in the
previous chapter is nearest neighbor heuristic. The problem is like that:

i. Randomly select a starting city.

ii. To select the next city, choose a city closest to the current city.

iii. Repeat step ii until all cities are visited. It takes time proportional to N2 (N=number of city).

 Significant improvement over N!.

Example 5.1: 8 puzzle problem is given below.

8 3 1 2 3

1 6 4 8 4

 7 5 7 6 5

Fig. 5.1: Start state Fig. 5.2: Goal state

We have to design a heuristic function for the above 8 puzzle problem. We design our heuristic
function as h(n)=Minimization number of tiles out of place (with respect to goal).

We try to minimize h(n). The search space of the problem looks like

Artificial Intelligence CS703C Page 40

 h(n)=5

 h(n)=4 h(n)=5

h(n)=3

h(n)=5

3

………………………………………………

h(n)=4

2 8 3

1 6 4

 7 5

2 8 3

1 6 4

7 5

2 8 3

 6 4

1 7 5

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 3

1 8 4

7 6 5

2 8 3

1 4

7 6 5

Artificial Intelligence CS703C Page 41

 h(n)=2 h(n)=4 h(n)=5

2 3 2 3 …… 2 8

1 8 4 1 8 4 1 4 3

7 6 5 7 6 5 7 6 5

 h(n)=1 h(n)=3

 ……………..

 h(n)=0 h(n)=2

 ……………….

 goal

 Fig. 5.3: 8 Puzzle problem

Thus our heuristic leads us to goal. Whenever in any step, there is a tie, we can choose any one
of the state. For convenience, when a tie occurs, states which leads to goal are chosen but,
students may try to choose a different one and check what happens. Design of heuristic function
may vary from user to user. Heuristic function may be a maximization function or may be a

1 2 3 2 3

 8 4 1 8 4

7 6 5 7 6 5

1 2 3 1 2 3

8 4 7 8 4

7 6 5 6 5

Artificial Intelligence CS703C Page 42

minimizing one. It depends on the choice of user. Heuristic value of goal=0 thus, heuristic
function measures the distance from goal node.

Manhattan Distance Heuristic-- Another heuristic for 8 puzzle problem is Manhattan distance
heuristic. In this heuristic, the distance of a tile is measured by the sum of the difference of a tile
in the X position and Y position. So, manhattan distance heuristic for start node of the above
problem is h(n)=1+1+0+0+0+1+1+2=6. Only tile 8 has manhattan distance 2, because the
difference from goal in X position is 1 and in Y position is 1. So sum is 2. All the rest of the tiles
have manhattan distance 0 or 1.

5.3.1 Heuristic Search for OR graphs

In forward reasoning problem, we reach towards the goal state from a starting state. This class of
algorithm when implemented with heuristic function is called heuristic search for OR graphs or
the Best First Search algorithms.

In best first search algorithm, we start with a promising node (which has maximum or minimum
fitness value according to the problem designed) and generate all its children. The fitness of each
of the children is then examined and the most promising node among all the unexpanded nodes
is selected for expansion. The most promising node is then expanded and the fitness of its
offsprings are measured. Now, among all the unexpanded nodes, the most promising node is
selected for expansion. This process continues until we reach to goal. The best first search
algorithm is stated below:

Procedure of best-First search

Begin

Step1: Identify possible starting states. Evaluate them using heuristic function (f) and put them in
a list L.

Step2: While L is not empty do

 Begin

a) Chose node n from L that has minimum of f value. If there is a tie, then select a
node randomly;

b) If n is goal state
Then return node n with its path from root node and
Exit;
Else
 Remove n from list L and generate all children of n. Add them in list L.
End while;
END.

Artificial Intelligence CS703C Page 43

 Fig. 5.4: Best first search

Advantage of Best First search compared to hill climbing

Artificial Intelligence CS703C Page 44

In best first search technique, all the unexpanded nodes are taken into consideration for finding
the most promising node. In hill climbing, once a node is selected for expansion then there is no
scope of backtracking if that path is not suitable. But, best first search, assures always a scope of
choosing an alternative path if the current path is not leading towards goal.

Best first search is a class of algorithms and one member of this class is A* algorithm.

Two new definition are added for discussing A* algorithm.

Definition 5.1: A node is called open if the node has been generated and the heuristic function
has been applied over it but the node has not been expanded yet.

Definition 5.2: A node is called closed if it has been expanded for generating offspring.

In A* algorithm, for evaluation of a node, two cost function are used. One is heuristic cost and
another is generation cost.

Heuristic cost: It measures the distance of the current node (x) with respect to the goal node and
denoted by h(x).

Generation cost: it measures the distance of the current node (x) with respect to starting node and
denoted by g(x).

Total cost of a node (x) is denoted as f(x)=g(x)+h(x).

Now g(x) can be easily measured as it is the distance from starting node but, distance from goal
h(x) can be measured through prediction and is denoted as h/(x). Consequently, the predicted
total cost is denoted by f/(x), where

 f/(x)=g(x)+ h/(x).

step1 step2 step3

 (2) (5) (1) (2) (5)

 (4) (7)

x x

y z w

x

y z w

a b

Artificial Intelligence CS703C Page 45

 Step4 step5

 (5) (5)

 (7) (5) (4) (7) (7) (5) (7)

 (1) (2)

Fig. 5.5: Best First Search

Fig. 5.5 shows the procedure of best first search. Initially there is a single node x. so it is
expanded. It generates 3 nodes y, z, and w. heuristic function is applied on each node and the
values are 2, 5, and 1 respectively. Since, node w looks promising it is expanded next, generating
two solutions a and b. Heuristic function is applied to a and b. Now, another path, node y looks
promising. So, y is expanded next, generating c and d. they are evaluated. Now, c and d look less
promising to node a, which lies in another path. So, a is expanded, generating e and f. This
process continues till goal is found.

Procedure A*
Begin
Step I: Place a node n to open and measure its f/(n)=g(n)+h/(n);
Step II: Repeat (Until open is not empty)
 Begin
 If n = goal then stop and return n along with the path of n from starting node;
 Else do
 Begin
a) Remove n from open and place it under closed;
b) Generate the children of n;
c) If all children are new then add them to open and calculate their f/ and the path from root node
through back pointers;

x

y z w

c d a b

x

y

b a d c

w z

f e

Artificial Intelligence CS703C Page 46

d) If one or more children of n already exist as open nodes in the graph before their generation
then those children must have multiple parents. Then compare their f/ values through current path
and old paths and connect them through the shortest among them. Label the back pointers from
the children of n to their parent.
e) If one or more children of n already exist as closed nodes before their generation, then they
also have multiple parents. Calculate the shortest path by which f/ value of n is minimum. If the
current path is selected, then the nodes in the sub tree rooted at the corresponding child of n
should have revised f/. Label the back pointer from the children of n to their parent.
End
 End while;
 End
Example 5.2 There are to jugs containing 3 gallon and 5 gallon of water respectively. How do
you measure 4 gallons of water in the 5 gallons jug? Solve using A* algorithm.

 Let us consider
 X= Amount of water in 3 gallon jug
 Y= Amount of water in 5 gallon jug
 P is an arbitrary node in the search space
 We design heuristic like that
 h/(p)= 2, when 0<X<3 AND 0<Y<5
 = 4, when 0<X<3 OR 0<Y<5
 = 10, when i) X=0 AND Y=0
 or ii) X=3 AND Y=5
 = 8, when i) X=0 AND Y=5
 or ii) X=3 AND Y=0
We assume g(p)=0 for root node and g(p)=n, if the number of parent nodes=n for pth node,
starting from root node. Discovery of the search space using A* Algorithm is illustrated below

Step1: (0, 0) g+h/=0+10

 (0, 0)
Step2: g+h/=0+10

 (3, 0) (0, 5)

g+h/=1+8 g+h/=1+8

r

r

M N

Artificial Intelligence CS703C Page 47

 (0, 0)
Step3: g+h/=1+8

(3, 0) (0, 5)
g+h/=1+8 g+h/=1+8

(0, 3) (3, 5)

 g+h/=2+4 g+h/=2+10

Fig: 5.6: A* algorithm

In Step I, we have node r whose g+h/=0+10=10. In the next step, we have two terminal nodes M
and N, where M and N have same g+h/ value. We choose randomly node M for expansion and
generate nodes P and Q with g+h/=6 and g+h/=12 respectively. Now out of the three nodes N, P
and Q, P has the minimum value of f/. So, we select node P for expansion. The process thus
continues till goal is found.

Behaviour of A* Algorithm

Underestimation
If we can guarantee that h, never over estimates actual value from current to goal, then A*
algorithm is able to find an optimal path to a goal, if it exists.

 Underestimate A

(1+3) B C(1+4) D(1+5)
 3 moves away from goal

(2+3) E
 3 moves away from goal

 (3+3) F

Fig. 5.7: Underestimation of A*

In the above example, node B has the smallest f/(g+h/) value. So, it is expanded first.
Suppose, it has only one successor E whose f/(E) is same as f/(c) and equal to 5. If we FOLlow
the current path, then break the tie by choosing node E. we expand E and generate node F. but,

r

M N

P Q

Artificial Intelligence CS703C Page 48

f/(F)=6 which is greater than f/(c). So, we choose c next. Thus, we see that by underestimating
h(B) we have wasted some effort.

Overestimation

 Overestimated A

(1+3) B C(1+4) D(1+5)

 (2+2) E

 (3+1) F

 (4+0)G

Fig. 5.8: Overestimation

We expand B which have minimum f/(g+h’) value. Next, we expand node E and then node F and
get node G. The length of the solution path is 4. But, if there is a direct path from node D to node
G, we will never find it.
We have overestimated h/(D) which make D so bad that we may explore the worst path by
ignoring D.
Properties of Best first search Algorithms

a) Completeness: An algorithm is complete, if it is able to find a solution if it exists.
b) Admissibility: An algorithm is admissible, if it is able to find an optimal solution, if it

exists.
c) Dominance: An algorithm A1 is said to dominate another algorithm A2, if every node

expanded by A1 is also expanded by A2.
d) Optimality: An algorithm is optimal over a class of algorithms, if the algorithm

dominates all members of the class.
A* Search: properties
. A* is admissible under the FOLlowing conditions:

In the state space graph
 Each node has finite number of successors
 Every arc in the graph has a cost greater than some £>0
 Heuristic function, for every node n,

h(n)<=h*(n)
 A* is also complete under the above conditions.
 A* is optimally efficient for a given heuristic----------It means that no other optimal
algorithm will expand fewer nodes to find a solution than A*.

Artificial Intelligence CS703C Page 49

A heuristic is consistent if:
h(n)<=cost(n, n/)+h(n/). This comes under properties of heuristic in the next page.
If a heuristic h is consistent, the f values along a path will be non decreasing.

 f(n)=g(n)+h(n)=3+4=7|
 cost(n, n/)=1 decreases
 f/(n)=g(n/)+h(n/)=4+2=6|

Fig. 5.9: f values decreases from n to n/

In the fig. 5.9 h(n)=4, but cost(n, n/)+h(n/)=1+2=3

So, h(n)<cost(n, n/)+h(n/). So this heuristic is consistent.
f(n’)= estimated distance from root node to goal through n/

 = actual distance from root node to n+ cost of n to n/+ estimated distance from n’ to goal.
So, f(n/)=g(n)+ cost(n, n/)+h(n/)
>=g(n)+h(n) [cost(n, n/)+h(n/)>=h(n) for consistency of heuristic]
 =f(n)
So, f(n/)>=f(n). f should not decrease along a path.

Proof of admissibility of A*
 A* is admissible if it uses a monotone heuristic. A monotone heuristic is such that along any
path f-cost never decreases. By making use of some trick, we can make the f value monotonic.
f(m)=max(f(n),g(m)+h(m))
 Where G is the optimal goal state
 C* is the optimal path cost
 G1 is the suboptimal goal state: g(G1)>C*
Let, A* has selected G1from OPEN for expansion. Let, n is a node on OPEN on an optimal path
to G. Thus, C*>=f(n)
As, n is not chosen for expansion over G1, f(n)>=f(G1)
G1 is a goal state f(G1)=g(G1)
Hence, C*>=g(G1)
This is a contradiction. Thus A* could not select G1 for expansion before reaching the goal by an
optimal path.

Proof of completeness of A*

root

n

n/

Artificial Intelligence CS703C Page 50

 Let G= goal state
A* cannot reach a goal state only if there are infinitely many nodes where f(n)<=C*
Lemma: A* expands nodes in increasing order of their f values.
A* is complete and optimal, assuming an admissible and consistent heuristic function.

Properties of Heuristics

 Dominance:
h2 is said to dominate h1 if h2 (n)>=h’(n)
For any node n.
 A* will expand fewer nodes on average using h2 than h1.

Proof: Every node for which f(n)<C* will be expanded. This n is expanded whenever h(n)<f*--
--g(n)
Since, h2(n)>=h’(n), any node expanded using h2 will be expanded using h1.

 Admissible:
 An heuristic function h is said to be admissible if
h(n)<=h*(n)

 Monotonic:
 A heuristic function is said to be monotonic if it satisfies
h(n)<=cost(n, n/)+h(n’) for all n, n/

Where n’ is successor of n.
 Every consistent heuristic is also admissible

 Proof: We have
h(n)<=k(n, n/)+h(n/) [h is consistent]
Replace ɣ against n’, we have
h(n’)<=k(n, ɣ)+h(ɣ)

 =>h(n)<=h*(n)
 This is the condition for admissibility.

Iterative Deepening A* Algorithm
Iterative Deepening A* (or IDA*) algorithm combines the partial features of iterative deepening
and A* algorithms together. The algorithm is described below,
 Procedure IDA*
 Begin
 Step I: Initialize current depth cut-off=1;
 Step II: Push the starting node at stack .initialize cut-off at next iteration c’=α;
 Step III: While (Stack is not empty) do
 Begin
 n= Stack[top];
if n= goal then report goal found and
return with path from start node;
 Else do
 Begin
for each child n’ of n
 If f(n/)<=C
 Push n/ into Stack;
 Else

Artificial Intelligence CS703C Page 51

 C/=min(c/+f(n/));
 End for;
 End;
 End while;
Step IV: If Stack is empty AND C/=α, then stop and exit;
 Step V: If Stack is empty AND C/≠α
 C=C’ and return Step II
 End.

Advantage of IDA* over A*
 A* requires exponential amount of memory because of no restriction on depth cut-off.
 IDA* expands a node n only when all of its children n’ have f(n/) value less than the cut off
value C.
Thus IDA* saves a considerable amount of memory.

5.3.2 Heuristic Search on AND-OR Graphs
Backward reasoning problem is implemented through AND-OR graphs. Consider the
FOLlowing problem which is represented through an AND-OR graph.

Goal: Acquire a good job

 Good records Better performance Recommendation
 in academics in interview than others

study have have smartness
well intelligence knowledge

Fig. 5.10: AND-OR graph

Fig. 5.10 describes an AND-OR graph. Here the goal is “to get a good job” and the terminals of
the graph describe the possible means to achieve the goal.

Artificial Intelligence CS703C Page 52

 A

B C D

Fig. 5.11: Symbols of AND-OR graph

Fig. 5.11 represents symbols of AND-OR graph representing IF(B AND C) OR D
Then A
AO* algorithm is an algorithm which is a heuristic search on AND-OR graph. AO* algorithm
represented below:

Step I: A goal node is given. Find the possible means by which goal can be achieved;
Step II: Estimate h’ values at the leaves and find the leaf with minimum h’;
 Cost of the Parent of the leaf=minimum (((Cost of OR Clause₁, Cost of OR
Clause₂,…………, Cost of OR Clausen)+1), ((Cost of AND Clause+, Cost of AND
Clause+,…………,+Cost of AND Clausen)+n));
 Children (n) with minimum h/(n) are calculated and pointer is attached to point from the
Parent to its promising children;
Step III: One of the unexpanded OR clauses/ the set of unexpanded AND clauses, where the
pointer points from its parent is now chosen for expansion and the h’ value of the newly
generated children are calculated. Recalculate the f1 of the parent or the parent of the parent of
new children by propagating h’ value up to the root through a least cost path. Thus, the pointers
may be modified depending on the changed cost.

Step1: (5)

Step2: (4)

 (2) (3) (3)

A

B C D

A

Artificial Intelligence CS703C Page 53

Step3: (7)

 (12)

 (2) (3)

 (4) (6)

Step4: (8)

 (3) (12)
 (3)

 (2) (3) (4) (6)

Fig. 5.12: AO* illustration

B C D

G H
E F

A

B C

A

D

E F

B C

A

B C D

G H
E F

A

Artificial Intelligence CS703C Page 54

KNOWLEDGE &
REASONING

Artificial Intelligence CS703C Page 55

Artificial intelligence is a system that is concerned with the study of understanding, designing

and implementing the ways, associated with knowledge representation to computers.

In any intelligent system, representing the knowledge is supposed to be an important technique

to encode the knowledge.

The main objective of AI system is to design the programs that provide information to the

computer, which can be helpful to interact with humans and solve problems in various fields

which require human intelligence.

Types of knowledge in AI

Depending on the type of functionality, the knowledge in AI is categorized as:

1. Declarative knowledge

The knowledge which is based on concepts, facts and objects, is termed as 'Declarative

Knowledge'. It provides all the necessary information about the problem in terms of simple

statements, either true or false.

2. Procedural knowledge

Procedural knowledge derives the information on the basis of rules, strategies, agendas and

procedure. It describes how a problem can be solved. Procedural knowledge directs the steps on

how to perform something.

For example: Computer program.

3. Heuristic knowledge

Heuristic knowledge is based on thumb rule. It provides the information based on a thumb rule,

which is useful in guiding the reasoning process. In this type, the knowledge representation is

based on the strategies to solve the problems through the experience of past problems, compiled

by an expert. Hence, it is also known as Shallow knowledge.

4. Meta-knowledge

This type gives an idea about the other types of knowledge that are suitable for solving problem.

Meta-knowledge is helpful in enhancing the efficiency of problem solving through proper

reasoning process.
5. Structural knowledge

Structural knowledge is associated with the information based on rules, sets, concepts and

relationships. It provides the information necessary for developing the knowledge structures and

overall mental model of the problem.

Issues in knowledge representation

Artificial Intelligence CS703C Page 56

The main objective of knowledge representation is to draw the conclusions from the knowledge,
but there are many issues associated with the use of knowledge representation techniques.

Some of them are listed below:

Refer to the above diagram to refer to the following issues.

1. Important attributes
There are two attributes shown in the diagram, instance and isa. Since these attributes support
property of inheritance, they are of prime importance.

2. Relationships among attributes
Basically, the attributes used to describe objects are nothing but the entities. However, the
attributes of an object do not depend on the encoded specific knowledge.

3. Choosing the granularity of representation
While deciding the granularity of representation, it is necessary to know the following:

i. What are the primitives and at what level should the knowledge be represented?

ii. What should be the number (small or large) of low-level primitives or high-level facts?

High-level facts may be insufficient to draw the conclusion while Low-level primitives may
require a lot of storage.
For example: Suppose that we are interested in following facts:
John spotted Alex.

Now, this could be represented as "Spotted (agent(John), object (Alex))"

Artificial Intelligence CS703C Page 57

Such a representation can make it easy to answer questions such as: Who spotted Alex?

Suppose we want to know : "Did John see Sue?"
Given only one fact, user cannot discover that answer.

Hence, the user can add other facts, such as "Spotted (x, y) → saw (x, y)"

4. Representing sets of objects.
There are some properties of objects which satisfy the condition of a set together but not as
individual;

Example: Consider the assertion made in the sentences:
"There are more sheep than people in Australia", and "English speakers can be found all over the
world."
These facts can be described by including an assertion to the sets representing people, sheep, and
English.

Finding the right structure as needed
To describe a particular situation, it is always important to find the access of right structure. This
can be done by selecting an initial structure and then revising the choice.

While selecting and reversing the right structure, it is necessary to solve following problem
statements. They include the process on how to:

 Select an initial appropriate structure.

 Fill the necessary details from the current situations.

 Determine a better structure if the initially selected structure is not appropriate to fulfill

other conditions.

 Find the solution if none of the available structures is appropriate.

 Create and remember a new structure for the given condition.

 There is no specific way to solve these problems, but some of the effective knowledge

representation techniques have the potential to solve them.

Artificial Intelligence CS703C Page 58

 USING PREDICATE
LOGIC

Artificial Intelligence CS703C Page 59

Logic Representation
Facts are the general statements that may be either True or False. Thus, logic can be used to
represent such simple facts.

To build a Logic-based representation:
User has to define a set of primitive symbols along with the required semantics.
The symbols are assigned together to define legal sentences in the language for representing
TRUE facts.
New logical statements are formed from the existing ones. The statements which can be either
TRUE or false but not both , are called propositions. A declarative sentence expresses a
statement with a proposition as content;
Example: The declarative "Cotton is white" expresses that Cotton is white. So, the sentence
"Cotton is white" is a true statement.

What is Propositional Logic (PL)?
Propositional logic is a study of propositions.
Each proposition has either a true or a false value but not both at a time.
Propositions is represented by variables.
For example: Symbols 'p' and 'q' can be used to represent propositions.
There are two types of propositions:
1. Simple Preposition
2. compound Prepositions.

1. A simple preposition: It does not contain any other preposition.
For example: Rocky is a dog.

2. A compound preposition: It contains more than one prepositions.
For example: Surendra is a boy and he likes chocolate.

Connectives and the truth tables of compound prepositions are given below:
Consider 'p' and 'q' are two prepositions then,

1. Negation (¬p) indicates the opposite of p.
Truth table for negation:

p ¬p

0 1

1 0

Artificial Intelligence CS703C Page 60

2. Conjunction (p ∧ q) indicates that p and q both and are enclosed in parenthesis. So, p and q
are called conjuncts .
Truth table for conjunction:

p q pq

0 0 0

0 1 0

1 0 0

1 1 1

3. Disjunction (p ∨ q) indicates that either p or q or both are enclosed in parenthesis. Thus, p and
q are called disjuncts.
Truth table for disjunction:

p q pq

0 0 0

0 1 1

1 0 1

1 1 1

4. Implication (p ⇒ q) consists of a pair of sentences separated by the ⇒ operator and enclosed
in parentheses. The sentence to the left of the operator is called as an antecedent, and the
sentence to the right is called as the consequent.
Truth table for implication:

p q
p
q

0 0 1

0 1 1

1 0 0

1 1 1

5. Equivalence (p ⇔ q) is a combination of an implication and a reduction.
Truth table for Equivalence:

p q
p
q

0 0 1

Artificial Intelligence CS703C Page 61

0 1 0

1 0 0

1 1 1

PROBLEM DISCUSSION:

Q1. “If SRK plays hero’s part, then the movie will be hit, if the plot is not too melodramatic. If
SRK plays the hero’s part, the plot will not be too melodramatic.
Therefore, if SRK plays hero’s part, the movie will be a hit.”
Is it a valid argument?
SAMPLE ANSWER:
Sentence 1: SRK plays hero’s part
Sentence 2: The movie will be hit
Sentence 3: the plot will not be too melodramatic

Premise 1: A(CB)
Premise 2: AC
Conclusion: AB

Note: An argument is said to be valid, if the conclusion is true, whenever the premises are true.

A B C CB A(CB) AC AB

0 0 0 1 1 1 1 √

 0 0 1 0 1 1 1 √

0 1 0 1 1 1 1 √

0 1 1 1 1 1 1 √

1 0 0 1 1 0 0

1 1 0 1 1 0 1

1 1 1 1 1 1 1 √

Through the above table we can see that, whenever premises are true, conclusions are true. So
the given argument is VALID.

Sample questions to be practiced:

1. Verify if the following wff’s are tautologies:
a) (AB) ((A¬B) ¬A)

Artificial Intelligence CS703C Page 62

b) (A)((AC)(BC))
2. Find whether the following wff’s are equivalent:

a) A(BC), and ¬ABC
b) A(¬BC), and A¬(BC)

First Order Predicate Logic
The prepositional logic only deals with the facts, that may be true or false.
The first order logic assumes that the world contains objects, relations and functions.

Syntax for first order logic:
In prepositional logic, every expression is a sentence that represents a fact.
First order logic includes the sentences along with terms which can represent the objects.
Constant symbols, variables and function symbols are used to build terms, while quantifiers and
predicate symbols are used to build the sentences.
Syntax:

Constants A, B, C.....

Functions Size, Color

Variable x, a

Terms Constant, variable or function(Term..)

Predicates True, False

Quantifiers ∀, ∃

Atomic
sentences

Predicate, Predicate(Term,…),
Term=Term

Sentences ¬ Sentence, Sentence ∨ Sentence,
Sentence ∧ Sentence, Sentence ⇒
Sentence, Sentence ⇔ Sentence,
Quantifier Variable,… Sentence

Semantics:

Lets understand with an example,
Consider the sentence “Elephants are big”.There are many ways to represent this sentence.
HasSize(Elephant, Big)
SizeOF(Elephant)= Big

Lets introduce a new syntax,
IsEqual(SizeOf(Elephant, Big), this states that a object Elephant is big, which is a useless fact in
any reasoning process about the Elephants in general. So let us represent that all Elephants are
big.
So, we can find FOPL statement as,
All things that are Elephants are big.
For all things x, for which x is an Elephant, x is big.

Artificial Intelligence CS703C Page 63

For all things x, if x is a Elephant, then x is big.
Finally the FOPL will be written as.
∀x: Elephant (x) Big(x)

SAMPLE EXAMPLES: Conversion of sentences into Predicate Logic

1. Marcus was a man.
Man(Marcus)

2. Marcus was a Pompeian.
P(Marcus)

3. All Pompeians were Romans.
∀x: P(x) Rom(x)

4. Caesar was a Ruler.
Rul(Caesar)

5. All Romans were either loyal to Romans or hated him.
∀x: Rom (x) Loy(x, Caesar) H(x, Caesar)

6. Everyone is loyal to someone.
∀x, ∃y: Loy(x,y)

7. People only try to assassinate rulers they are not loyal to.
∀x, ∀y: Man(x) Rul(y) Try(x,y) ¬Loy(x,y)

8. Marcus tried to assassinate Caesar.
Try(Marcus, Caesar)

For the above eight sentences, can we prove that ¬Loy(Marcus,Caesar) ?
Yes, we can.

Hence it is proved.
Now, if it is told that prove the same thing through Resolution Refutation method, then the
technique is different and we must know what is Resolution.

In mathematical logic and automated theorem proving, resolution is a rule of inference leading to
a refutation theorem-proving technique for sentences in propositional logic and first-order logic.

Man(Marcus)
 (8)

Man(Marcus)Try(Marcus, Caesar)
 (4)

Man(Marcus)Try(Marcus, Caesar) Rul(Caesar)
 (7, substitution)

¬Loy(Marcus,Caesar)

Artificial Intelligence CS703C Page 64

In other words, iteratively applying the resolution rule in a suitable way allows for telling
whether a propositional formula is satisfiable and for proving that a first-order formula is
unsatisfiable. Attempting to prove a satisfiable first-order formula as unsatisfiable may result in a
nonterminating computation; this problem doesn't occur in propositional logic.

Resolution in propositional logic

Resolution rule

The resolution rule in propositional logic is a single valid inference rule that produces a new
clause implied by two clauses containing complementary literals. A literal is a propositional
variable or the negation of a propositional variable. Two literals are said to be complements if
one is the negation of the other (in the following ¬c is taken to be the complement to c. The
resulting clause contains all the literals that do not have complements. Formally:

where

all ai, bi and c are literals,

the dividing line stands for "entails".

The above may also be written as:

The clause produced by the resolution rule is called the resolvent of the two input clauses. It is
the principle of consensus applied to clauses rather than terms.

When the two clauses contain more than one pair of complementary literals, the resolution rule
can be applied (independently) for each such pair; however, the result is always a tautology.

Modus ponens can be seen as a special case of resolution (of a one-literal clause and a two-literal
clause).

is equivalent to

A resolution technique

When coupled with a complete search algorithm, the resolution rule yields a sound and complete
algorithm for deciding the satisfiability of a propositional formula, and, by extension,
the validity of a sentence under a set of axioms.

Artificial Intelligence CS703C Page 65

This resolution technique uses proof by contradiction and is based on the fact that any sentence
in propositional logic can be transformed into an equivalent sentence in conjunctive normal
form.[4] The steps are as follows.

 All sentences in the knowledge base and the negation of the sentence to be proved
(the conjecture) are conjunctively connected.

 The resulting sentence is transformed into a conjunctive normal form with the conjuncts
viewed as elements in a set, S, of clauses.[4]

 For example (A1A2)(B1B2B3)(C1) gives rise to the
set S=(A1A2),(B1B2B3),(C1) .

 The resolution rule is applied to all possible pairs of clauses that contain complementary
literals. After each application of the resolution rule, the resulting sentence is simplified
by removing repeated literals. If the sentence contains complementary literals, it is
discarded (as a tautology). If not, and if it is not yet present in the clause set S, it is added
to S, and is considered for further resolution inferences.

 If after applying a resolution rule the empty clause is derived, the original formula is
unsatisfiable (or contradictory), and hence it can be concluded that the initial
conjecture follows from the axioms.

 If, on the other hand, the empty clause cannot be derived, and the resolution rule cannot
be applied to derive any more new clauses, the conjecture is not a theorem of the original
knowledge base.

One instance of this algorithm is the original Davis–Putnam algorithm that was later refined into
the DPLL algorithm that removed the need for explicit representation of the resolvents.

This description of the resolution technique uses a set S as the underlying data-structure to
represent resolution derivations. Lists, Trees and Directed Acyclic Graphs are other possible and
common alternatives. Tree representations are more faithful to the fact that the resolution rule is
binary. Together with a sequent notation for clauses, a tree representation also makes it clear to
see how the resolution rule is related to a special case of the cut-rule, restricted to atomic cut-
formulas. However, tree representations are not as compact as set or list representations, because
they explicitly show redundant sub derivations of clauses that are used more than once in the
derivation of the empty clause. Graph representations can be as compact in the number of clauses
as list representations and they also store structural information regarding which clauses were
resolved to derive each resolvent.

So, in a nutshell, a Resolution process is a simple iterative process, at each step, two clauses
called the parent clauses compared (i.e. resolved), yielding a new clause that has been inferred
from them.

So, we must know how to convert a predicate logic into its equivalent clauses. There are few
thumb rules to be followed sequentially while converting a predicate logic into a clause. They are
as follows:

1) Eliminate the implication sign () with the following identity:

 ab is equivalent to ¬ab.

Artificial Intelligence CS703C Page 66

2) Reduce the scope of each negation symbol (¬) with the help of the following identities:

 ¬(PQ) = ¬P¬Q

¬(PQ) = ¬P¬Q

¬(x) w(x) = (x) ¬ w(x)

¬(x) w(x) = (x) ¬ w(x)

3) Standarize variables

4) i) Eliminate the existential quantifier with the help of SKOLEM function.

e.g. x, y: Fatherof(y, x) can be replaced as follows:

x: Fatherof(f(x), x) //where f(x) is SKOLEM function

ii) If the existential quantifier variable doesn’t appear within the scope of any universally
quantifier variable, then the SKOLEM function will be a constant.

e.g. y: P(y) can be converted into P(A), where A is a constant.

5) Put the wff in prenex form.

6) Put the matrix in Conunctive Normal Form using the Distributive laws:

e.g. P(QR) is equivalent to (PQ)(PR)

7) Drop the universal qquantification.

8) Eliminate the conjunctions and break the entire form into a set of clauses.

9) Rename the variable so that no variable name may appear in more than one clause.

Example study:

Question:

1. Marcus was a man.
2. Marcus was a Pompeian.
3. All Pompeians were Romans.
4. Caesar was a Ruler.
5. All Romans were either loyal to Romans or hated him.
6. Everyone is loyal to someone.
7. People only try to assassinate rulers they are not loyal to.
8. Marcus tried to assassinate Caesar.

Prove using Resolution that ¬Loy(Marcus, Caesar).

Answer:

Step 1: Convert all the sentences into predicate logic.

Step 2: Convert all the predicate logics into its equivalent clauses.

1. Man(Marcus)
2. P(Marcus)
3. ¬P(x) Rom(x)

Artificial Intelligence CS703C Page 67

4. Rul(Caesar)
5. ¬Rom (x2) Loy(x2, Caesar) H(x2, Caesar)
6. Loy(x3,y3)
7. ¬Man(x4) ¬ Rul(y1) ¬ Try(x4,y1) ¬Loy(x4,y1)
8. Try(Marcus, Caesar)

Step 3: Whatever to proof, make negation of the whole fact and assume it as a true value and try
to prove it.
Step 4: Resolve accordingly.

Artificial Intelligence CS703C Page 68

REPRESENTING
KNOWLEDGE
USING RULES

Artificial Intelligence CS703C Page 69

Knowledge is understanding of a subject area. Intelligence is the way of applying knowledge.
So, at first we must understand the basic differences of data, information and knowledge.

Data: Primitive verifiable facts. Example: name of novels available in a library.

Information: Analyzed data. Example: The novel that is frequently asked by the members of
library is “Harry Potter and the Chamber of Secrets”.

Knowledge: Analyzed information that is often used for further information deduction.
Example: Since the librarian knows the name of the novel that is frequently asked by members,
s/he will ask for more copies of the novel the next time s/he places an order.

Unlike human mind, computers cannot acquire and represent knowledge by themselves.
Therefore we need to represent knowledge properly.

There are different types of knowledge. Some of them are:

 Procedural Knowledge

 Declarative Knowledge

 Meta – Knowledge

 Heuristic Knowledge

 Structural Knowledge

Procedural knowledge is the knowledge of how to perform, or how to operate. Names such as
know-how are also given. It is said that one becomes more skilled in problem solving when he
relies more on procedural knowledge than declarative knowledge.

Example: How to cook vegetable or how to prepare a particular dish is procedural knowledge.

Declarative knowledge is defined as the factual information stored in memory and known to be
static in nature. Other names, e.g. descriptive knowledge, propositional knowledge, etc. are also
given. It is the part of knowledge which describes how things are. Things/events/processes, their
attributes, and the relations between these things/events/processes and their attributes define the
domain of declarative knowledge.

Example: The first step in cooking a vegetable is chopping it.

So, the difference between Procedural and Declarative knowledge can be defined as follows:

Procedural
knowledge

Declarative
knowledge

high efficiency
higher level of
abstraction

low modifiability good modifiability

low cognitive
adequacy (better for
knowledge engineers)

good cognitive
matching (better for
domain experts and
end-users)

Artificial Intelligence CS703C Page 70

Ex: Process of
planting herbs

Ex: Knowing
something about herbs

Meta - Knowledge: knowledge about other types of knowledge.

Example: bibliographic data, catalogue of books

May be used to reveal patterns in research, relationship between researchers and identify
contradictory results

Heuristic Knowledge: rules of thumb based on previous experience, awareness of approaches
that are likely to work but which are not guaranteed.

Example: Knowledge about the web navigation habits of an individual

An educated guess for example, about the search needs of a person

Forward vs Backward Reasoning:

In Artificial intelligence, the purpose of the search is to find the path through a problem space.
There are two ways to pursue such a search that are forward and backward reasoning.

The solution of a problem generally includes the initial data and facts in order to arrive at the
solution. These unknown facts and information is used to deduce the result. For example, while
diagnosing a patient the doctor first check the symptoms and medical condition of the body such
as temperature, blood pressure, pulse, eye colour, blood, etcetera. After that, the patient
symptoms are analyzed and compared against the predetermined symptoms. Then the doctor is
able to provide the medicines according to the symptoms of the patient. So, when a solution
employs this manner of reasoning, it is known as forward reasoning.

The backward reasoning is reverse of forward reasoning in which goal is analyzed in order to
deduce the rules, initial facts and data. We can understand the concept by the similar example
given in the above definition, where the doctor is trying to diagnose the patient with the help of
the inceptive data such as symptoms. However, in this case, the patient is experiencing a problem
in his body, on the basis of which the doctor is going to prove the symptoms. This kind of
reasoning comes under backward reasoning.

The significant difference between both of them is that forward reasoning starts with the initial
data towards the goal. Conversely, backward reasoning works in opposite fashion where the
purpose is to determine the initial facts and information with the help of the given results.

Artificial Intelligence CS703C Page 71

Basis For
Comparison

Forward Reasoning
Backward
Reasoning

Basic Data-driven Goal driven

Begins with New Data Uncertain conclusion

Objective is to find
the

Conclusion that must
follow

Facts to support the
conclusions

Type of approach Opportunistic Conservative

Flow
Incipient to

consequence
Consequence to

incipient

Artificial Intelligence CS703C Page 72

PROBABILISTIC
REASONING

Artificial Intelligence CS703C Page 73

Probabilistic Reasoning
 Probability theory is used to discuss events, categories, and hypotheses about which there is
not 100% certainty.
 We might write A→B, which means that if A is true, then B is true. If we are unsure whether
A is true, then we cannot make use of this expression.
 In many real-world situations, it is very useful to be able to talk about things that lack
certainty. For example, what will the weather be like tomorrow? We might formulate a very
simple hypothesis based on general observation, such as “it is sunny only 10% of the time, and
rainy 70% of the time”. We can use a notation similar to that used for predicate calculus to
express such statements:
P(S) = 0.1
P(R) = 0.7
The first of these statements says that the probability of S (“it is sunny”) is 0.1. The second says
that the probability of R is 0.7. Probabilities are always expressed as real numbers between 0 and
1. A probability of 0 means “definitely not” and a probability of 1 means “definitely so.” Hence,
P(S) = 1 means that it is always sunny.

 Many of the operators and notations that are used in prepositional logic can also be used in
probabilistic notation. For example, P(￢S) means “the probability that it is not sunny”; P(S ∧R)
means “the probability that it is both sunny and rainy.” P(A ∨ B), which means “the probability
that either A is true or B is true,” is defined by the following rule: P(A ∨B) = P(A) + P(B) - P(A
∧B)

The notation P(B|A) can be read as “the probability of B, given A.” This is known as conditional
probability—it is conditional on A. In other words, it states the probability that B is true, given
that we already know that A is true. P(B|A) is defined by the following rule: Of course, this rule
cannot be used in cases where P(A) = 0.

For example, let us suppose that the likelihood that it is both sunny and rainy at the same time is
0.01. Then we can calculate the probability that it is rainy, given that it is sunny as follows:

Artificial Intelligence CS703C Page 74

The basic approach statistical methods adopt to deal with uncertainty is via the axioms of
probability:
 Probabilities are (real) numbers in the range 0 to 1.
 A probability of P(A) = 0 indicates total uncertainty in A, P(A) = 1 total certainty and values in
between some degree of (un)certainty.
 Probabilities can be calculated in a number of ways.
 Probability = (number of desired outcomes) / (total number of outcomes)
So given a pack of playing cards the probability of being dealt an ace from a full normal deck is
4 (the number of aces) / 52 (number of cards in deck) which is 1/13.
Similarly the probability of being dealt a spade suit is 13 / 52 = 1/4.

Conditional probability, P(A|B), indicates the probability of of event A given that we know event
B has occurred.
 A Bayesian Network is a directed acyclic graph:
 A graph where the directions are links which indicate dependencies that exist between nodes.
 Nodes represent propositions about events or events themselves.
 Conditional probabilities quantify the strength of dependencies.
 Consider the following example:
 The probability, that my car won't start.
 If my car won't start then it is likely that
o The battery is flat or
o The staring motor is broken.
 In order to decide whether to fix the car myself or send it to the garage I make the following
decision:
 If the headlights do not work then the battery is likely to be flat so i fix it myself.
 If the starting motor is defective then send car to garage.
 If battery and starting motor both gone send car to garage.
 The network to represent this is as follows:

Artificial Intelligence CS703C Page 75

Fig. A simple Bayesian network

Bayesian probabilistic inference
 Bayes’ theorem can be used to calculate the probability that a certain event will occur or that a
certain proposition is true
 The theorem is stated as follows:

P(B) is called the prior probability of B. P(B|A), as well as being called the conditional
probability, is also known as the posterior probability of B.
 P(A ∧B) = P(A|B)P(B)
 Note that due to the commutativity of ∧ , we can also write
 P(A ∧B) = P(B|A)P(A)
 Hence, we can deduce: P(B|A)P(A) = P(A|B)P(B)
 This can then be rearranged to give Bayes’ theorem:
 Bayes Theorem states:

 This reads that given some evidence E then probability that hypothesis is true is equal to the
ratio of the probability that E will be true given times the a priori evidence on the probability of
and the sum of the probability of E over the set of all hypotheses times the probability of these
hypotheses.
 The set of all hypotheses must be mutually exclusive and exhaustive.
 Thus to find if we examine medical evidence to diagnose an illness. We must know all the
prior probabilities of find symptom and also the probability of having an illness based on certain
symptoms being observed.
Bayesian networks are also called Belief Networks or Probabilistic Inference Networks.

Artificial Intelligence CS703C Page 76

Application Of Bayes Therom:

Artificial Intelligence CS703C Page 77

Clinical Example:

Artificial Intelligence CS703C Page 78

Definition and importance of knowledge
 Knowledge can be defined as the body of facts and principles accumulated by humankind
or the act, fact, or state of knowing

Artificial Intelligence CS703C Page 79

 Knowledge is having familiarity with language, concepts, procedures, rules, ideas,
abstractions, places, customs, facts, and associations, coupled with an ability to use theses
notions effectively in modeling different aspects of the world
 The meaning of knowledge is closely related to the meaning of intelligence
 Intelligent requires the possession of and access to knowledge
 A common way to represent knowledge external to a computer or a human is in the form of
written language
 Example:
 Ramu is tall – This expresses a simple fact, an attribute possessed by a person
 Ramu loves his mother – This expresses a complex binary relation between two persons
 Knowledge may be declarative or procedural
 Procedural knowledge is compiled knowledge related to the performance of some task. For
example, the steps used to solve an algebraic equation
 Declarative knowledge is passive knowledge expressed as statements of facts about the world.
For example, personnel data in a database, such data are explicit pieces of independent
knowledge
 Knowledge includes and requires the use of data and information
 Knowledge combines relationships, correlations, dependencies, and the notion of gestalt with
data and information
 Belief is a meaningful and coherent expression. Thus belief may be true or false
 Hypothesis is defined as a belief which is backed up with some supporting evidence, but it
may still be false
 Knowledge is true justified belief
 Epistemology is the study of the nature of knowledge
 Metaknowledge is knowledge about knowledge, that is, knowledge about what we Know

DEMPSTER- SHAFER THEORY
 The Dempster-Shafer theory, also known as the theory of belief functions, is a generalization
of the Bayesian theory of subjective probability.
 Whereas the Bayesian theory requires probabilities for each question of interest, belief
functions allow us to base degrees of belief for one question on probabilities for a related
question. These degrees of belief may or may not have the mathematical properties of
probabilities;
 The Dempster-Shafer theory owes its name to work by A. P. Dempster (1968) andGlenn
Shafer (1976), but the theory came to the attention of AI researchers in the early 1980s, when
they were trying to adapt probability theory to expert systems.
 Dempster-Shafer degrees of belief resemble the certainty factors in MYCIN, and this
resemblance suggested that they might combine the rigor of probability theory with the
flexibility of rule-based systems.
 The Dempster-Shafer theory remains attractive because of its relative flexibility.
 The Dempster-Shafer theory is based on two ideas:
 the idea of obtaining degrees of belief for one question from subjective probabilities for a
related question,
 Dempster's rule for combining such degrees of belief when they are based on independent
items of evidence.
 To illustrate the idea of obtaining degrees of belief for one question from subjective

Artificial Intelligence CS703C Page 80

probabilities for another, suppose I have subjective probabilities for the reliability of my friend
Betty. My probability that she is reliable is 0.9, and my probability that she is unreliable is 0.1.
Suppose she tells me a limb fell on my car. This statement, which must true if she is reliable, is
not necessarily false if she is unreliable. So her testimony alone justifies a 0.9 degree of belief
that a limb fell on my car, but only a zero degree of belief (not a 0.1 degree of belief) that no
limb fell on my car. This zero does not mean that I am sure that no limb fell on my car, as a zero
probability would;
it merely means that Betty's testimony gives me no reason to believe that no limb fell on my car.
The 0.9 and the zero together constitute a belief function.
 To illustrate Dempster's rule for combining degrees of belief, suppose I also have a 0.9
subjective probability for the reliability of Sally, and suppose she too testifies, independently of
Betty, that a limb fell on my car. The event that Betty is reliable is independent of the event that
Sally is reliable, and we may multiply the probabilities of these events; the probability that both
are reliable is 0.9x0.9 = 0.81, the probability that neither is reliable is 0.1x0.1 = 0.01, and the
probability that at least one is reliable is 1 - 0.01 = 0.99. Since they both said that a limb fell on
my car, at least of them being reliable implies that a limb did fall on my car, and hence I may
assign this event a degree of belief of 0.99. Suppose, on the other hand, that Betty and Sally
contradict each other—Betty says that a limb fell on my car, and Sally says no limb fell on my
car. In this case, they cannot both be right and hence cannot both be reliable—only one is
reliable, or neither is reliable. The prior probabilities that only Betty is reliable, only Sally is
reliable, and that neither is reliable are 0.09, 0.09, and 0.01, respectively, and the posterior
probabilities (given that not both are reliable) are 9 19 , 9 19 , and 1 19 , respectively. Hence we
have a 9 19 degree of belief that a limb did fall on my car (because Betty is reliable) and a 9 19
degree of belief that no limb fell on my car (because Sally is reliable).
 In summary, we obtain degrees of belief for one question (Did a limb fall on my car?) from
probabilities for another question (Is the witness reliable?). Dempster's rule begins with the
assumption that the questions for which we have probabilities are independent with respect to
our subjective probability judgments, but this independence is only a priori; it disappears when
conflict is discerned between the different items of evidence.
 Implementing the Dempster-Shafer theory in a specific problem generally involves solving
two related problems.
 First, we must sort the uncertainties in the problem into a priori independent items of
evidence.
 Second, we must carry out Dempster's rule computationally. These two problems and their
solutions are closely related.
 Sorting the uncertainties into independent items leads to a structure involving items of
evidence that bear on different but related questions, and this structure can be used to make
computations
 This can be regarded as a more general approach to representing uncertainty than the Bayesian
approach.
 The basic idea in representing uncertainty in this model is:
 Set up a confidence interval -- an interval of probabilities within which the true probability lies
with a certain confidence -- based on the Belief B and plausibility PL provided by some evidence
E for a proposition P.
 The belief brings together all the evidence that would lead us to believe in P with some
certainty.

Artificial Intelligence CS703C Page 81

 The plausibility brings together the evidence that is compatible with P and is not inconsistent
with it.
 This method allows for further additions to the set of knowledge and does not assume disjoint
outcomes.
Benefits of Dempster-Shafer Theory:

 Allows proper distinction between reasoning and decision taking

 No modeling restrictions (e.g. DAGs)

 It represents properly partial and total ignorance

 Ignorance is quantified:

o low degree of ignorance means
- high confidence in results
- enough information available for taking decisions
o high degree of ignorance means
- low confidence in results
- gather more information (if possible) before taking decisions

 Conflict is quantified:

o low conflict indicates the presence of confirming information sources
o high conflict indicates the presence of contradicting sources

 Simplicity: Dempster’s rule of combination covers

o combination of evidence
o Bayes’ rule
o Bayesian updating (conditioning)
o belief revision (results from non-monotonicity)
 DS-Theory is not very successful because:
 Inference is less efficient than Bayesian inference
 Pearl is the better speaker than Dempster (and Shafer, Kohlas, etc.)
 Microsoft supports Bayesian Networks
 The UAI community does not like „outsiders“

Fuzzy Set Theory
What is Fuzzy Set ?
• The word "fuzzy" means "vagueness". Fuzziness occurs when the boundary of a piece of
information is not clear-cut.
• Fuzzy sets have been introduced by Lotfi A. Zadeh (1965) as an extension of the classical
notion of set.
• Classical set theory allows the membership of the elements in the set in binary terms, a bivalent
condition - an element either belongs or does not belong to the set.
Fuzzy set theory permits the gradual assessment of the membership of elements in a set,
described with the aid of a membership function valued in the real unit interval [0, 1].
• Example:
Words like young, tall, good, or high are fuzzy.
−There is no single quantitative value which defines the term young.

Artificial Intelligence CS703C Page 82

−For some people, age 25 is young, and for others, age 35 is young.
−The concept young has no clean boundary.
−Age 1 is definitely young and age 100 is definitely not young;
−Age 35 has some possibility of being young and usually depends on the context in which it is
being considered.
Introduction
In real world, there exists much fuzzy knowledge;
Knowledge that is vague, imprecise, uncertain, ambiguous, inexact, or probabilistic in nature.
Human thinking and reasoning frequently involve fuzzy information, originating from inherently
inexact human concepts. Humans, can give satisfactory answers, which are probably true.
However, our systems are unable to answer many questions. The reason is, most systems are
designed based upon classical set theory and two-valued logic which is unable to cope with
unreliable and incomplete information and give expert opinions.

• Classical Set Theory
A Set is any well defined collection of objects. An object in a set is called an element or member
of that set.
−Sets are defined by a simple statement describing whether a particular element having a
certain property belongs to that particular set.
−Classical set theory enumerates all its elements using A = { a1 , a2 , a3 , a4 , an }
If the elements ai (i = 1, 2, 3, . . . n) of a set A are subset of universal set X, then set A can be
represented for all elements x X by its characteristic function

−A set A is well described by a function called characteristic function.
This function, defined on the universal space X, assumes :
a value of 1 for those elements x that belong to set A, and a value of 0 for those elements x that
do not belong to set A.
The notations used to express these mathematically are
Α : Χ →[0, 1]
A(x) = 1 , x is a member of A Eq.(1)
A(x) = 0 , x is not a member of A
Alternatively, the set A can be represented for all elements x X
by its characteristic function A (x) defined as
 1 if x X
A (x) = 0 otherwise

−Thus in classical set theory A (x) has only the values 0 ('false') and 1 ('true''). Such sets are
called crisp sets.

• Fuzzy Set Theory

Fuzzy set theory is an extension of classical set theory where elements have varying degrees of
membership. A logic based on the two truth values, True and False, is sometimes inadequate
when describing human reasoning. Fuzzy logic uses the whole interval between
0 (false) and 1 (true) to describe human reasoning.

Artificial Intelligence CS703C Page 83

−A Fuzzy Set is any set that allows its members to have different degree of membership, called
membership function, in the interval [0 , 1].
−The degree of membership or truth is not same as probability;

fuzzy truth is not likelihood of some event or condition.
fuzzy truth represents membership in vaguely defined sets;

−Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate rather
than precisely deduced from classical predicate logic.
−Fuzzy logic is capable of handling inherently imprecise concepts.
−Fuzzy logic allows in linguistic form the set membership values to imprecise concepts like
"slightly", "quite" and "very".
−Fuzzy set theory defines Fuzzy Operators on Fuzzy Sets.
• Crisp and Non-Crisp Set
−As said before, in classical set theory, the characteristic function A (x) of Eq.(2) has only
values 0 ('false') and 1 ('true'').
Such sets are crisp sets.
−For Non-crisp sets the characteristic function A(x) can be defined.

The characteristic function A(x) of Eq. (2) for the crisp set is generalized for the Non-
crisp sets.

This generalized characteristic function A(x) of Eq.(2) is called membership function.
Such Non-crisp sets are called Fuzzy Sets.
−Crisp set theory is not capable of representing descriptions and classifications in many cases;
In fact, Crisp set does not provide adequate representation for most cases.

• Representation of Crisp and Non-Crisp Set
Example : Classify students for a basketball team
This example explains the grade of truth value.
- tall students qualify and not tall students do not qualify
- if students 1.8 m tall are to be qualified, then should we exclude a student who is 1/10" less? or
should we exclude a student who is 1" shorter?
■ Non-Crisp Representation to represent the notion of a tall person.

A student of height 1.79m would belong to both tall and not tall sets with a particular degree of
membership.
As the height increases the membership grade within the tall set would increase whilst the
membership grade within the not-tall set would decrease.

Artificial Intelligence CS703C Page 84

 NATURAL
LANGUAGE

PROCESSING

Artificial Intelligence CS703C Page 85

INTRODUCTION

Natural Language Processing, usually shortened as NLP, is a branch of artificial intelligence that
deals with the interaction between computers and humans using the natural language. Natural
language processing is a subfield of computer science and in artificial intelligence that is
concerned with computational processing of natural languages, emulating cognitive capabilities
without being committed to a true simulation of cognitive processes. It is a theoretically
motivated range of computational techniques for analyzing and representing naturally occurring
texts at one or more levels of linguistic analysis for the purpose of achieving human like
language processing for a range of tasks or applications. It is a computerized approach to
analyzing text that is based on both a set of theories and a set of technologies. NLP is a very
active area of research and development. Naturally occurring texts can be of any language, mode
and genre etc. The text can be oral or written. The only requirement is that they be in a language
used by humans to communicate to one another. Also, the text being analyzed should not be
specifically constructed for the purpose of analysis, but rather that the text is gathered from
actual usage.

The ultimate objective of NLP is to read, decipher, understand, and make sense of the human
languages in a manner that is valuable. Most NLP techniques rely on machine learning to derive
meaning from human languages.

Generally NLP is the means for accomplishing a particular task. It is a combination of
computational linguistics and artificial intelligence. The natural language processing uses the
tools of AI such as: algorithms, data structures, formal models for representing knowledge,
models or reasoning processes etc. There are two ways through which the natural languages are
being processed. First parsing technique and the second is the transition network. The
architecture of NLP is given in the following figure.

Fig. 12.1: Architecture of NLP

Artificial Intelligence CS703C Page 86

The goal of natural language processing is to specify a language comprehension and production
theory to such a level of detail that a person is able to write a computer program which can
understand and produce natural language. The basic goal of NLP is to accomplish human like
language processing. The choice of word “processing” is very deliberate and should not be
replaced with “understanding”. For although the field of NLP was originally referred to as
Natural Language Understanding (NLU), that goal has not yet been accomplished. A full NLU
system would be able to:

Paraphrase an input text.
Translate the text into another language.
Answer questions about the contents of the text.
Draw inferences from the text.

 NLP lie in a number of disciplines like computer and information sciences, linguistics,
mathematics, electrical and electronic engineering, artificial intelligence and robotics,
psychology etc. Applications of NLP include a number of fields of studies such as machine
translation, natural language text processing, summarization, user interfaces multilingual and
Gross language information retrieval (CLIR), speech recognition, artificial intelligence and
expert system.

As natural language processing technology matures, it is increasingly being used to support other
computer applications. Such use naturally falls into two areas, one in which linguistic analysis
merely serves as an interface to the primary program and the second one in which natural
language considerations are central to the application. Natural language interfaces into a request
in a formal database query language, and the program then proceeds as it would without the use
of natural language processing techniques. Also some more application areas include information
and text categorization. In both applications, natural language processing imposes a linguistic
representation on each document being considered.

Natural Language Processing is the driving force behind the following common applications:

 Language translation applications such as Google Translate

 Word Processors such as Microsoft Word and Grammarly that employ NLP to check
grammatical accuracy of texts.

 Interactive Voice Response (IVR) applications used in call centers to respond to certain
users’ requests.

 Personal assistant applications such as OK Google, Siri, Cortana, and Alexa.

Artificial Intelligence CS703C Page 87

Syntactic analysis and semantic analysis are the main techniques used to complete Natural
Language Processing tasks. Broadly construed, natural language processing is considered to
involve at least the following steps

 Lexical analysis

 Syntactic analysis

 Semantic analysis

 Discourse Integration

 Pragmatic Analysis

LEXICAL ANALYSIS

It involves identifying and analyzing the structure of words. Lexicon of a language means the
collection of words and phrases in a language. Lexical analysis is dividing the whole chunk of txt
into paragraphs, sentences, and words.

SYNTACTIC PROCESSING

Processing a sentence syntactically involves determining the subject and predicate and the place
of nouns, verbs, pronouns, etc. Given the variety of ways to construct sentences in a natural
language, it's obvious that word order alone will not tell you much about these issues, and
depending on word order alone would be frustrated anyway by the fact that sentences vary in
length and can contain multiple clauses.

In NLP, syntactic analysis is used to assess how the natural language aligns with the grammatical
rules. Computer algorithms are used to apply grammatical rules to a group of words and derive
meaning from them.

Here are some syntax techniques that can be used:

Lemmatization: It entails reducing the various inflected forms of a word into a single form for
easy analysis.

Morphological segmentation: It involves dividing words into individual units called
morphemes.

Word segmentation: It involves dividing a large piece of continuous text into distinct units.

Part-of-speech tagging: It involves identifying the part of speech for every word.

Parsing: It involves undertaking grammatical analysis for the provided sentence.

Artificial Intelligence CS703C Page 88

Sentence breaking: It involves placing sentence boundaries on a large piece of text.

Stemming: It involves cutting the inflected words to their root form.

There are a number of algorithms researchers have developed for syntactic analysis, such as −

Context-Free Grammar

Top-Down Parser

SEMANTIC ANALYSIS

Semantics refers to the meaning that is conveyed by a text. Semantic analysis is one of the
difficult aspects of Natural Language Processing that has not been fully resolved yet. It involves
applying computer algorithms to understand the meaning and interpretation of words and how
sentences are structured.

Here are some techniques in semantic analysis:

Named entity recognition (NER): It involves determining the parts of a text that can be
identified and categorized into preset groups. Examples of such groups include names of people
and names of places.

Word sense disambiguation: It involves giving meaning to a word based on the context.

Natural language generation: It involves using databases to derive semantic intentions and
convert them into human language.

DISCOURSE INTEGRATION

The meaning of any sentence depends upon the meaning of the sentence just before it. In
addition, it also brings about the meaning of immediately succeeding sentence.

While syntax and semantics work with sentence-length units, the discourse level of NLP works
with units of text longer than a sentence i.e. it does not interpret multi-sentence texts as just
concatenated sentences, each of which can be interpreted singly. Discourse focuses on the
properties of the text as a whole that convey meaning by making connections between
component sentences. Several types of discourse processing can occur at this level like anaphora
resolution and discourse/text structure recognition. Anaphora resolution is the replacing of words
such as pronouns which are semantically vacant with the appropriate entity to which they refer.
For example, newspaper articles can be deconstructed into discourse components such as: lead,
main story, previous events, evaluation etc. A discourse is a sequence of sentences. Discourse
has structure much like sentences do. Understanding discourse structure is extremely important
for dialog system.

Artificial Intelligence CS703C Page 89

For example: The dialog may be

When does the bus to Bhubaneswar leave?

There is one at 10 a.m. and one at 1 p.m.

Give me two tickets for the earlier one, please.

The problems with discourse analysis may be non-sentential utterances, cross-sentential
anaphora.

PRAGMATIC PROCESSING

During this, what was said is re-interpreted on what it actually meant. It involves deriving those
aspects of language which require real world knowledge.

This level is concerned with the purposeful use of language in situations and utilizes context over
and above the contents of the text for understanding. The goal is to explain how extra meaning is
read into texts without actually being encoded in them. This requires much world knowledge
including the understanding of intentions, plans and goals. Some NLP applications may utilize
knowledge bases and inferencing modules. Pragmatic is the study of how more gets
communicated than is said. Speech acts in the pragmatic processing is the illocutionary force, the
communicative force of an utterance, resulting from the function associated with it.

For example: Suppose the sentence is I will see you later.

Prediction: I predict that I will see you later.

Promise: I promise that I will see you later.

Warning: I warn you that I will see you later.

Artificial Intelligence CS703C Page 90

 LEARNING

Artificial Intelligence CS703C Page 91

INTRODUCTION

Learning process is the basis of knowledge acquisition process. Knowledge acquisition is the
expanding the capabilities of a system or improving its performance at some specified task. So
we can say knowledge acquisition is the goal oriented creation and refinement of knowledge.
The acquired knowledge may consist of various facts, rules, concepts, procedures, heuristics,
formulas, relationships or any other useful information. Knowledge can be acquired from various
sources like, domain of interests, text books, technical papers, databases, reports. The terms of
increasing levels of abstraction, knowledge includes data, information and Meta knowledge.
Meta knowledge includes the ability to evaluate the knowledge available, the additional
knowledge required and the systematic implied by the present rules.

An agent is learning if it improves its performance on future tasks after making observations
about the world. Learning can range from the trivial, as exhibited by jotting down a phone
number, to the profound, as exhibited by Albert Einstein, who inferred a new theory of the
universe.

FORMS OF LEARNING

Factoring its representation of knowledge, AI learning models can be classified in two main
types: inductive and deductive.

 INDUCTIVE LEARNING

This type of AI learning model is based on inferring a general rule from datasets of input-output
pairs.. Algorithms such as knowledge based inductive learning(KBIL) are a great example of this
type of AI learning technique. KBIL focused on finding inductive hypotheses on a dataset with
the help of background information.

DEDUCTIVE LEARNING

This type of AI learning technique starts with te series of rules nad infers new rules that are more
efficient in the context of a specific AI algorithm. Explanation-Based Learning(EBL) and
Relevance-0Based Learning(RBL) are examples examples o f deductive techniques. EBL
extracts general rules from examples by “generalizing” the explanation. RBL focuses on
identifying attributes and deductive generalizations from simple example.

Based on the feedback characteristics, AI learning models can be classified as supervised,
unsupervised, semi-upervised or reinforced.

UNSUPERVISED LEARNING

Artificial Intelligence CS703C Page 92

Unsupervised models focus on learning a pattern in the input data without any external feedback.
Clustering is a classic example of unsupervised learning models.

In unsupervised learning the agent learns patterns in the input even though no explicit feedback
is supplied. The most common unsupervised learning task is clustering: detecting potentially
useful clusters of input examples. For example, a taxi agent might gradually develop a concept of
“good traffic days” and “bad traffic days” without ever being given labeled examples of each by
a teacher.

 SUPERVISED LEARNING

 Supervised learning models use external feedback to learning functions that map inputs to
output observations. In those models the external environment acts as a “teacher” of the AI
algorithms.

In supervised learning the agent observes some example input–output pairs and learns a function
that maps from input to output.

SEMI-SUPERVISED LEARNING:

Semi-Supervised learning uses a set of curated, labeled data and tries to infer new
labels/attributes on new data sets. Semi-Supervised learning models are a solid middle ground
between supervised and unsupervised models.

In semi-supervised learning we are given a few labeled examples and must make what we can of
a large collection of unlabeled examples. Even the labels themselves may not be the oracular
truths that we hope for. Imagine that you are trying to build a system to guess a person’s age
from a photo. You gather some labeled examples by snapping pictures of people and asking their
age. That’s supervised learning. But in reality some of the people lied about their age. It’s not
just that there is random noise in the data; rather the inaccuracies are systematic, and to uncover
them is an unsupervised learning problem involving images, self-reported ages, and true
(unknown) ages. Thus, both noise and lack of labels create a continuum between supervised and
unsupervised learning.

 REINFORCEMENT LEARNING

Reinforcement learning models use opposite dynamics such as rewards and punishment to
“reinforce” different types of knowledge. This type of learning technique is becoming really
popular in modern AI solutions.

In reinforcement learning the agent learns from a series of reinforcements—rewards or
punishments. For example, the lack of a tip at the end of the journey gives the taxi agent an
indication that it did something wrong. The two points for a win at the end of a chess game tells

Artificial Intelligence CS703C Page 93

the agent it did something right. It is up to the agent to decide which of the actions prior to the
reinforcement were most responsible for it.

LEARNING DECISION TREE

Decision tree induction is one of the simplest and yet most successful forms of machine learning.
We first describe the representation—the hypothesis space—and then show how to learn a good
hypothesis.

THE DECISION TREE REPRESENTATION

Decision Tree. A decision tree represents a function that takes as input a vector of attribute
values and returns a “decision”—a single output value. The input and output values can be
discrete or continuous. For now we will concentrate on problems where the inputs have discrete
values and the output has exactly two possible values; this is Boolean classification, where each
example input will be classified as true (a positive example) or false (a negative example).

A decision tree reaches its decision by performing a sequence of tests. Each internal node in the
tree corresponds to a test of the value of one of the input attributes, Ai, and the branches from the
node are labeled with the possible values of the attribute, Ai =vik. Each leaf node in the tree
specifies a value to be returned by the function. The decision tree representation is natural for
humans; indeed, many “How To” manuals (e.g., for car repair) are written entirely as a single
decision tree stretching over hundreds of pages.

EXPLANATION BASED LEARNING

Explanation based learning has ability to learn from a single training instance. Instead of taking
more examples the explanation based learning is emphasized to learn a single, specific example.
For example, consider the Ludoo game. In a Ludoo game, there are generally four colors of
buttons. For a single color there are four different squares. Suppose the colors are red, green,
blue and yellow. So maximum four members are possible for this game. Two members are
considered for one side (suppose green and red) and other two are considered for another side
(suppose blue and yellow). So for any one opponent the other will play his game. A square sized
small box marked by symbols one to six is circulated among the four members. The number one
is the lowest number and the number six is the highest for which all the operations are done.
Always any one from the 1st side will try to attack any one member in the 2nd side and vice
versa. At any instance of play the players of one side can attack towards the players of another
side. Likewise, all the buttons may be attacked and rejected one by one and finally one side will

Artificial Intelligence CS703C Page 94

win the game. Here at a time the players of one side can attack towards the players of another
side. So for a specific player, the whole game may be affected. Hence we can say that always
explanation based learning is concentrated on the inputs like a simple learning program, the idea
about the goal state, the idea about the usable concepts and a set of rules that describes
relationships between the objects and the actions.

Explanation based generalization (EBG) is an algorithm for explanation based learning,
described in Mitchell at al. (1986). It has two steps first, explain method and secondly, generalize
method. During the first step, the domain theory is used to prune away all the unimportant
aspects of training examples with respect to the goal concept. The second step is to generalize
the explanation as far as possible while still describing the goal concept. Consider the problem of
learning the concept bucket. We want to generalize from a single example of a bucket. At first
collect the following information.

Given a training example and a functional description, we want to build a general structural
description of a bucket. In practice, there are two reasons why the explanation based learning is
important.

1. Input Examples:

Fig. 13.1: An explanation of BUCKET Object

Artificial Intelligence CS703C Page 95

Owner (object, X) ∧ has part (object, Y) ∧ is(object, Deep) ∧ Color(Object,
Green)

 ∧ (Where Y is any thin material)

2. Domain Knowledge:
is (a, Deep) ∧ has part(a, b) ∧ is a(b, handle) → liftable(a)
has part(a, b) ∧ is a(b, Bottom) ∧ is(b, flat) → Stable(a)
has part(a, b) ∧ is a(b, Y) ∧ is(b, Upward - pointing) → Open –vessel(a)

3. Goal: Bucket
B is a bucket if B is a liftable, stable and open-vessel

4. Description of Concept: These are expressed in purely structural forms like Deep, Flat,
Rounded etc.

LEARNING USING RELEVANCE INFORMATION

The prior knowledge Background concerns the relevance of a set of features to the goal
predicate. This knowledge, together with the observations, allows the agent to infer a new,
general rule that explains the observations:

Hypothesis ∧ Descriptions |= Classifications ,

Background ∧ Descriptions ∧ Classifications |= Hypothesis

This kind of generalization is known as relevance-based learning or RBL although the name is
not standard). Notice that whereas RBL does make use of the content of the observations, it does
not produce hypotheses that go beyond the logical content of the background knowledge and the
observations. It is a deductive form of learning and cannot by itself account for the creation of
new knowledge starting from scratch.

NEURAL NET LEARNING

A neural network consists of inter connected processing elements called neurons that work
together to produce an output function. The output of a neural network relies on the cooperation
of the individual neurons within the network to operate. Well designed neural networks are
trainable systems that can often “learn” to solve complex problems from a set of exemplars and
generalize the “acquired knowledge” to solve unforeseen problems, i.e. they are self-adaptive
systems. A neural network is used to refer to a network of biological neurons. A neural network

Artificial Intelligence CS703C Page 96

consists of a set of highly interconnected entities called nodes or units. Each unit accepts a
weighted set of inputs and responds with an output.

Mathematically let I = (I1,I2,... ...In) represent the set of inputs presented to the unit U. Each input
has an associated weight that represents the strength of that particular connection. Let W =
(W1,W2,...... Wn) represent the weight vector corresponding to the input vector X. By applying to
V, these weighted inputs produce a net sum at U given by

S = SUM (Wi * Ii)

FEATURES OF ARTIFICIAL NETWORK (ANN)

Artificial neural networks may by physical devices or simulated on conventional computers.
From a practical point of view, an ANN is just a parallel computational system consisting of
many simple processing elements connected together in a specific way in order to perform a
particular task. There are some important features of artificial networks as follows.

(1) Artificial neural networks are extremely powerful computational devices (Universal
computers).

Fig. 13.2: Example of a Neural network structure

Artificial Intelligence CS703C Page 97

(2) ANNs are modeled on the basis of current brain theories, in which information is represented
by weights.
(3) ANNs have massive parallelism which makes them very efficient.
(4) They can learn and generalize from training data so there is no need for enormous feats of
programming.
(5) Storage is fault tolerant i.e. some portions of the neural net can be removed and there will be
only a small degradation in the quality of stored data.
(6) They are particularly fault tolerant which is equivalent to the “graceful degradation” found in
biological systems.
(7) Data are naturally stored in the form of associative memory which contrasts with
conventional memory, in which data are recalled by specifying address of that data.
(8) They are very noise tolerant, so they can cope with situations where normal symbolic systems
would have difficulty.
(9) In practice, they can do anything a symbolic/ logic system can do and more.
(10) Neural networks can extrapolate and intrapolate from their stored information. The neural
networks can also be trained. Special training teaches the net to look for significant features or
relationships of data.

TYPES OF NEURAL NETWORK

There are two Artificial Neural Network topologies − FeedForward and Feedback. Also
according to number of layers it can be classified as Single Layer Neural Network and Multi-
layer Neural Network.

FeedForward ANN. In this ANN, the information flow is unidirectional. A unit sends
information to other unit from which it does not receive any information. There are no feedback
loops. They are used in pattern generation/recognition/classification. They have fixed inputs and
outputs.

FeedBack ANN. Here, feedback loops are allowed. They are used in content addressable
memories.
Single Layer Neural Network. A single layer neural network consists of a set of units organized
in a layer. Each unit U; receives a weighted input Im with weight Wm;. Figure shows a single
layer neural network with j inputs and n outputs.

Artificial Intelligence CS703C Page 98

Let I = (i1, i2 ij) be the input vector and let the activation function f be simply, so that the
activation
value is just the net sum to a unit. The j x n weight matrix is calculated as follows.

Thus the output Ox at unit Ux is

Multi-layer Neural Network. A multilayer network has two or more layers of units, with the
output from one layer serving as input to the next. Generally in a multilayer network there are 3
layers present like, input layer, output layer and hidden layer. The layer with no external output
connections are referred to as hidden layers. A multilayer neural network structure is given in
figure.

Fig. 13.3: Single layer neural network

Artificial Intelligence CS703C Page 99

Any multilayer system with fixed weights that has a linear activation function is equivalent to a
single layer linear system, for example, the case of a two layer system. The input vector to the
first layer is Ir the output O = W1 * I and the second layer produces output O2 = W2 * O. Hence
O2 = W2 * (W1 * I) = (W2 * W1) * I

So a linear system with any number n of layers is equivalent to a single layer linear system
whose weight matrix is the product of the n intermediate weight matrices. A multilayer system
that is not linear can provide more computational capability than a single layer system. Generally
multilayer networks have proven to be very powerful than single layer neural network. Any type
of Boolean function can be implemented by such a network. At the output layer of a multilayer
neural network the output vector is compared to the expected output. If the difference is zero, no
changes are made to the weights of connections. If the difference is not zero, the error is
calculated and is propagated back through the network.

BACK PROPAGATION NEURAL NETWORK

The main objective in neural model development is to find an optimal set ofweight parametersw,
such that y=y(x,w) closely represents (approximates)the original problem behavior. This is
achieved through a process called training(that is, optimization inw-space). A set of training data
is presented to theneural network. The training data are pairs of (xk,dk), k=1,2,...,P, where dk is
the desired outputs of the neural model for inputs xk, and P is the total number of training
samples.

During training, the neural network performance is evaluated by computing the difference
between actual neural network outputs and desired outputs for all the training samples. The
difference, also known as the error, is quantified by

Fig. 13.4: Multi-layer neural network

Artificial Intelligence CS703C Page 100

Where djk is the jth element ofdk,yj(xk,w) is the jth neural network outputfor input xk, and Tr is an
index set of training data. The weight parametersware adjusted during training, such that this
error is minimized. In 1986,Rumelhart, Hinton, and Williams1 proposed a systematic neural
networktraining approach. One of the significant contributions of their work is theerror back
propagation (BP) algorithm.

GENETIC LEARNING

Genetic algorithms are based on the theory of natural selection and work on generating a set of
random solutions and making them compete in an area where only the fittest survive. Each
solution in the set is equivalent to a chromosome. Genetic algorithm learning methods are based
on models of natural adaption and evolution. These learning methods improve their performance
through processes which model population genetics and survival of the fittest. In the field of
genetics, a population is subjected to an environment which places demands on the members.
The members which adapt well are selected formatting and reproduction. Generally genetic
algorithm uses three basic genetic operators like reproduction, crossover and mutation. These are
combined together to evolve a new population. Starting from a random set of solutions the
algorithm uses these operators and the fitness function to guide its search for the optimal
solution. The fitness function guesses how good the solution in question is and provides a
measure to its capability. The genetic operators copy the mechanisms based on the principles of
human evolution. The main advantage of the genetic algorithm formulation is that fairly accurate
results may be obtained using a very simple algorithm. The genetic algorithm is a method of
finding a good answer to a problem, based on the feedback received from its repeated attempts at
a solution.

Genetic algorithms are inspired by nature and evolution, which is seriously cool to me. It's no
surprise, either, that artificial neural networks ("NN") are also modeled from biology: evolution
is the best general-purpose learning algorithm we've experienced, and the brain is the best
general-purpose problem solver we know. These are two very important pieces of our biological
existence, and also two rapidly growing fields of artificial intelligence and machine learning
study.

Genetic Algorithm Pseudocode
START
Generate the initial population
Compute fitness
REPEAT
 Selection
 Crossover
 Mutation
 Compute fitness
UNTIL population has converged
STOP

Artificial Intelligence CS703C Page 101

 EXPERT SYSTEM

Artificial Intelligence CS703C Page 102

INTRODUCTION

The most important applied area of AI is the field of expert systems. An expert system (ES) is a
knowledge-based system that employs knowledge about its application domain and uses an
inferencing (reason) procedure to solve problems that would otherwise require human
competence or expertise. The power of expert systems stems primarily from the specific
knowledge about a narrow domain stored in the expert system's knowledge base.

Expert systems are assistants to decision makers and not substitutes for them. Expert systems do
not have human capabilities. They use a knowledge base of a particular domain and bring that
knowledge to bear on the facts of the particular situation at hand. The knowledge base of an ES
also contains heuristic knowledge - rules of thumb used by human experts who work in the
domain.

In other terms, Expert system, a computer program that uses artificial-intelligence methods to
solve problems within a specialized domain that ordinarily requires human expertise. The first
expert system was developed in 1965 by Edward Feigenbaum and Joshua Lederberg of Stanford
University in California, U.S. Dendral, as their expert system was later known, was designed to
analyze chemical compounds. Expert systems now have commercial applications in fields as
diverse as medical diagnosis, petroleum engineering, and financial investing.

REPREENTATING AND USING DOMAIN KNOWLEDGE

The knowledge base of an ES contains both factual and heuristic knowledge. Knowledge
representation is the method used to organize the knowledge in the knowledge base. Knowledge
bases must represent notions as actions to be taken under circumstances, causality, time,
dependencies, goals, and other higher-level concepts.

Several methods of knowledge representation can be drawn upon. Two of these methods include:

1. Frame-based systems - are employed for building very powerful ESs. A frame specifies the
attributes of a complex object and frames for various object types have specified relationships.

2. Production rules - are the most common method of knowledge representation used in
business. Rule-based expert systems are expert systems in which the knowledge is represented
by production rules.

A production rule, or simply a rule, consists of an IF part (a condition or premise) and a THEN
part (an action or conclusion). IF condition THEN action (conclusion). The explanation facility
explains how the system arrived at the recommendation. Depending on the tool used to
implement the expert system, the explanation may be either in a natural language or simply a
listing of rule numbers.

Artificial Intelligence CS703C Page 103

The inference engine: 1. Combines the facts of a specific case with the knowledge contained in
the knowledge base to come up with a recommendation. In a rule-based expert system, the
inference engine controls the order in which production rules are applied and resolves conflicts if
more than one rule is applicable at a given time.

2. Directs the user interface to query the user for any information it needs for further inferencing.

The facts of the given case are entered into the working memory, which acts as a blackboard,
accumulating the knowledge about the case at hand. The inference engine repeatedly applies the
rules to the working memory, adding new information (obtained from the rules conclusions) to it,
until a goal state is produced or confirmed.

One of several strategies can be employed by an inference engine to reach a conclusion.
Inferencing engines for rule-based systems generally work by either forward or backward
chaining of rules.

Forward-chaining systems are commonly used to solve more open-ended problems of a design or
planning nature, such as, for example, establishing the configuration of a complex product.
Backward chaining is best suited for applications in which the possible conclusions are limited in
number and well defined. Classification or diagnosis type systems, in which each of several
possible conclusions can be checked to see if it is supported by the data, are typical applications.

RULE BASED ARCHITECTURE OF AN EXPERT SYSTEM

The most common form of architecture used in expert and other types of knowledge based
systems is the production system or it is called rule based systems. This type of system uses
knowledge encoded in the form of production rules i.e. if-then rules. The rule has a conditional
part on the left hand side and a conclusion or action part on the right hand side. For example if:
condition1 and condition2 and condition3
Then: Take action4
Each rule represents a small chunk of knowledge to the given domain of expertise. When the
known facts support the conditions in the rule’s left side, the conclusion or action part of the rule
is then accepted as known. The rule based architecture of an expert system consists of the
domain expert, knowledge engineer, inference engine, working memory, knowledge base,
external interfaces, user interface, explanation module, database spreadsheets executable
programs s mentioned in figure .

Artificial Intelligence CS703C Page 104

The components of the rule based architecture are as follows.
1. User Interface: It is the mechanism by which the user and the expert system communicate
with each other i.e. the use interacts with the system through a user interface. It acts as a bridge
between user and expert system. This module accepts the user queries and submits those to the
expert system. The user normally consults the expert system for following reasons.
a) To get answer of his/her queries.
b) To get explanation about the solution for psychological satisfaction.
The user interface module is designed in such a way that at user level it accepts the query in a
language understandable by expert system. To make the expert system user friendly, the user
interface interacts with the user in natural language. The user interface provides as much
facilities as possible such as menus, graphical interfaces etc. to make the dialog user friendly and
more attractive.
2. Explanation Module: The explanation module explains the reasoning of the system to a user.
It provides the user with an explanation of the reasoning process when requested. The credibility
of expert system will be established only when it is able to explain “how and why” a particular
conclusion is drawn. This explanation increases the belief of user in the expert system.
a) Explanation(How): To respond to a how query, the explanation module traces the chain of
rules fired during a consolation with the user. This explanation mode can be activated once the
process is over. It explains how a fact was deduced by the system and similarly how a rule
was/wasn’t used. The simplest way to specify this is to explain the rule which allows the

Fig. 14.1: Integration of Expert systems Components

Artificial Intelligence CS703C Page 105

deduction. For e.g. If the system (S) will give information about the parent-child relationship to
the user (U) then the followings can be possible.
S: My diagnosis is “A is the father of B”
U: How?
S: The result was obtained by the addition of following facts and rules.
Fact no 11: A is the parent of Hari.
Fact no 15: A is a male.
Fact no 110: X is father of Y:
X is parent of Y, X is male.
So A is the father of B.
b) Explanation (Why)? To respond to a why query, the explanation module must be able to
explain why certain information is needed by the inference engine to complete a step in the
reasoning process. This mode of explanation is dynamic and is used when the system functions
in backward chaining. If the user doesn’t understand the reason behind the question. The system
is capable of explaining why the question was asked.
For example S: Is the following true?
A is the father of B.
U: Why?
S: I need the fact:
A is the father of B to establish the following fact “B is the son of A”.
By using the rule no. 4:
A is the father of B:
B is the son of A.
3. Working Memory: It is a global database of facts used by the rules.
4. Knowledge Engineering: The primary people involved in building an expert system are the
knowledge engineer, the domain expert and the end user. Once the knowledge engineer has
obtained a general overview of the problem domain and gone through several problem solving
sessions with the domain expert, he/she is ready to begin actually designing the system, selecting
a way to represent the knowledge, determining the search strategy (backward or forward) and
designing the user interface. After making complete designs, the knowledge engineer builds a
prototype. The prototype should be able to solve problems in a small area of the domain. Once
the prototype has been implemented, the knowledge engineer and domain expert test and refine
its knowledge by giving it problems to solve and correcting its disadvantages.
5. Knowledge Base: In rule based architecture of an expert system, the knowledge base is the set
of production rules. The expertise concerning the problem area is represented by productions. In
rule based architecture, the condition actions pairs are represented as rules, with the premises of
the rules (if part) corresponding to the condition and the conclusion (then part) corresponding to
the action. Case-specific data are kept in the working memory. The core part of an expert system
is the knowledge base and for this reason an expert system is also called a knowledge based
system. Expert system knowledge is usually structured in the form of a tree that consists of a root
frame and a
number of sub frames. A simple knowledge base can have only one frame, i.e. the root frame
whereas a large and complex knowledge base may be structured on the basis of multiple frames.
Inference Engine: The inference engine accepts user input queries and responses to questions
through the I/O interface. It uses the dynamic information together with the static knowledge
stored in the knowledge base. The knowledge in the knowledge base is used to derive

Artificial Intelligence CS703C Page 106

conclusions about the current case as presented by the user’s input. Inference engine is the
module which finds an answer from the knowledge base. It applies the knowledge to find the
solution of the problem. In general, inference engine makes inferences by deciding which rules
are satisfied by facts, decides the priorities of the satisfied rules and executes the rule with the
highest priority. Generally inferring process is carried out recursively in 3 stages like match,
select and execute. During the match stage, the contents of working memory are compared to
facts and rules contained in the knowledge base. When proper and consistent matches are found,
the corresponding rules are placed in a conflict set.

EXPERT SYSTEM SHELLS

The ES shell simplifies the process of creating a knowledge base. It is the shell that actually
processes the information entered by a user relates it to the concepts contained in the knowledge
base and provides an assessment or solution for a particular problem. Thus ES shell provides a
layer between the user interface and the computer O.S to manage the input and output of the
data. It also manipulates the information provided by the user in conjunction with the knowledge
base to arrive at a particular conclusion.

Expert system shells are the most common vehicle for the development of specific ESs. A shell
is an expert system without a knowledge base. A shell furnishes the ES developer with the
inference engine, user interface, and the explanation and knowledge acquisition facilities.

Domain-specific shells are actually incomplete specific expert systems, which require much less
effort in order to field an actual system.

KNOWLEDGE ACQUISITION

Knowledge acquisition is the process of adding new knowledge to a knowledge base and refining
or otherwise improving knowledge that was previously acquired. Acquisition is usually
associated with some purpose such as expanding the capabilities of a system or improving its
performance at some specified task. It is goal oriented creation and refinement of knowledge . It
may consist of facts, rules , concepts, procedures, heuristics, formulas, relationships, statistics or
other useful information.

The knowledge acquisition component allows the expert to enter their knowledge orexpertise
into the expert system, and to refine it later as and whenrequired.Historically, the knowledge
engineer played a major role in this process, but automatedsystems that allow the expert to
interact directly with the system arebecomingincreasingly common.The knowledge acquisition
process is usually comprised of three principal stages:

1. Knowledge elicitation is the interaction between the expert and the knowledge
engineer/program to elicit the expert knowledge in some systematic way.

2. The knowledge thus obtained is usually stored in some form of human

friendlyintermediate representation.

Artificial Intelligence CS703C Page 107

3. The intermediate representation of the knowledge is then compiled into anexecutable

form(e.g. production rules) that the inference engine can process.

STAGES OF KNOWLWDGE ACQUISITION

The iterative nature of the knowledge acquisition process can be represented in the following
diagram (five stages):

 Identification: -break problem into parts.
 Conceptualisation: identify concepts.
 Formalisation: representing knowledge.
 Implementation: programming.
 Testing: validity of knowledge.

