
Name of the Paper: Natural Language Processing
Paper Code: CS702B
Contact (Periods/Week):=3L/Week
Credit Point: 3
No. of Lectures: 41

Prerequisite:
1. A solid background in mathematics, including probability, set theory.
2. Determination to learn new and difficult things.

Course Objective(s)
 To learn the basics of NLP.
 To learn the principles and application of different NLP techniques.
 To learn the details of NLP algorithms, different tools and knowing their use.

Course Outcome(s)
On completion of the course students will be able to

CS702B.1Uunderstand the fundamental concept of NLP, Regular Expression, Finite State Automata along
with the concept and application of word tokenization, normalization, sentence segmentation, word
extraction, spell checking in the context of NLP.

CS702B.2 Understand the concept of Morphology such as Inflectional and Derivational Morphology and
different morphological parsing techniques including FSTs.

CS702B.3 Understand the concepts related to language modeling with introduction to N-grams, chain rule,
smoothing, Witten Bell discounting, backoff, deleted interpolation, spelling and word prediction and their
evaluation along with the concept of Markov chain, HMM, Forward and Viterbi algorithm, POS tagging.

CS702B.4 Understand the concept of different text classification techniques, sentiment analysis, concepts
related to CFG in the context of NLP.

CS702B.5 Understand the concept of lexical semantics, lexical dictionary such as WordNet, lexical
computational semantics, distributional word similarity and concepts related to the field of Information
Retrieval in the context of NLP.

Module I: [12L]
Introduction to NLP [2L]

Human languages, models, definition of NLP, text representation in computers, encoding schemes,
issues and strategies, application domain, tools for NLP, Linguistic organisation of NLP, phase in
natural language processing, applications
.
Regular Expression and Automata [2L]
 Finite State Automata. Introduction to CFG and different parsing technniques.

Tokenization [4L]
Word Tokenization, Normalization, Sentence Segmentation, Named Entity Recognition,Multi Word
Extraction, Spell Checking – Bayesian Approach, Minimum Edit Distance

1

Morphology [4L]
Morphology – Inflectional and Derivational Morphology, Finite State Morphological Parsing, The
Lexicon and Morphotactics, Morphological Parsing with Finite State Transducers, Orthographic
Rules and Finite State Transducers, Porter Stemmer.

Module II: [9L]

Language Modeling [4L]
Introduction to N-grams, Chain Rule, Smoothing – Add-One Smoothing, Witten-Bell Discounting;
Backoff, Deleted. Interpolation, N-grams for Spelling and Word Prediction, Evaluation of language
models. Spelling errors, detection and elimination using probabilistic models, pronunciation
variation (lexical, allophonic, dialect), decision tree model, counting words in Corpora

Hidden Markov Models and POS Tagging [5L]
Markov Chain, Hidden Markov Models, Forward Algorithm, Viterbi Algorithm, Part of Speech
Tagging – Rule based and Machine Learning based approaches, concept of HMM tagger Evaluation.
Handling of unknown words, named entities, multi word expressions.

Module III: [9L]
Text Classification [4L]
Text Classification, Naïve Bayes’ Text Classification, Evaluation, Sentiment Analysis – Opinion
Mining and Emotion Analysis, Resources and Techniques.

Context Free Grammar [5L]
Context Free Grammar and Constituency, Some common CFG phenomena for English, Top-Down
and Bottom-up parsing, Probabilistic Context Free Grammar, Dependency Parsing

Module IV: [11L]

Computational Lexical Semantics [5L]
Introduction to Lexical Semantics – Homonymy, Polysemy, Synonymy, Thesaurus – WordNet,
VerbNet, Computational Lexical Semantics – Thesaurus based and Distributional Word Similarity,
Lexemes (homonymy, polysemy, synonymy, hyponymy), word structure, metaphor, metonymy.
Word sense disambiguation, machine learning approaches, dictionary based approaches.

Information Retrieval [6L]
Boolean Retrieval, Term-document incidence, The Inverted Index, Query Optimization, Phrase
Queries, Ranked Retrieval , Term Frequency and Inverse Document Frequency based ranking, Zone
Indexing, Query term proximity, Cosine ranking, Combining different features for ranking, Search
Engine Evaluation, Relevance Feedback.
Resource management with XML, Management of linguistic data with the help of GATE, NLTK

Text books:
1. D. Jurafsky & J. H. Martin – “Speech and Language Processing – An introduction to Language

processing, Computational Linguistics, and Speech Recognition”,Pearson Education
2. Chris Manning and Hinrich Schütze, “Foundations of Statistical Natural Language

Processing”, MIT Press. Cambridge, MA: May 1999.

2

Reference books:
1. Allen, James. 1995. – “Natural Language Understanding”. Benjamin/Cummings, 2ed.
2. Bharathi, A., Vineet Chaitanya and Rajeev Sangal. 1995. Natural Language Processing- “A Pananian

Perspective”. Prentice Hll India, Eastern Economy Edition.
3. Siddiqui T., Tiwary U. S.. “Natural language processing and Information retrieval”, OUP, 2008.
4. Eugene Cherniak: “Statistical Language Learning”, MIT Press, 1993.
5. Manning, Christopher and Heinrich Schütze. 1999. “Foundations of Statistical Natural Language

Processing”. MIT Press.

CO-PO Mapping

CO PO1 PO2 POP3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO PO1 PO2

CS702B.1 2 3 3 3 3 2 3 2 3
CS702B.2 2 2 2 1 3 2 3 2 2
CS702B.3 2 3 3 3 3 3 2 3 2 2
CS702B.4 2 2 2 1 3 2 3 2 2
CS702B.5 3 2 3 1 2 2 3
CS702B 3 2 3 3 2 3 1 - - - 3 2 3 2 2

3

LESSON PLAN

Module No. Lecture No. Topics Reference Books

1
Introduction to

NLP

L1

Human languages, models, definition of NLP,
text representation in computers, encoding
schemes

T1,T2, R1,R2

L2

Issues and strategies, application
domain, tools for NLP, Linguistic
organisation of NLP, phase in natural
language processing, applications

L3 Finite State Automata

L4
Introduction to CFG and different
parsing technniques

L5 Word Tokenization, Normalization

L6
Sentence Segmentation, Named Entity
Recognition

L7 Multi Word Extraction

L8
Spell Checking — Bayesian Approach,
Minimum Edit Distance

L9
Morphology — Inflectional and
Derivational Morphology

L10 Finite State Morphological Parsing

L11

The Lexicon and Morphotactics,
Morphological Parsing with Finite State
Transducers

L12
Orthographic Rules and Finite State
Transducers, Porter Stemmer

2
Language
Modelling

L1 Introduction to N-grams, Chain Rule

T1,T2, R1,R2

L2
Smoothing — Add-One Smoothing, Witten-Bell
Discounting

L3

Backoff, Deleted. Interpolation, N-grams for
Spelling and Word Prediction, Evaluation of
language models. Spelling errors

L4

Detection and elimination using probabilistic
models, pronunciation variation (lexical,
allophonic, dialect), decision tree model,
counting words in Corpora

L5 Markov Chain, Hidden Markov Models

L6
Forward Algorithm, Viterbi Algorithm, Part of
Speech Tagging

L7
Rule based and Machine Learning based
approaches. concept of HMM tagger Evaluation

L8 Handling of unknown words
L9 Named entities, multi word expressions

3

 Text
Classification

L1
Text Classification, Naive Bayes’ Text
Classification

T1,T2, R3,R2

L2 Evaluation
L3 Sentiment Analysis — Opinion Mining - and

4

Module No. Lecture No. Topics Reference Books

Emotion Analysis
L4 Resources and Techniques
L5 Context Free Grammar and Constituency
L6 Some common CFG phenomena for English
L7 Top-Down and Bottom-up parsing
L8 Probabilistic Context Free Grammar
L9 Dependency Parsing

4

Computational
Lexical

Semantics

L1 Introduction to Lexical Semantics

T1,T2, R4,R5

L2
Homonymy, Polysemy, Synonymy, Thesaurus,
WordNet, VerbNet

L3
Computational Lexical Semantics — Thesaurus
based and Distributional Word Similarity

L4 word structure, metaphor, metonymy

L5
Word sense disambiguation, machine learning
approaches, dictionary based approaches

L6 Boolean Retrieval, Term-document incidence
L7 The Inverted Index. Query Optimization
L8 Phrase Queries. Ranked Retrieval

L9
Term Frequency and Inverse Document
Frequency based ranking

L10

Zone Indexing. Query term proximity, Cosine
ranking, Combining different features for
ranking

L11

Search Engine Evaluation, Relevance
Feedback.
Resource management with XML, Management
of linguistic data with the help of GATE, NLTK

5

LECTURE No.:1

INTRODUCTION to NLP

Natural language processing (NLP) is a collective term referring to
automaticcomputational processing of human languages. This includes both
algorithms thattake human-produced text as input, and algorithms that produce
natural lookingtext as outputs. One of the earliest goals for computers was the
automatic translation of text from one languageto another. Automatic or machine
translation is perhaps one of the most challenging artificialintelligence tasks given
the fluidity of human language. Classically, rule-based systems wereused for this
task, which were replaced in the 1990s with statistical methods. More
recently,deep neural network models achieve state-of-the-art results in a field that
is aptly named neuralmachine translation.

DEFINITION

Natural Language Processing, or NLP for short, is broadly de_ned as the automatic
manipulation of natural language, like speech and text, by software. The study of
natural language processing has been around for more than 50 years and grew out
of the _eld of linguistics with the rise of computers.

Natural language refers to the way we, humans, communicate with each other.
Namely, speech and text. We are surrounded by text.
. Signs
. Menus
. Email
. SMS
. Web Pages
. and so much more...

Natural Language Processing (NLP) refers to AI method of communicating with an
intelligent systems using a natural language such as English.

Processing of Natural Language is required when you want an intelligent system like
robot to perform as per your instructions, when you want to hear decision from a
dialogue based clinical expert system, etc.

6

The field of NLP involves making computers to perform useful tasks with the natural
languages humans use. The input and output of an NLP system can be −

 Speech
 Written Text

Representing text

When any key on a keyboard is pressed, it needs to be converted into a binary number
so that it can be processed by the computer and the typed character can appear on the
screen.

A code where each number represents a character can be used to convert text into
binary.

A code where each number represents a character can be used to convert text into
binary. One code we can use for this is called ASCII. The ASCII code takes each
character on the keyboard and assigns it a binary number. For example:

 the letter ‘a’ has the binary number 0110 0001 (this is the denary number 97)
 the letter ‘b’ has the binary number 0110 0010 (this is the denary number 98)
 the letter ‘c’ has the binary number 0110 0011 (this is the denary number 99)

Text characters start at denary number 0 in the ASCII code, but this covers special
characters including punctuation, the return key and control characters as well as the
number keys, capital letters and lower case letters.

ASCII code can only store 128 characters, which is enough for most words in English
but not enough for other languages. If you want to use accents in European languages
or larger alphabets such as Cyrillic (the Russian alphabet) and Chinese Mandarin then
more characters are needed. Therefore another code, called Unicode, was created.
This meant that computers could be used by people using different languages.

7

Encoding Scheme:

Different encoding schemes can represent character data. We can incorporate
EBCDIC, ASCII, and Unicode encoding schemes in Db2® ODBC.

The EBCDIC and ASCII encoding scheme include multiple code pages; each code
page represents 256 characters for one specific geography or one generic geography.
The Unicode encoding scheme does not require the use of code pages, because it
represents over 65,000 characters. Unicode can also accommodate many different
languages and geographies.

The Unicode standard defines several implementations including UTF-8, UCS-2,
UTF-16, and UCS-4. ODBC Db2 supports Unicode in the following formats:

 UTF-8 (variable length, 1-byte to 6-byte characters)
 UCS-2 (2-byte characters)

Unicode and ASCII are alternatives to the EBCDIC character encoding scheme. The
Db2® ODBC driver supports input and output character string arguments to ODBC
APIs and input and output host variable data in each of these encoding schemes.

With this support, we can manipulate data, SQL statements, and API string arguments
in EBCDIC, Unicode, or ASCII.

 Types of encoding schemes
Different encoding schemes can represent character data. We can incorporate EBCDIC,

ASCII, and Unicode encoding schemes in Db2 ODBC.

 Application programming guidelines for handling different encoding schemes
The Db2 ODBC driver determines whether an application is an EBCDIC,
Unicode, or ASCII application by evaluating the CURRENTAPPENSCH
keyword in the initialization file. We must compile our application with a
compiler option that corresponds to this setting.

 Suffix-W API function syntax
Db2 for z/OS® supports function prototypes for suffix-W APIs, which have
slight differences from generic APIs.

 Examples of handling the application encoding scheme
We can use the application encoding scheme to bind a UCS-2 result set column,
bind UTF-8 data to parameter markers, retrieve UTF-8 data into application

8

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/odbc/src/tpc/db2z_exappenc.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/odbc/src/tpc/db2z_wapisyn.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/odbc/src/tpc/db2z_apguid.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/odbc/src/tpc/db2z_odbgrnd.html?view=kc

variables. The application encoding scheme also allows you to use suffix-W
APIs. To perform these tasks, you must declare variables, specifying data types
appropriately for a particular encoding scheme.

Application domain

An application domain is a mechanism (similar to a process in an operating
system) used within the Common Language Infrastructure (CLI) to isolate
executed software applications from one another so that they do not affect each
other. Each application domain has its own virtual address space which scopes the
resources for the application domain using that address space.

9

https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Scope_(programming)
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Common_Language_Infrastructure
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)

Lecture No. : 2

Tools for NLP:

Nowadays, a lot of tools have been published to do natural language processing jobs.
The following are tools which provide functions such as parsing, finding topic
automatically, etc.

 OpenNLP: a Java package to do text tokenization, part-of-speech tagging,
chunking, etc. (tutorial)

 Stanford Parser: a Java implementation of probabilistic natural language
parsers, both highly optimized PCFG* and lexicalized dependency parsers, and
a lexicalized PCFG parser

 ScalaNLP: Natural Language Processing and machine learning.
 Snowball: a stemmer, support C and Java.
 MALLET: a Java-based package for statistical natural language processing,

document classification, clustering, topic modeling, information extraction, and
other machine learning applications to text.

 JGibbLDA: LDA in Java
 Apache Lucene Core: a Java library for stop-words removal and stemming
 Stanford Topic Modelling Toolbox: CVB0 algorithm, etc.

Linguistic organisation of NLP:

The Association for Neuro-Linguistic Programming (ANLP) is a UK organisation
founded in 1985 by Frank Kevlin to promote neuro-linguistic programming (NLP).
Since 2005, the organisation is led by Karen Moxom as Managing Director.

Associate membership is open to anyone interested in NLP and Professional
membership is open to holders of recognised NLP qualifications, which include a
minimum number of face to face training hours.

The ANLP publishes Rapport magazine quarterly as both a PDF and in print format,
which is available to non-members by subscription, and has published the proceedings
of a NLP Research Conference held at the University of Surrey in 2008. A second
conference was held at Cardiff University in 2010 and a third at the University of
Hertfordshire in 2012. Volumes 2 and 3 of the Research Journal have subsequently
been published (in 2011 and 2013 respectively).

10

https://en.wikipedia.org/wiki/Neuro-linguistic_programming
https://en.wikipedia.org/wiki/Frank_Kevlin
https://en.wikipedia.org/wiki/UK
https://www.programcreek.com/2012/05/opennlp-tutorial/

ANLP were awarded Small Business of the Year in the Hertfordshire Business
Awards 2009.

It was a member organisation of the United Kingdom Council for Psychotherapy
(UKCP) to 2002 when the role was taken over by its daughter organization, the Neuro
Linguistic Psychotherapy and Counselling Association (NLPtCA). The NLPtCA is a
founder member of the European Association for Neuro-Linguistic Psychotherapy, a
European wide accrediting organisation (EWAO) for NLPt within the European
Association for Psychotherapy (EAP).

Phase in NLP:

Steps in NLP

There are general five steps −

 Lexical Analysis − It involves identifying and analyzing the structure of words.
Lexicon of a language means the collection of words and phrases in a language.
Lexical analysis is dividing the whole chunk of txt into paragraphs, sentences,
and words.

 Syntactic Analysis (Parsing) − It involves analysis of words in the sentence
for grammar and arranging words in a manner that shows the relationship
among the words. The sentence such as “The school goes to boy” is rejected by
English syntactic analyzer.

11

https://en.wikipedia.org/wiki/European_Association_for_Psychotherapy
https://en.wikipedia.org/wiki/European_Association_for_Psychotherapy
https://en.wikipedia.org/wiki/United_Kingdom_Council_for_Psychotherapy

 Semantic Analysis − It draws the exact meaning or the dictionary meaning
from the text. The text is checked for meaningfulness. It is done by mapping
syntactic structures and objects in the task domain. The semantic analyzer
disregards sentence such as “hot ice-cream”.

 Discourse Integration − The meaning of any sentence depends upon the
meaning of the sentence just before it. In addition, it also brings about the
meaning of immediately succeeding sentence.

 Pragmatic Analysis − During this, what was said is re-interpreted on what it
actually meant. It involves deriving those aspects of language which require
real world knowledge.

Applications:

NLP is the process of producing meaningful phrases and sentences in the form of
natural language from some internal representation.

It involves −

 Text planning − It includes retrieving the relevant content from knowledge
base.

12

 Sentence planning − It includes choosing required words, forming meaningful
phrases, setting tone of the sentence.

 Text Realization − It is mapping sentence plan into sentence structure.

13

LECTURE No.:3

 Morphology:

Morphology is the study of the structure and formation of words. Its most important
unit is the morpheme, which is defined as the "minimal unit of meaning". (Linguistics
textbooks usually define it slightly differently as "the minimal unit of grammatical
analysis".) Consider a word like: "unhappiness". This has three parts:

There are three morphemes, each carrying a certain amount of meaning. un means
"not", while ness means "being in a state or condition". Happy is a free morpheme
because it can appear on its own (as a "word" in its own right). Bound morphemes
have to be attached to a free morpheme, and so cannot be words in their own right.
Thus we can't have sentences in English such as "Jason feels very un ness today".

The important thing about this example is to notice how the morphemes all represent a
"unit of meaning" and how they remain absolutely identifiable within the structure of
the words. This is in contrast to what happens in the last class: the inflecting
languages.

Inflecting languages:

The words in inflecting languages do show different forms and it is possible to break
the words into smaller units and label them, in the same way that the Turkish example
was presented above. However, the result is a very muddled and contradictory
account. Usual examples are based on Latin and rely on a knowledge of the Latin
grammatical case example, which most English undergraduates don't have. As a
simple example, the Latin for "I love" is amo. This is means that the ending o is used
to express the meanings, first person ("I" or "we"), singular, present tense, and also
other meanings.

This classification has only three classes. Is it really possible to fit all the world's
languages into three classes? From one way of looking at the problem, it is impossible
to fit any of the languages into any of the classes, because each language is impure.

14

That is to say, if you look hard enough, you will find inflection in mainly
agglutinative languages, inflection in isolating languages, agglutination in inflectional
languages and so on.

Morphological forms of regular verbs:

stem Walk merge try map

-s form Walks merges tries maps

-ing principle Walking merging trying mapping

Past form or –ed
participle

Walked merged tried mapped

These regular verbs and forms are significant in the morphology of English because of
their majority and being productive.

Survey of (Mostly) English Morphology Inflectional Morphology–Morphological
forms of irregular verbs

stem eat catch cut
-s form eats catches cuts
-ing principle eating catching cutting
Past form Ate caught cut
–ed participlee Aten caught cut

Survey of (Mostly) English Morphology Derivational Morphology Nominalization in English: –The
formation of new nouns, often from verbs or adjectives

Suffix Base Verb/Adjective Derived Noun

-action computerize (V) computerization

-ee appoint (V) appointee

-er kill (V) killer

15

-ness fuzzy (A) fuzziness

Morphological processes

In the example given above of unhappiness, we saw two kinds of affix, a prefix and a
suffix. Just to show that languages do really vary greatly, there are also infixes. For
instance the Bontoc language from the Philippines use an infix um to change
adjectives and nouns into verbs. So the word fikas, which means "strong" is
transformed into the verb "be strong" by the addition of the infix: f-um-ikas.

There are a number of morphological processes of which some are more important
than others for NLP. The account given here is selective and unusual in that it points
out the practical aspects of the processes selected.

Inflection

Inflection is the process of changing the form of a word so that it expresses
information such as number, person, case, gender, tense, mood and aspect, but the
syntactic category of the word remains unchanged. As an example, the plural form of
the noun in English is usually formed from the singular form by adding an s.

 car / cars
 table / tables
 dog / dogs

In each of these cases, the syntactic category of the word remains unchanged.

It doesn't take long to find examples where the simple rule given above doesn't fit. So
there are smaller groups of nouns that form plurals in different ways:

 wolf / wolves
 knife / knives
 switch / switches.

A little more thought and we can think of apparently completely irregular plural
forms, such as:

 foot / feet
 child / children.

16

English verbs are relatively simple (especially compared with languages like Finnish
which has over 12,000 verb inflections).

 mow - stem
 mows - third person singular, present tense
 mowed - past tense and past participle
 mowing - present continuous tense

NLP aspects

Languages like French or German have much more inflection than English and so it is
customary to include morphological analysers in systems that process these languages.
NLP systems for English often don't include any morphological process, especially if
they are small-scale systems. Where English-based systems do include analysis of
inflection, the regular forms of words are analysed using one of the standard
techniques (for instance, Finite State Automata), while the exceptions (the irregular
words) are each listed individually. This means that regular forms have to be entered
in the dictionary only once, which can save a lot of space and data entry if the
dictionary holds a lot of syntactic and semantic information.

Derivation

Inflection doesn't change the syntactic category of a word. Derivation does change the
category. Linguists classify derivation in English according to whether or not it
induces a change of pronunciation. For instance, adding the suffix ity changes the
pronunciation of the root of active so the stress is on the second syllable: activity. The
addition of the suffix al to approve doesn't change the pronunciation of the root:
approval.

NLP aspects

The obvious use of derivational morphology in NLP systems is to reduce the number
of forms of words to be stored. So, if there is already an entry for the base form of the
verb sing, then it should be possible to add rules to map the nouns singer and singers
onto the same entry. The problem her is that the detection of the derivation of singer
from sing must allow also allow the morphological analyser to contribute the
information that is special to singer. This seems a little obscure, but an example will
make it clearer. The addition of er to the word indicates that it is a person who is
undertaking the action. This semantic information must be added to the stored
information from the dictionary entry for the root form sing so that the correct
meaning of the sentence can be found. This seems fine, but suppose the next two

17

words are: recorder and dragster. The use of the er morpheme can't be taken to
necessarily mean someone who undertakes the action represented by the root form.

Any linguistic processing is likely to have an effect of uncovering potential ambiguity,
particularly where humans wouldn't expect it. Derivational morphological analysers
can do this quite easily, because they are always attempting to reduce words to smaller
units. So the word really might be analysed as both really (ie the word itself) and the
as re + ally. This introduced ambiguity may be eliminated by later, syntactic
processing but nonetheless, it does mean that there has to be more processing (and so
a slower system).

Derivational morphology is particularly useful for Machine Translation(MT).
Successful MT has to process large quantities of text which can contain many
previously unseen words. Some words are neologisms (that is, newly-coined words).
If the analyser can reduce these words to their base form, it may be able to translate
that and, in effect, coin a new word in the target language by simply following rules.
To give a couple of examples: neologisms often have a proper name as their root. A
knowledge of how Thatcherite and Majorism were formed from proper names could
enable an MT system to translate them into an idiomatic equivalent in the target
language.

input: form
output: lemma + morphological features

Input Output
cat cat + N + sg
cats cat + N + pl
cities city + N + pl
merging merge + V + pres_part
Caught (catch + V + past) or (catch + V +

past_part)

18

LECTURE No.:4

Finite State Morphological Parsing:

Morphological parsing, in NLP, is the process of determining the morphemes
from which a given word is constructed. It must be able to distinguish between
orthographic rules and morphological rules. For example, the word 'foxes' can be
decomposed into 'fox' (the stem), and 'es' (a suffix indicating plurality) i.e.
breaking down words into components and building a structured representation.
English: cats ->cat +N +Pl
 caught -> catch +V +Past

Morphology is the study of the way words are built up from smaller meaning-
bearing units, morphemes. Two broad classes of morphemes: –The stems: the
“main” morpheme of the word, supplying the main meaning, while –The affixes
add “additional” meaning of various kinds.Affixes are further divided into
prefixes, suffixes, infixes, and circumfixes.
Suffix: eat-s
Prefix: un-buckle
Circumfix: ge-sag-t (said) sagen (to say) (in German)
Infix: hingi (borrow) humingi (the agent of an action))in Philippine language
Tagalog)

The generally accepted approach to morphological parsing is through the use of a
finite state transducer (FST), which inputs words and outputs their stem and
modifiers. The FST is initially created through algorithmic parsing of some word
source, such as a dictionary, complete with modifier markups.

Orthographic rules are general rules used when breaking a word into its stem and
modifiers. An example would be: singular English words ending with -y, when
pluralized, end with -ies. Contrast this to Morphological rules which contain corner
cases to these general rules. Both of these types of rules are used to construct
systems that can do morphological parsing.
Morphological rules are exceptions to the orthographic rules used when breaking a
word into its stem and modifiers. An example would be while one normally

19

https://en.wikipedia.org/wiki/Finite_state_transducer
https://en.wikipedia.org/wiki/Morphemes
https://en.wikipedia.org/wiki/Natural_language_processing

pluralizes a word in English by adding 's' as a suffix, the word 'fish' does not
change when pluralized. Contrast this to orthographic rules which contain general
rules. Both of these types of rules are used to construct systems that can do
morphological parsing. Applications of morphological processing are machine
translation, spell checker, information retrieval.

LECTURE No.:5

Finite-state transducer

A finite-state transducer (FST) is a finite-state machine with two memory tapes,
following the terminology for Turing machines: an input tape and an output tape. This
contrasts with an ordinary finite-state automaton, which has a single tape. An FST is a
type of finite-state automaton that maps between two sets of symbols. An FST is more
general than a finite-state automaton (FSA). An FSA defines a formal language by
defining a set of accepted strings while an FST defines relations between sets of
strings.

An FST will read a set of strings on the input tape and generates a set of relations on
the output tape. An FST can be thought of as a translator or relater between strings in
a set.

In morphological parsing, an example would be inputting a string of letters into the
FST, the FST would then output a string of morphemes.

Formally, a finite transducer T is a 6-tuple (Q, Σ, Γ, I, F, δ) such that:

 Q is a finite set, the set of states;
 Σ is a finite set, called the input alphabet;
 Γ is a finite set, called the output alphabet;
 I is a subset of Q, the set of initial states;
 F is a subset of Q, the set of final states; and
 δ (where ε is the empty string) is the transition relation.

We can view (Q, δ) as a labeled directed graph, known as the transition graph of T:
the set of vertices is Q, and δ means that there is a labeled edge going from vertex q to
vertex r. We also say that a is the input label and b the output label of that edge.

Operations on finite-state transducers

The following operations defined on finite automata also apply to finite transducers:

20

https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Morphemes
https://en.wikipedia.org/wiki/Finite-state_automaton
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Finite-state_machine

 Union . Given transducers T and S, there exists a transducer T U S such that x[T U S]y if and

only if x[T]y or x[S]y .
 Concatenation . Given transducers T and S, there exists a transducer T . S such that

x[T . S]y if and only if there exist x1,x2,y1,y2 with x=x1x2 and y=y1y2, x1[T]y1, x2[S]y2

 Kleene closure . Given a transducer T, there exists a transducer T* with the
following properties:

 ᵋ[T*]ᵋ
 w[T*]y and x[T]z then wx[T*]yz

and x[T*]y does not hold unless mandated by (k1) or (k2).
 Composition . Given a transducer T on alphabets Σ and Γ and a transducer S on

alphabets Γ and Δ, there exists a transducer T . S on Σ and Δ such that x[T . S]z
if and only if there exists a string y € Γ* such that x[T]y and y[S]z . This
operation extends to the weighted case.

This definition uses the same notation used in mathematics for relation
composition. However, the conventional reading for relation composition is the
other way around: given two relations T and S, (x,z) € T . S when there exist
some y such that
(x,y) € S and (y,z) € T
Projection to an automaton. There are two projection functions: π1 preserves
the input tape, and π2 preserves the output tape. The first projection, π1 is
defined as follows:
Given a transducer T, there exists a finite automaton π1T such that π1T accepts
x if and only if there exists a string y for which x[T]y
The second projection, π2 is defined similarly.

 Determinization . Given a transducer T, we want to build an equivalent
transducer that has a unique initial state and such that no two transitions leaving
any state share the same input label. The powerset construction can be extended
to transducers, or even weighted transducers, but sometimes fails to halt;
indeed, some non-deterministic transducers do not admit equivalent
deterministic transducers. Characterizations of determinizable transducers have
been proposed along with efficient algorithms to test them: they rely on the
semiring used in the weighted case as well as a general property on the structure
of the transducer (the twins property).

 Weight pushing for the weighted case.
 Minimization for the weighted case.
 Removal of epsilon-transitions.

21

https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://en.wikipedia.org/w/index.php?title=Twins_property&action=edit&redlink=1
https://en.wikipedia.org/wiki/Semiring
https://en.wikipedia.org/wiki/Characterization_(mathematics)
https://en.wikipedia.org/wiki/Powerset_construction
https://en.wikipedia.org/wiki/Determinization
https://en.wikipedia.org/wiki/Projection_(mathematics)
https://en.wikipedia.org/wiki/Composition_of_relations
https://en.wikipedia.org/wiki/Composition_of_relations
https://en.wikipedia.org/wiki/Composition_of_relations
https://en.wikipedia.org/wiki/Finite-state_transducer#math_k2
https://en.wikipedia.org/wiki/Finite-state_transducer#math_k1
https://en.wikipedia.org/wiki/Kleene_closure
https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/Union_(set_theory)

LECTURE No.:6

Porter Stemmer:

The Porter stemming algorithm is a process for removing suffixes from words in
English. Removing suffixes automatically is an operation which is especially useful in
the field of information retrieval. In a typical IR environment a document is
represented by a vector of words, or terms. Terms with a common stem will usually
have similar meanings for example:

CONNECT

CONNECTED

CONNECTING

CONNECTION

CONNECTIONS

Frequently, the performance of an IR system will be improved if term groups such as
this are conflated into a single term. This may be done by removal of the various
suffixes – ED, -ING, -ION, -IONS to leave the single term CONNECT. The suffix
stripping process will reduce the total number of terms in the IR system, and hence
reduce the size and complexity of the data in the system, which is always
advantageous.

Porter’s stemmer advantage is its simplicity and speed. Porter algorithm was made in
the assumption that we don’t have a stem dictionary and that the purpose of the task is
to improve IR performance. The program is given an explicit list of suffixes, and with
each suffix, the criterion under which it may be removed from a word to leave a valid
stem.

ALGORITHM:

22

A consonant in a word is a letter other than A,E,I,O or U and other than Y preceded
by a consonant. So in TOY the consonants are T and Y and in SYZYGY they are S, Z
and G. If a letter is not a consonant it is a vowel.

A consonant will be denoted by c, a vowel by v. A list ccc…… of length greater than
0 will be denoted by C and a list vvv…. of length greater than 0 will be denoted by V.
Any word, or part of a word, therefore has one of the four forms:

CVCV … C

CVCV … V

VCVC … C

VCVC … V

These may all be represented by the single form:

[C]VCVC … [V]

Where the square brackets denote arbitrary presence of their contents.

Using (VC)m to denote VC repeated m times, this may again be written as:

[C](VC){m}[V]

M will be called the measure of any word or word part when represented in this form.
The case m=0 covers the null word.

23

LECTURE No.:7

Language Modelling:

A statistical language model is a probability distribution over sequences of words.
Given such a sequence, say of length m, it assigns a probability P(w1,w2,…….,wm)
to the whole sequence.

The language model provides context to distinguish between words and phrases that
sound similar. For example, in American English, the phrases "recognize speech" and
"wreck a nice beach" sound similar, but mean different things.

Data sparsity is a major problem in building language models. Most possible word
sequences are not observed in training. One solution is to make the assumption that
the probability of a word only depends on the previous n words. This is known as an
n-gram model or unigram model when n = 1. The unigram model is also known as the
bag of words model.

Estimating the relative likelihood of different phrases is useful in many natural
language processing applications, especially those that generate text as an output.
Language modeling is used in speech recognition, machine translation, part-of-speech
tagging, parsing, Optical Character Recognition, handwriting recognition, information
retrieval and other applications.

In speech recognition, sounds are matched with word sequences. Ambiguities are
easier to resolve when evidence from the language model is integrated with a
pronunciation model and an acoustic model.

Language models are used in information retrieval in the query likelihood model.
There a separate language model is associated with each document in a collection.
Documents are ranked based on the probability of the query Q in the document's
language model P(Q|Md). Commonly, the unigram language model is used for this
purpose.

24

https://en.wikipedia.org/wiki/Unigram
https://en.wikipedia.org/wiki/Document
https://en.wikipedia.org/wiki/Query_likelihood_model
https://en.wikipedia.org/wiki/Acoustic_model
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Optical_Character_Recognition
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Relative_likelihood
https://en.wikipedia.org/wiki/Bag_of_words_model
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/American_English
https://en.wikipedia.org/wiki/Probability_distribution

Unigram

A unigram model can be treated as the combination of several one-state finite
automata. It splits the probabilities of different terms in a context, e.g. from

P(t1t2t3)= P(t1)P(t2|t1)P(t3|t1t2) to Puni(t1t2t3)= P(t1)P(t2)P(t3)

In this model, the probability of each word only depends on that word's own
probability in the document, so we only have one-state finite automata as units. The
automaton itself has a probability distribution over the entire vocabulary of the model,
summing to 1.

• Language models are useful for NLP applications such as
– Next word prediction
– Machine translation
– Spelling correction
– Authorship Identification
– Natural language generation

Chain rule:

In calculus, the chain rule is a formula for computing the derivative of the
composition of two or more functions. That is, if f and g are functions, then the chain
rule expresses the derivative of their composition f ∘ g (the function which maps x to
f(g(x))) in terms of the derivatives of f and g and the product of functions as follows:
(f ∘ g)’=(f ‘∘ g).g’

This may equivalently be expressed in terms of the variable. Let F = f ∘ g, or
equivalently, F(x) = f(g(x)) for all x. Then one can also write F’(x) = f’(g(x))g’(x)

25

https://en.wikipedia.org/wiki/Pointwise_product
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

If a variable z depends on the variable y, which itself depends on the variable x, so that
y and z are therefore dependent variables, then z, via the intermediate variable of y,
depends on x as well. The chain rule then states,

dz/dx=dz/dy.dy/dx

The two versions of the chain rule are related; if z=f(y) and y=g(x) , then

dz/dx=dz/dy.dy/dx=f’(y)g’(x)=f’(g(x))g’(x)

26

https://en.wikipedia.org/wiki/Dependent_variable

LECTURE No.:8

Smoothing:

Smoothing is the task of adjusting the maximum likelihood estimate of probabilities to
produce more accurate probabilities.The name comes from the fact that these
techniques tend to make distributions more uniform, by adjusting low probabilities
such as zero probabilities upward, and high probabilities downward. Smoothing not
only prevents zero probabilities, attempts to improves the accuracy of the model as a
whole.

If one n-gram is unseen in the sentence, probability of the whole sentence becomes
zero. To avoid this, some probability mass has to be reserved for the unseen words. So
for avoiding this, we use Smoothing techniques. This zero probability problem also
occurs in text categorization using Multinomial Naïve Bayes . Probability of a test
document given some class can be zero even if a single word in that document is
unseen

Add-one Smoothing:

27

28

29

30

31

32

33

LECTURE No.:9

34

Both interpolation (Jelinek-Mercer) and backoff (Katz) involve com-bining
information from higher- and lower-order models.The difference is in determining the
probability of n-grams with non-zerocounts, interpolated models use information from
lower-order mod-els while backoff models do not.In both backoff and interpolated
models, lower-order models areused in determining the probability ofn-grams with
zero counts.It turns out that it’s not hard to create a backoff version of aninterpolated
algorithm, and vice-versa.

35

Unigram ML model:
 pML(wi) =c(wi)/∑wic(wi)

Bigram interpolated model:pinterp(wi|wi−1) =λpML(wi|wi−1) + (1−λ)pML(wi)

36

LECTURE No.:10

n-gram:

In the fields of computational linguistics and probability, an n-gram is a contiguous
sequence of n items from a given sample of text or speech. The items can be
phonemes, syllables, letters, words or base pairs according to the application. The n-
grams typically are collected from a text or speech corpus. When the items are words,
n-grams may also be called shingles

Using Latin numerical prefixes, an n-gram of size 1 is referred to as a "unigram"; size
2 is a "bigram" (or, less commonly, a "digram"); size 3 is a "trigram". English cardinal
numbers are sometimes used, e.g., "four-gram", "five-gram", and so on. In
computational biology, a polymer or oligomer of a known size is called a k-mer
instead of an n-gram, with specific names using Greek numerical prefixes such as
"monomer", "dimer", "trimer", "tetramer", "pentamer", etc., or English cardinal
numbers, "one-mer", "two-mer", "three-mer", etc.

An n-gram model is a type of probabilistic language model for predicting the next
item in such a sequence in the form of a (n − 1)–order Markov model. n-gram models
are now widely used in probability, communication theory, computational linguistics
(for instance, statistical natural language processing), computational biology (for
instance, biological sequence analysis), and data compression. Two benefits of n-gram
models (and algorithms that use them) are simplicity and scalability – with larger n, a
model can store more context with a well-understood space–time tradeoff, enabling
small experiments to scale up efficiently.

n-gram models are widely used in statistical natural language processing. In speech
recognition, phonemes and sequences of phonemes are modeled using a n-gram
distribution. For parsing, words are modeled such that each n-gram is composed of n
words. For language identification, sequences of characters/graphemes (e.g., letters of
the alphabet) are modeled for different languages.[4] For sequences of characters, the
3-grams (sometimes referred to as "trigrams") that can be generated from "good
morning" are "goo", "ood", "od ", "d m", " mo", "mor" and so forth, counting the
space character as a gram (sometimes the beginning and end of a text are modeled
explicitly, adding "__g", "_go", "ng_", and "g__").

37

https://en.wikipedia.org/wiki/N-gram#cite_note-4
https://en.wikipedia.org/wiki/Letter_(alphabet)
https://en.wikipedia.org/wiki/Letter_(alphabet)
https://en.wikipedia.org/wiki/Grapheme
https://en.wikipedia.org/wiki/Character_(symbol)
https://en.wikipedia.org/wiki/Language_identification
https://en.wikipedia.org/wiki/Phonemes
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Sequence_analysis
https://en.wikipedia.org/wiki/Computational_biology
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/Communication_theory
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Greek_numerical_prefixes
https://en.wikipedia.org/wiki/K-mer
https://en.wikipedia.org/wiki/Oligomer
https://en.wikipedia.org/wiki/Polymer
https://en.wikipedia.org/wiki/Cardinal_number_(linguistics)
https://en.wikipedia.org/wiki/Cardinal_number_(linguistics)
https://en.wikipedia.org/wiki/Trigram
https://en.wikipedia.org/wiki/Bigram
https://en.wikipedia.org/wiki/Latin_numerical_prefixes
https://en.wikipedia.org/wiki/Speech_corpus
https://en.wikipedia.org/wiki/Text_corpus
https://en.wikipedia.org/wiki/Base_pairs
https://en.wikipedia.org/wiki/Word
https://en.wikipedia.org/wiki/Letter_(alphabet)
https://en.wikipedia.org/wiki/Syllable
https://en.wikipedia.org/wiki/Phoneme
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Computational_linguistics

Evaluation of Language model:

A statistical language model is a probability distribution over sequences of words.
Given such a sequence, say of length m, it assigns a probability to the whole sequence.

The language model provides context to distinguish between words and phrases that
sound similar. For example, in American English, the phrases "recognize speech" and
"wreck a nice beach" sound similar, but mean different things.

Data sparsity is a major problem in building language models. Most possible word
sequences are not observed in training. One solution is to make the assumption that
the probability of a word only depends on the previous n words. This is known as an
n-gram model or unigram model when n = 1. The unigram model is also known as the
bag of words model.

Estimating the relative likelihood of different phrases is useful in many natural
language processing applications, especially those that generate text as an output.
Language modeling is used in speech recognition, machine translation, part-of-speech
tagging, parsing, Optical Character Recognition, handwriting recognition, information
retrieval and other applications.

In speech recognition, sounds are matched with word sequences. Ambiguities are
easier to resolve when evidence from the language model is integrated with a
pronunciation model and an acoustic model.

Language models are used in information retrieval in the query likelihood model.
There a separate language model is associated with each document in a collection.
Documents are ranked based on the probability of the query Q in the document's
language model P(Q|Md). Commonly, the unigram language model is used for this
purpose.

Unigram

A unigram model can be treated as the combination of several one-state finite
automata. It splits the probabilities of different terms in a context, e.g. from

P(t1t2t3) = P(t1)P(t2|t1)P(t3|t1t2) to Puni(t1t2t3) = P(t1)P(t2)P(t3) .

In this model, the probability of each word only depends on that word's own
probability in the document, so we only have one-state finite automata as units. The
automaton itself has a probability distribution over the entire vocabulary of the model,
summing to 1. The following is an illustration of a unigram model of a document.

38

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Unigram
https://en.wikipedia.org/wiki/Document
https://en.wikipedia.org/wiki/Query_likelihood_model
https://en.wikipedia.org/wiki/Acoustic_model
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Optical_Character_Recognition
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Relative_likelihood
https://en.wikipedia.org/wiki/Bag_of_words_model
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/American_English
https://en.wikipedia.org/wiki/Probability_distribution

Terms Probability in doc
A 0.1
world 0.2
likes 0.05
We 0.05
share 0.3
... ...

 Ʃ term in doc P(term) = 1

The probability generated for a specific query is calculated as

 P(query) = π term in query P(term)

Different documents have unigram models, with different hit probabilities of words in it. The
probability distributions from different documents are used to generate hit probabilities for each
query. Documents can be ranked for a query according to the probabilities. Example of unigram
models of two documents:

Terms Probability in Doc1 Probability in Doc2
A 0.1 0.3
world 0.2 0.1
likes 0.05 0.03
We 0.05 0.02
share 0.3 0.2
...

In information retrieval contexts, unigram language models are often smoothed to
avoid instances where P(term) = 0. A common approach is to generate a maximum-
likelihood model for the entire collection and linearly interpolate the collection model
with a maximum-likelihood model for each document to smooth the model.

Decision tree model:

In computational complexity and communication complexity theories the decision
tree model is the model of computation or communication in which an algorithm or
communication process is considered to be basically a decision tree, i.e., a sequence of
branching operations based on comparisons of some quantities, the comparisons being
assigned the unit computational cost.

39

https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Communication
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Communication_complexity
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Linear_interpolation

The branching operations are called "tests" or "queries". In this setting the algorithm
in question may be viewed as a computation of a Boolean function f: { 0,1 }n ->
{ 0,1 } where the input is a series of queries and the output is the final decision. Every
query is dependent on previous queries.

Several variants of decision tree models have been introduced, depending on the
complexity of the operations allowed in the computation of a single comparison and
the way of branching.

Decision trees models are instrumental in establishing lower bounds for computational
complexity for certain classes of computational problems and algorithms: the lower
bound for worst-case computational complexity is proportional to the largest depth
among the decision trees for all possible inputs for a given computational problem.
The computation complexity of a problem or an algorithm expressed in terms of the
decision tree model is called decision tree complexity or query complexity.

Corpora:

In principle, any collection of more than
one text can be called a corpus.

For e.g. Shakespeare corpus. Corpus in modern linguistic theories has
more specific

 connotations; it has four main characteristics:

Sampling and representativeness

Finite size (not always)

Machine-readable form

A standard reference

"Corpus" in language engineering tends to de-emphasize 1, 2 and 4.
The very first modern corpus: Brown Corpus (1967)

Word token: each word occurring in a text/corpus
Corpora sizes are measured as total number of words (=tokens)

Word type: unique words

Q: Are 'sleep' and 'sleeps' different types or the same type?

A: Depends.

 Sometimes, types are meant as lemma types. Sometimes, inflected and derived

40

https://en.wikipedia.org/wiki/Worst-case_analysis
https://en.wikipedia.org/wiki/Analysis_of_algorithms
https://en.wikipedia.org/wiki/Analysis_of_algorithms
https://en.wikipedia.org/wiki/Lower_bound
https://en.wikipedia.org/wiki/Boolean_function

words count as different type

LECTURE No.:11

Hidden markov model:

41

HMM Based POS Tagger:

The task of tagging is to find the sequence of tags T= {t1,t2,….,tn} i.e. optimal for a
word sequence W= {w1,w2,….,wn}. Probabilistically, this can be framed as the
problem of finding the most probable tag sequence for a word sequence i.e. argmaxT
P(T|W). Apply Bayes’ law i.e. P(T|W) = P(T) * P(W|T) / P(W). The probability of the
word sequence P(W) will be the same regardless of the tag sequence chosen, i.e. to
search for argmaxT P(T) * P(W|T). Probability of the tag P(T) is calculated as P(T) =
P(t1,t2,….,tn) = P(t1) * P(t2|t1) * P(t3|t2) * ….* P(tn|tn-1) using Uni-gram model.
Probability of P(W|T) is calculated as :

P(W|T) = P(w1|t1) * P(w2|t2) * P(w3|t3) * …* P(wn|tn) using Uni-gram model.

In the DataBase Table Three Columns are present.
 1. Current Word
 2. Current Tag
 3. Previous Tag

Calculates the occurance of that word in the total train files.Calculate the current word
tag values in the total train files. Here each word may have more than one tag,
therefore in this case, selecting those tag which have highest frequency for that
specified word.If more than one tag have the same frequency value, then assigning
one tag for the specified word based on some hand written rules
Now calculate probability of each tag with it’s previous tag and multiply them until
reach the end part of the corpus, which are stored in the DataBase table with
percentage from which we get P(T).
Calculate each word with it’s own tag and multiply them from which we get P(W|
T).Now multiply P(T) by P(W|T) and get the highest probability tag value.Finally,
Tag the word in the test file(i.e. highest percentage value for the “word tag” which is
learned and calculated by the train files).
Estimates three parameters directly from the tagged corpus.

42

IIITH Tagset for Indian Languages:

All the tags used in this tagset are broadly classified into three Groups.

Group 1:
 All tags in this group are similar to the Penn tagset. For e.g.
 NN — Noun , NNP — Proper Nouns , PRP — Pronoun , VAUX — Verb
Auxiliary , JJ — Adjective , RB — Adverb , RP — Particle , CC —
Conjunction , UH — Interjection , SYM — Special Symbol.

Group 2:
 This group includes those tags that are a modification of some tags in the Penn
tagset. For e.g.
 PREP — Postposition , QF — Quantifiers , QFNUM — Quantifiers Number ,
VFM — Verb Finite Main , VJJ — Verb Non-Finite Adjectival , VRB — Verb
Non-finite Adverbial , VNN — Verb Non-Finite Nominal , QW — Question
Words.

Group 3:
This designed to cater some phenomena that are specific to Indian languages.

For e.g.
NLOC — Noun Location , INTF — Intensifier , NEG — Negative , NNC —

Compound Nouns , NNPC — Compound Proper Nouns , NVB — Noun in
Kriyamula , JVB — Adjective in Kriyamula , RBVB — Adverb in Kriyamula ,
INF — Verb infinitival , QT — Quotative.

LECTURE No.:12

POS Tagging:
43

POS tagging is process of assigning a part-of-speech to each word in a corpus.
Stochastic Tagging algorithm is implemented by the following models:

1. Hidden Markov Model (HMM)
2. Maximum Entropy Model (MEMM)
3. Conditional Random Fields (CRF)

The input to a tagging algorithm is a string of words and a specified tagset. The output
is single best tag for each word.

Useful for many NLP works where a large volume of corpus is required to train this
model which depicts the corpus-based POS tagging. Here the input is Untagged New
Corpus and the output is Tagged New Corpus.

POS Tagged corpus

Learn

Untagged New Corpus --------POS Tagger---------------Tagged new corpus

Part-of-speech tagging

In corpus linguistics, part-of-speech tagging (POS tagging or PoS tagging or POST),
also called grammatical tagging or word-category disambiguation, is the process of
marking up a word in a text (corpus) as corresponding to a particular part of speech,
based on both its definition and its context—i.e., its relationship with adjacent and
related words in a phrase, sentence, or paragraph. A simplified form of this is
commonly taught to school-age children, in the identification of words as nouns,

44

verbs, adjectives, adverbs, etc. PoS tagging is used in natural language processing
(NLP) and natural language understanding (NLU).
Example:
Word: Paper, Tag: Noun
Word: Go, Tag: Verb
Word: Famous, Tag: Adjective
The part of speech explains how a word is used in a sentence. There are eight main
parts of speech - nouns, pronouns, adjectives, verbs, adverbs, prepositions,
conjunctions and interjections.

 Noun (N)- Daniel, London, table, dog, teacher, pen, city, happiness, hope
 Verb (V)- go, speak, run, eat, play, live, walk, have, like, are, is
 Adjective(ADJ)- big, happy, green, young, fun, crazy, three
 Adverb(ADV)- slowly, quietly, very, always, never, too, well, tomorrow
 Preposition (P)- at, on, in, from, with, near, between, about, under
 Conjunction (CON)- and, or, but, because, so, yet, unless, since, if
 Pronoun(PRO)- I, you, we, they, he, she, it, me, us, them, him, her, this
 Interjection (INT)- Ouch! Wow! Great! Help! Oh! Hey! Hi!

Most POS are divided into sub-classes. POS Tagging simply means labeling words
with their appropriate Part-Of-Speech. Once performed by hand, POS tagging is now
done in the context of computational linguistics, using algorithms which associate
discrete terms, as well as hidden parts of speech, in accordance with a set of
descriptive tags. POS-tagging algorithms fall into two distinctive groups: rule-based
and stochastic. E. Brill's tagger, one of the first and most widely used English POS-
taggers, employs rule-based algorithms.

45

Principle of POST: Part-of-speech tagging is harder than just having a list of words
and their parts of speech, because some words can represent more than one part of
speech at different times, and because some parts of speech are complex or unspoken.
This is not rare—in natural languages (as opposed to many artificial languages), a
large percentage of word-forms are ambiguous.
A part-of-speech (PoS) tagger is a software tool that labels words as one of several
categories to identify the word's function in a given language. In the English language,
words fall into one of eight or nine parts of speech. Part-of-speech categories include
noun, verb, article, adjective, preposition, pronoun, adverb, conjunction and
interjection. PoS taggers use algorithms to label terms in text bodies. These taggers
make more complex categories than those defined as basic PoS, with tags such as
“noun-plural” or even more complex labels. Part-of-speech categorization is taught to
school-age children in English grammar, where children perform basic PoS tagging as
part of their education.
The process of assigning one of the parts of speech to the given word is called Parts
Of Speech tagging. It is commonly referred to as POS tagging. Parts of speech include
nouns, verbs, adverbs, adjectives, pronouns, conjunction and their sub-categories.
Parts Of Speech tagger: Parts Of Speech tagger or POS tagger is a program that does
this job. Taggers use several kinds of information: dictionaries, lexicons, rules, and so
on. Dictionaries have category or categories of a particular word. That is a word may
belong to more than one category. For example, run is both noun and verb. Taggers
use probabilistic information to solve this ambiguity.
There are mainly two type of taggers: rule-based and stochastic. Rule-based taggers
use hand-written rules to distinguish the tag ambiguity. Stochastic taggers are either
HMM based, choosing the tag sequence which maximizes the product of word
likelihood and tag sequence probability, or cue-based, using decision trees or
maximum entropy models to combine probabilistic features.
Ideally a typical tagger should be robust, efficient, accurate, tunable and reusable. In
reality taggers either definitely identify the tag for the given word or make the best
guess based on the available information. As the natural language is complex it is
sometimes difficult for the taggers to make accurate decisions about tags. So,
occasional errors in tagging are not taken as a major roadblock to research.

LECTURE No.:13

46

Architecture of POS tagger:

1. Tokenization: The given text is divided into tokens so that they can be used for
further analysis. The tokens may be words, punctuation marks, and utterance
boundaries.

2. Ambiguity look-up: This is to use lexicon and a guessor for unknown words.
While lexicon provides list of word forms and their likely parts of speech,
guessors analyze unknown tokens. Compiler or interpreter, lexicon and guessor
make what is known as lexical analyzer.

3. Ambiguity Resolution: This is also called disambiguation. Disambiguation is
based on information about word such as the probability of the word. For
example, power is more likely used as noun than as verb. Disambiguation is
also based on contextual information or word/tag sequences. For example, the
model might prefer noun analyses over verb analyses if the preceding word is a
preposition or article. Disambiguation is the most difficult problem in tagging.

PoS taggers categorize terms in PoS types by their relational position in a phrase,
relationship with nearby terms and by the word’s definition. PoS taggers fall into
those that use stochastic methods, those based on probability and those which are rule-
based. One of the first PoS taggers developed was the E. Brill tagger, a rule-based
tagging tool. E. Brill is still commonly used today. Other tools that perform PoS
tagging include Stanford Log-linear Part-Of-Speech Tagger, Tree Tagger, and
Microsoft’s POS Tagger. Part-of-speech tagging is also referred to as word category
disambiguation or grammatical tagging.

Different POS Tagging Techniques: There are different techniques for POS
Tagging:

1. Lexical Based Methods — Assigns the POS tag the most frequently occurring
with a word in the training corpus.

2. Rule-Based Methods — Assigns POS tags based on rules. For example, we can
have a rule that says, words ending with “ed” or “ing” must be assigned to a
verb. Rule-Based Techniques can be used along with Lexical Based approaches
to allow POS Tagging of words that are not present in the training corpus but
are there in the testing data.

3. Probabilistic Methods — This method assigns the POS tags based on the
probability of a particular tag sequence occurring. Conditional Random Fields
(CRFs) and Hidden Markov Models (HMMs) are probabilistic approaches to
assign a POS Tag.

47

4. Deep Learning Methods — Recurrent Neural Networks can also be used for
POS tagging.

Conditional Random Fields(CRF): A CRF is a Discriminative Probabilistic
Classifiers. The difference between discriminative and generative models is that
while discriminative models try to model conditional probability distribution, i.e.,
P(y|x), generative models try to model a joint probability distribution, i.e., P(x,y).
Logistic Regression, SVM, CRF are Discriminative Classifiers. Naive Bayes, HMMs
are Generative Classifiers. CRF’s can also be used for sequence labelling tasks like
Named Entity Recognisers and POS Taggers.
In CRFs, the input is a set of features (real numbers) derived from the input sequence
using feature functions, the weights associated with the features (that are learned) and
the previous label and the task is to predict the current label. The weights of different
feature functions will be determined such that the likelihood of the labels in the
training data will be maximised.
In CRF, a set of feature functions are defined to extract features for each word in a
sentence. Some examples of feature functions are: is the first letter of the word
capitalised, what the suffix and prefix of the word, what is the previous word, is it the
first or the last word of the sentence, is it a number etc. These set of features are called
State Features. In CRF, we also pass the label of the previous word and the label of
the current word to learn the weights. CRF will try to determine the weights of
different feature functions that will maximise the likelihood of the labels in the
training data. The feature function dependent on the label of the previous word is
Transition Feature.

Tagset: Tagset is the set of tags from which the tagger is supposed to choose to attach
to the relevant word.
Every tagger will be given a standard tagset. The tagset may be coarse such as N
(Noun), V(Verb), ADJ(Adjective), ADV(Adverb), PREP(Preposition),
CONJ(Conjunction) or fine-grained such as NNOM(Noun-Nominative),
NSOC(Noun-Sociative), VFIN(Verb Finite),VNFIN(Verb Nonfinite) and so on. Most
of the taggers use only fine grained tagset.

Implementation:

 Correct grammatical tagging will reflect that "dogs" is here used as a verb, not
as the more common plural noun. Grammatical context is one way to determine
this; semantic analysis can also be used to infer that "sailor" and "hatch"
implicate "dogs" as 1) in the nautical context and 2) an action applied to the

48

object "hatch" (in this context, "dogs" is a nautical term meaning "fastens (a
watertight door) securely").

 Schools commonly teach that there are 9 parts of speech in English: noun, verb,
article, adjective, preposition, pronoun, adverb, conjunction, and interjection.
However, there are clearly many more categories and sub-categories. For
nouns, the plural, possessive, and singular forms can be distinguished. In many
languages words are also marked for their "case" (role as subject, object, etc.),
grammatical gender, and so on; while verbs are marked for tense, aspect, and
other things. Linguists distinguish parts of speech to various fine degrees,
reflecting a chosen "tagging system".

 In part-of-speech tagging by computer, it is typical to distinguish from 50 to
150 separate parts of speech for English. For example, NN for singular common
nouns, NNS for plural common nouns, NP for singular proper nouns (see the
POS tags used in the Brown Corpus). Work on stochastic methods for tagging
Koine Greek (DeRose 1990) has used over 1,000 parts of speech, and found
that about as many words were ambiguous there as in English. A
morphosyntactic descriptor in the case of morphologically rich languages is
commonly expressed using very short mnemonics, such as Ncmsan for
Category=Noun, Type = common, Gender = masculine, Number = singular,
Case = accusative, Animate = no.

49

LECTURE No.:14

Markov chain:

A Markov chain is a stochastic process with the Markov property. The term "Markov
chain" refers to the sequence of random variables such a process moves through, with
the Markov property defining serial dependence only between adjacent periods (as in
a "chain").[1] It can thus be used for describing systems that follow a chain of linked
events, where what happens next depends only on the current state of the system.

A Markov chain essentially consists of a set of transitions, which are determined by
some probability distribution, that satisfy the Markov property. Formally, a Markov
chain is a probabilistic automaton. The probability distribution of state transitions is
typically represented as the Markov chain’s transition matrix. If the Markov chain
has N possible states, the matrix will be an N x N matrix, such that entry (I, J) is the
probability of transitioning from state I to state J. Additionally, the transition matrix
must be a stochastic matrix, a matrix whose entries in each row must add up to
exactly 1. This makes complete sense, since each row represents its own probability
distribution.

General view of a sample Markov chain, with states as circles, and edges as transitions

Sample transition matrix with 3 possible states

50

https://en.wikipedia.org/wiki/Markov_chain#cite_note-:0-1
https://en.wikipedia.org/wiki/Serial_dependence
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Stochastic_process

Additionally, a Markov chain also has an initial state vector, represented as an N x 1 matrix (a
vector), that describes the probability distribution of starting at each of the N possible states.
Entry I of the vector describes the probability of the chain beginning at state I.

Hidden Markov models

Markov model assumes that each state can be uniquely associated with an observable
event. Once an observation is made, the state of the system is then trivially retrieved.
This model, however, is too restrictive to be of practical use for most realistic
problems–to make the model more flexible, we will assume that the outcomes or
observations of the model are a probabilistic function of each state. Each state can
produce a number of outputs according to a unique probability distribution, and each
distinct output can potentially be generated at any state. These are known a Hidden
Markov Models(HMM), because the state sequence is not directly observable, it can
only be approximated from the sequence of observations produced by the system

Set of states: { s1,s2,…….,sn}
Process moves from one state to another generating a sequence of states : {si1,si2,
…..,sik,……}
Markov chain property: probability of each subsequent state depends only on what
was the previous state:

 P(Sik|Si1,Si2,……Sik-1)=P(Sik|Sik-1)

States are not visible, but each state randomly generates one of M observations (or
visible states) {v1,v2,……,vM}
To define hidden Markov model, the following probabilities have to be specified:
matrix of transition probabilities A=(aij), aij= P(si| sj) , matrix of observation
probabilities B=(bi (vm)), bi(vm)= P(vm| si) and a vector of initial probabilities
π=(πi), πi = P(si) .
Model is represented by M=(A, B, π).€P(sik|si1,si2,...,sik−1)=P(sik|sik−1)

Example of Hidden Markov Model

Two states : ‘Low’ and ‘High’ atmospheric pressure.
Two observations : ‘Rain’ and ‘Dry’.

51

 Transition probabilities: P(‘Low’|‘Low’)=0.3 , P(‘High’|‘Low’)=0.7 ,
P(‘Low’|‘High’)=0.2, P(‘High’|‘High’)=0.8
Observation probabilities : P(‘Rain’|‘Low’)=0.6 , P(‘Dry’|‘Low’)=0.4 ,
P(‘Rain’|‘High’)=0.4 , P(‘Dry’|‘High’)=0.3 .
Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 .

Calculation of observation sequence probability

Suppose we want to calculate a probability of a sequence of observations in our
example, {‘Dry’,’Rain’}.
Consider all possible hidden state sequences:
P({‘Dry’,’Rain’}) = P({‘Dry’,’Rain’} , {‘Low’,’Low’}) + P({‘Dry’,’Rain’} ,
{‘Low’,’High’}) + P({‘Dry’,’Rain’} , {‘High’,’Low’}) + P({‘Dry’,’Rain’} ,
{‘High’,’High’}) where first term is : P({‘Dry’,’Rain’} , {‘Low’,’Low’})=
P({‘Dry’,’Rain’} | {‘Low’,’Low’}) P({‘Low’,’Low’})
= P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low)
= 0.4*0.4*0.6*0.4*0.3

Forward and Backward procedures

Probability Evaluation–Our goal is to compute the likelihood of an observation
sequence 𝑂=𝑜1,𝑜2,𝑜3...given a particular HMM model 𝜆= {𝐴,𝐵,𝜋}–Computation of
this probability involves enumerating every possible state sequence and evaluating the
corresponding probability𝑃(𝑂|𝜆)=Ʃ∀𝑄 𝑃(𝑂|𝑄,𝜆)𝑃(𝑄|𝜆)
For a particular state sequence 𝑄={𝑞1,𝑞2,𝑞3,...,} 𝑃(𝑂|𝑄,𝜆) is 𝑃(𝑂|𝑄,𝜆)=Πt=1 T 𝑃(𝑜𝑡|𝑞𝑡,𝜆)= Πt=1 T 𝑏𝑞𝑡(𝑜𝑡)
The probability of the state sequence 𝑄is 𝑃(𝑄|𝜆)=𝜋𝑞1𝑎𝑞1𝑞2𝑎𝑞2𝑞3...𝑎𝑞𝑇−1𝑞𝑇

52

LECTURE No.:15

Viterbi algorithm:

The Viterbi algorithm is a dynamic programming algorithm for finding the most
likely sequence of hidden states—called the Viterbi path—that results in a sequence
of observed events, especially in the context of Markov information sources and
hidden Markov models.

This algorithm generates a path X= (x1,x2,……,xT) which is a sequence of states

Xn € S = {s1,s2,…..,sk} that generate the observations Y = (y1,y2,….,yT)with

yn € O = {o1,o2,….,oN}(Nbeing the count of observations (observation space, see
below)).

Two 2-dimensional tables of size K x T are constructed:

Each element T1[i,j] of T1 stores the probability of the most likely path so far
X = (x᾿ 1 ,x᾿ 2 ,….,x᾿ j) with ᾿ xj = s᾿ i that generates Y = (y1,y2,….,yj).
Each element T2[i,j] of T2 stores xj-1᾿of the most likely path so far
X = (x᾿ 1 ,x᾿ 2 ,….,x᾿ j = s᾿ i) for j, 2≤ j ≤ T ˅
The table entries T1[i,j], T2[i,j] are filled by increasing order of K . j + i
T1[i,j] = max k (T1[k,j-1].Aki.Biyj) and T2[i,j] = argmax k (T1[k,j-1].Aki) with Aki and Biyj

are defined below:
Biyj does not need to appear in the latter expression, as it's non-negative and
independent of k and thus does not affect the argmax.
INPUT

 The observation space O = {o1,o2,….,oN}
 the state space S = {s1,s2,…..,sk}
 an array of initial probabilities Π = { Π1 , Π2 ,….., Πk } such that Π I stores the

probability that x1==si

 A sequence of observations Y = {y1,y2,….,yk} such that yt==i if the observation
at time t is oi

 transition matrix A of size K x K such that Aij stores the transition probability of
transiting from state sito state sj

 emission matrix B of size K x N such that Bij stores the probability of
observing oj from state si

OUTPUT: The most likely hidden state sequence X= (x1,x2,……,xT)

53

https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Transition_probability
https://en.wikipedia.org/wiki/Stochastic_matrix
https://en.wikipedia.org/wiki/State_space
https://en.wikipedia.org/w/index.php?title=Observation_space&action=edit&redlink=1
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Markov_information_source
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Dynamic_programming

Word recognition example:

Hidden states of HMM = characters
• Observations = typed images of characters segmented from the image . There is an
infinite number of observations
• Observation probabilities = character recognizer scores. •Transition probabilities will
be defined differently in two subsequent models.

If lexicon is given, we can construct separate HMM models for each lexicon word.

Here recognition of word image is equivalent to the problem of evaluating few HMM
models.
This is an application of Evaluation problem.
We can construct a single HMM for all words.
Hidden states = all characters in the alphabet.
Transition probabilities and initial probabilities are calculated from language model.

54

MODULE 1: REGULAR EXPRESSION AND AUTOMATA

LECTURE 1: INTREODUCTION TO FINITE AUTOMATA

 FINITE AUTOMATA:

A finite automaton can be represented as a 5-tuple structure:
M = (Q, Σ, δ, q0, F)

where,
Q is set of states of the system
Σ is input alphabet of the system
δ is transition function of the system defined as δ : Q × Σ → Q
q0 is the initial or start state of the system
F is the set of final states of the system

Finite Automata are of two types: Non-deterministic Finite Automata (NFA/NDFA) and
Deterministic Finite Automata (DFA).

1.1. NON-DETERMINISTIC FINITE AUTOMATA:

A FA is said to be non-deterministic if for a particular input is applied to a current state it is not sure
about the next state.

A non-deterministic finite automaton can be represented as a 5-tuple structure:
M = (Q, Σ, δ, q0, F)

where,
Q is set of states of the finite automata
Σ is input alphabet of the finite automata
δ is transition function of the finite automata defined as δ : Q × Σ → 2Q

q0 is the initial or start state of the finite automata
F is the set of final states of the finite automata

A non-deterministic finite automaton can be denoted by transition diagram or by transition table or
by transition function.
 Let us take an example of a non-deterministic finite automaton

55

q
0

q1

0
1

0

1

00

 q2

Figure 1.1: Transition Diagram of
NFA M1

We can represent the above NFA by a transition table as follows:

PS
NS

x=0 x=1
q0 {q0,q1} {q2}
q1 {q1} {q2}
*q2 {q0} -

* Final state

We can represent NFA M1 by 5-tuple structure as follows:

Q = {q0,q1,q2}
Σ = {0,1}
δ(q0,0)={q0,q1}, δ(q0,1)={q2}, δ(q1,0)={q1}, δ(q1,1)={q2}, δ(q2,0)={q0}, δ(q2,1)=Φ
q0 = q0
F={q2}

1.2. DETERMINISTIC FINITE AUTOMATA:

A FA is said to be non-deterministic if for a particular input is applied to a current state it is very
sure about the next state.

A deterministic finite automaton can be represented as a 5-tuple structure:
M = (Q, Σ, δ, q0, F)

where,
Q is set of states of the finite automata
Σ is input alphabet of the finite automata
δ is transition function of the finite automata defined as δ : Q × Σ → Q
q0 is the initial or start state of the finite automata
F is the set of final states of the finite automata

Let us take an example of a deterministic finite automaton

We can represent the above DFA by a transition table as follows:

56

q
0

q1

0
1

0

1

11

 q2

Figure 1.2: Transition Diagram of
DFA M2

PS
NS

x=0 x=1
q0 {q0} {q1}
q1 {q1} {q2}
*q2 {q0} -

* Final state

We can represent DFA M2 by 5-tuple structure as follows:

Q = {q0,q1,q2}
Σ = {0,1}
δ(q0,0)={q0}, δ(q0,1)={q1}, δ(q1,0)={q1}, δ(q1,1)={q2}, δ(q2,0)={q0}, δ(q2,1)=Φ
q0 = q0
F={q2}

LECTURE 2: CONTEXT FREE GRAMMAR

DEFINITION:

A context-free grammar (CFG) consisting of a finite set of grammar rules is a quadruple (N, T, P, S)
where

 N is a set of non-terminal symbols.
 T is a set of terminals where N ∩ T =NULL.
 P is a set of rules, P: N → (N U T)*, i.e., the left-hand side of the production rule

P does have any right context or left context.
 S is the start symbol.

EXAMPLE:
1. The grammar ({A}, {a, b, c}, P, A), P : A → aA, A →abc.
2. The grammar ({S, a, b}, {a, b}, P, S), P: S → aSa, S → bSb, S →ε
3. The grammar ({S, F}, {0, 1}, P, S), P: S → 00S|11F, F → 00F |ε

DERIVATION TREE:
A derivation tree or parse tree is an ordered rooted tree that graphically represents the semantic
information a string derived from a context-free grammar.

REPRESENTATION TECHNIQUE:
i. Root vertex: Must be labeled by the start symbol.

ii. Vertex: Labeled by a non-terminal symbol.
iii. Leaves: Labeled by a terminal symbol or ε.

EXAMPLE:
If S → x1x2 …… xn is a production rule in a CFG, then the parse tree / derivation tree will be as
follows:

57

http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Tree_(data_structure)

DERIVATION OR YIELD OF A PARSE TREE:
The derivation or the yield of a parse tree is the final string obtained by concatenating the labels of
the leaves of the tree from left to right, ignoring the Nulls. However, if all the leaves are Null,
derivation is Null.

Example
Let a CFG {N,T,P,S} be
N = {S}, T = {a, b}, Starting symbol = S, P = S → SS | aSb | ε
One derivation from the above CFG is “abaabb”
S → SS → aSbS →abS → abaSb → abaaSbb → abaabb

58

 ………..

FIG3.1: Derivation Tree for the production S → x1x2 …… xn

S

x1 x2

xn
2

 FIG 3. : Sentential Form and Partial Derivation Tree

A partial derivation tree is a sub-tree of a derivation tree/parse tree such that either all of its children
are in the sub-tree or none of them are in the sub-tree.

Example
If in any CFG the productions are:
S→AB, A → aaA | ε, B →Bb| ε the partial derivation tree can be the following:

If a partial derivation tree contains the root S, it is called a sentential form. The above sub-tree is
also in sentential form.

Leftmost and Rightmost Derivation of a String
Leftmost derivation - A leftmost derivation is obtained by applying production to the leftmost
variable in each step.

Rightmost derivation - A rightmost derivation is obtained by applying production to the rightmost
variable in each step.

59

S

S S

a S b a S b

ε a S b

ε

S

A B

Example
Let any set of production rules in a CFG be X → X+X | X*X |X| a
over an alphabet {a}.
The leftmost derivation for the string "a+a*a" may be:
X → X+X→ a+X→ a+ X*X →a+a*X→a+a*a
The stepwise derivation of the above string is shown as below

The right most derivation for the above string "a+a*a" may be:

X → X*X→ X*a → X+X*a →X+a*a→a+a*a

LEFT AND RIGHT RECURSIVE GRAMMAR:

In a context-free grammar G, if there is a production in the form X → Xa where X is a non-terminal
and ‘a’ is a string of terminals, it is called a left recursive production. The grammar having a left
recursive production is called a left recursive grammar.
And if in a context-free grammar G, if there is a production is in the form X → aX where X
is a non-terminal and ‘a’ is a string of terminals, it is called a right recursive production. The
grammar having a right recursive production is called a right recursive grammar.
IfacontextfreegrammarGhasmorethanonederivationtreeforsomestringw∈L(G), it is called an
ambiguous grammar. There exist multiple right-most or left-most derivations for some string
generated from that grammar.

PROBLEM

Check whether the grammar G with production rules:
X → X+X | X*X |X| a is ambiguous or not.
Solution
Let’s find out the derivation tree for the string "a+a*a". It has two leftmost derivations.

Derivation 1: X → X+X→ a +X→ a+ X*X →a+a*X→ a+a*a
PARSE TREE 1:

60

X

X + X

a
X * X

a a

Derivation2: X → X*X→X+X*X→ a+ X*X →a+a*X→a+a*a
PARSE TREE 2:

Since there are two parse trees for a single string "a+a*a", the grammar G is ambiguous.

LECTURE 3: WORD TOKENIZATION

Text Normalization

Before almost any natural language processing of a text, the text has to be normalized. At least three
tasks are commonly applied as part of any normalization process:

1. Segmenting/tokenizing words from running text

2. Normalizing word formats

3. Segmenting sentences in running text.

In the next sections we walk through each of these tasks.

Tokenization

Given a character sequence and a defined document unit, tokenization is the task of chopping it up
into pieces, called tokens , perhaps at the same time throwing away certain characters, such as
punctuation. Here is an example of tokenization:

Input: Friends, Romans, Countrymen, lend me your ears;

Output:
These tokens are often loosely referred to as terms or words, but it is sometimes important to make a
type/token distinction. A token is an instance of a sequence of characters in some particular
document that are grouped together as a useful semantic unit for processing. A type is the class of all
tokens containing the same character sequence. A term is a (perhaps normalized) type that is
included in the IR system's dictionary. The set of index terms could be entirely distinct from the

61

X

X * X

X + X
a

a a

tokens, for instance, they could be semantic identifiers in a taxonomy, but in practice in modern IR
systems they are strongly related to the tokens in the document. However, rather than being exactly
the tokens that appear in the document, they are usually derived from them by various normalization
processes . For example, if the document to be indexed is to sleep perchance to dream, then there are
5 tokens, but only 4 types (since there are 2 instances of to). However, if to is omitted from the
index then there will be only 3 terms: sleep, perchance, and dream.

The major question of the tokenization phase is what are the correct tokens to use? In this example,
it looks fairly trivial: you chop on whitespace and throw away punctuation characters. This is a
starting point, but even for English there are a number of tricky cases. For example, what do you do
about the various uses of the apostrophe for possession and contractions?

Mr. O'Neill thinks that the boys' stories about Chile's capital aren't amusing.
For O'Neill, which of the following is the desired tokenization?

 ?
And for aren't, is it:

 ?

A simple strategy is to just split on all non-alphanumeric characters, but while looks

okay, looks intuitively bad. For all of them, the choices determine which Boolean queries
will match. A query of neill AND capital will match in three cases but not the other two. In how
many cases would a query of o'neill AND capital match? If no preprocessing of a query is done, then
it would match in only one of the five cases. For either Boolean or free text queries, you always want
to do the exact same tokenization of document and query words, generally by processing queries
with the same tokenizer. This guarantees that a sequence of characters in a text will always match
the same sequence typed in a query.

These issues of tokenization are language-specific. It thus requires the language of the document to
be known. Language identification based on classifiers that use short character subsequences as
features is highly effective; most languages have distinctive signature patterns. For most languages
and particular domains within them there are unusual specific tokens that we wish to recognize as
terms, such as the programming languages C++ and C#, aircraft names like B-52, or a T.V. show
name such as M*A*S*H - which is sufficiently integrated into popular culture that you find usages
such as M*A*S*H-style hospitals. Computer technology has introduced new types of character
sequences that a tokenizer should probably tokenize as a single token, including email addresses
(jblack@mail.yahoo.com), web URLs (http://stuff.big.com/new/specials.html), numeric IP addresses
(142.32.48.231), package tracking numbers (1Z9999W99845399981), and more. One possible
solution is to omit from indexing tokens such as monetary amounts, numbers, and URLs, since their
presence greatly expands the size of the vocabulary. However, this comes at a large cost in

62

restricting what people can search for. For instance, people might want to search in a bug database
for the line number where an error occurs. Items such as the date of an email, which have a clear
semantic type, are often indexed separately as document metadata parametricsection.

In English, hyphenation is used for various purposes ranging from splitting up vowels in words (co-
education) to joining nouns as names (Hewlett-Packard) to a copyediting device to show word
grouping (the hold-him-back-and-drag-him-away maneuver). It is easy to feel that the first example
should be regarded as one token (and is indeed more commonly written as just coeducation), the last
should be separated into words, and that the middle case is unclear. Handling hyphens automatically
can thus be complex: it can either be done as a classification problem, or more commonly by some
heuristic rules, such as allowing short hyphenated prefixes on words, but not longer hyphenated
forms.

Conceptually, splitting on white space can also split what should be regarded as a single token. This
occurs most commonly with names (San Francisco, Los Angeles) but also with borrowed foreign
phrases (au fait) and compounds that are sometimes written as a single word and sometimes space
separated (such as white space vs. whitespace). Other cases with internal spaces that we might wish
to regard as a single token include phone numbers ((800) 234-2333) and dates (Mar 11, 1983).
Splitting tokens on spaces can cause bad retrieval results, for example, if a search for York
University mainly returns documents containing New York University. The problems of hyphens
and non-separating whitespace can even interact. Advertisements for air fares frequently contain
items like San Francisco-Los Angeles, where simply doing whitespace splitting would give
unfortunate results. In such cases, issues of tokenization interact with handling phrase queries,
particularly if we would like queries for all of lowercase, lower-case and lower case to return the
same results. The last two can be handled by splitting on hyphens and using a phrase index. Getting
the first case right would depend on knowing that it is sometimes written as two words and also
indexing it in this way. One effective strategy in practice, which is used by some Boolean retrieval
systems such as Westlaw and Lexis-Nexis (westlaw), is to encourage users to enter hyphens
wherever they may be possible, and whenever there is a hyphenated form, the system will generalize
the query to cover all three of the one word, hyphenated, and two word forms, so that a query for
over-eager will search for over-eager OR ``over eager'' OR overeager. However, this strategy
depends on user training, since if you query using either of the other two forms, you get no
generalization.

Each new language presents some new issues. For instance, French has a variant use of the
apostrophe for a reduced definite article the before a word beginning with a vowel (e.g., l'ensemble)
and has some uses of the hyphen with postposed clitic pronouns in imperatives and questions
(e.g., donne-moi give me). Getting the first case correct will affect the correct indexing of a fair
percentage of nouns and adjectives: you would want documents mentioning both l'ensemble and un
ensemble to be indexed under ensemble. Other languages make the problem harder in new ways.
German writes compound nouns without spaces (e.g., Computerlinguistik `computational
linguistics'; Lebensversicherungsgesellschaftsangestellter `life insurance company employee').
Retrieval systems for German greatly benefit from the use of a compound-splitter module, which is
usually implemented by seeing if a word can be subdivided into multiple words that appear in a
vocabulary. This phenomenon reaches its limit case with major East Asian Languages (e.g., Chinese,
Japanese, Korean, and Thai), where text is written without any spaces between words. One approach
here is to perform word segmentation as prior linguistic processing. Methods of word segmentation
vary from having a large vocabulary and taking the longest vocabulary match with some heuristics
for unknown words to the use of machine learning sequence models, such as hidden Markov models
or conditional random fields, trained over hand-segmented words. Since there are multiple possible

63

segmentations of character sequences, all such methods make mistakes sometimes, and so you are
never guaranteed a consistent unique tokenization. The other approach is to abandon word-based
indexing and to do all indexing via just short subsequences of characters (character -grams),
regardless of whether particular sequences cross word boundaries or not. Three reasons why this
approach is appealing are that an individual Chinese character is more like a syllable than a letter
and usually has some semantic content, that most words are short (the commonest length is 2
characters), and that, given the lack of standardization of word breaking in the writing system, it is
not always clear where word boundaries should be placed anyway. Even in English, some cases of
where to put word boundaries are just orthographic conventions - think of notwithstanding vs. not to
mention or into vs. on to - but people are educated to write the words with consistent use of spaces.

Word Segmentation in Chinese: the MaxMatch algorithm

Some languages, including written Chinese, Japanese, and Thai, do not use spaces to mark potential
word-boundaries, and so require alternative segmentation methods. In Chinese, for example, words
are composed of characters known as hanzi. Each character generally represents a single morpheme
and is pronounceable as a single syllable. Words are about 2.4 characters long on average. A simple
algorithm that does remarkably well for segmenting Chinese, and often used as a baseline
comparison for more advanced methods, is a version of greedy search called maximum matching
or sometimes MaxMatch. The algorithm requires a dictionary (wordlist) of the language.
The maximum matching algorithm starts by pointing at the beginning of a string. It chooses the
longest word in the dictionary that matches the input at the current position. The pointer is then
advanced to the end of that word in the string. If no word matches, the pointer is instead advanced
one character (creating a one- character word). The algorithm is then iteratively applied again
starting from the new pointer position. Fig shows a version of the algorithm.

Fig: The MaxMatch algorithm for word segmentation.

MaxMatch doesn’t work as well on English. To make the intuition clear, we’ll create an example by
removing the spaces from the beginning of Turing’s famous quote “We can only see a short
distance ahead”, producing “wecanonlyseeashortdis- tanceahead”. The MaxMatch results are shown
below.

Input: wecanonlyseeashortdistanceahead
64

Output: we canon l y see ash ort distance ahead
On English the algorithm incorrectly chose canon instead of stopping at can, which left the algorithm
confused and having to create single-character words like l and y.

Sentence Segmentation
Sentence segmentation is another important step in text processing. The most use- ful cues for
segmenting a text into sentences are punctuation, like periods, question marks, exclamation points.
Question marks and exclamation points are relatively unambiguous markers of sentence boundaries.
Periods, on the other hand, are more ambiguous. The period character “.” is ambiguous between a
sentence boundary marker and a marker of abbreviations like Mr. or Inc. The previous sentence that
you just read showed an even more complex case of this ambiguity, in which the final period of Inc.
marked both an abbreviation and the sentence boundary marker. For this reason, sentence
tokenization and word tokenization may be addressed jointly.
In general, sentence tokenization methods work by building a binary classifier (based on a sequence
of rules or on machine learning) that decides if a period is part of the word or is a sentence-boundary
marker. In making this decision, it helps to know if the period is attached to a commonly used
abbreviation; thus, an abbreviation dictionary is useful.
State-of-the-art methods for sentence tokenization are based on machine learning and are introduced
in later chapters.

65

Computational Lexical Semantics
1. Introduction to Lexical Semantics
The branch of semantics that deals with the word meaning is called lexical semantics. It is the study
of systematic, meaning related structures of words. Lexical semantics examines relationships among
word meanings. It is the study of how the lexicon is organized and how the lexical meanings of
lexical items are interrelated, and it’s principal goal is to build a model for the structure of the
lexicon by categorizing the types of relationships between words. Hyponymy , homonymy,
polysemy, synonymy, antonymy and metonymy are different types of lexical relations.
1.1 Homonymy:
The word Homonym has been derived from Greek term 'Homoios' which means identical and
'onoma' means name. So, Homonymy is a relation that holds between two lexemes that have the
same form but unrelated meanings. Homonyms are the words that have same phonetic form
(homophones) or orthographic form (homographs) but different unrelated meanings. The ambiguous
word whose different senses are far apart from each other and are not obviously related to each other
in any way is called as Homonymy. Words like tale and tail are homonyms. There is no conceptual
connection between its two meanings. For example the word ‘bear’, as a verb means ‘to carry’ and
as a noun it means ‘large animal’. An example of homonym which is both homophone and
homograph is the word ‘fluke’. Fluke is a fish as well as a flatworm. Other examples are bank, an
anchor, and so on.
Homophony - Homophony is the case where two words are pronounced identically but they have
different written forms. They sound alike but are written differently and often have different
meanings. For example: no-know, led-lead, would-wood.
Homograph - Homograph is a word which is spelled the same as another word and might be
pronounced the same or differently but which has a different. For example, Bear-bear ; Read-read.
When homonyms are spelled the same they are homographs but not all homonyms are homographs.
1.2 Hyponymy:
Hyponymy is a sense relation in semantics that serves to relate word concepts in a hierarchical
fashion. Hyponymy is a relation between two words in which the meaning of one of the words
includes the meaning of the other word. The lexical relation corresponding to the inclusion of one

66

class in another is hyponymy. Examples are : apple- fruit ; car- vehicles ; tool- furntiture ; cow -
animal. The more specific concept is known as the hyponym, and the more general concept is known
as the hypernym or superordinate. Apple is the hyponym and fruit is the superordinate / hypernymy.
Hyponymy is not restricted to objects, abstract concepts, or nouns. It can be identified in many other
areas of the lexicon.
E.g :
a. the verb cook has many hyponyms.
Word: Cook
Hyponyms: Roast, boil, fry, grill, bake.
b. the verb colour has many hyponyms

Word: colour
Hyponyms: blue, red, yellow, green, black and purple
Hyponymy involves the logical relationship of entailment. Example : ‘There is a horse’ entails that
‘There is an animal”. Hyponymy often functions In discourse as a means of lexical cohesion by
establishing referential equivalence to avoid repetition.

1.3 Polysemy:
A polyseme the phenomenon of having or being open to several or many meanings. When a word
has several very closely related senses or meanings. Polysemous word is a word having two or more
meanings. For example, foot in : - He hurt his foot ; - She stood at the foot of the stairs.
A well-known problem in semantics is how to decide whether we are dealing with a single
polysemous word or with two or more homonyms.
F.R.Palmer concluded saying that finally multiplicity of meaning is a very general characteristic of
language. Polysemy is used in semantics and lexical analysis to describe the word with multiple
meanings. Crystal and Dick Hebdige (1979) also defined polysemy. Lexical ambiguity depends upon
homonymy and polysemy.
The difference between homonyms and polysemes is subtle. Lexicographers define polysemes
within a single dictionary lemma, numbering different meanings, while homonyms are treated in
separate lemmata. Semantic shift can separate a polysemous word into separate homonyms. For
example, check as in "bank check" (or Cheque) , check in chess, and check meaning "verification"
are considered homonyms, while they originated as a single word derived from chess in the 14th
century.

1.4 Synonymy:
The semantic qualities or sense relations that exist between words (lexemes) with closely related
meanings (i.e., synonyms). Plural: synonymies. Contrast with antonymy. Synonymy may also refer
to the study of synonyms or to a list of synonyms. In the words of Dagmar Divjak, near-synonymy
(the relationship between different lexemes that express similar meanings) is "a fundamental
phenomenon that influences the structure of our lexical knowledge" (Structuring the Lexicon, 2010).
Words that are synonyms are said to be synonymous, and the state of being a synonym is called
synonymy. For example, the words begin, start, commence, and initiate are all synonyms of one
another. Words are typically synonymous in one particular sense: for example, long and extended in
the context long time or extended time are synonymous, but long cannot be used in the phrase
extended family. Synonyms with the exact same meaning share a seme or denotational sememe,
whereas those with inexactly similar meanings share a broader denotational or connotational
sememe and thus overlap within a semantic field. The former are sometimes called cognitive
synonyms and the latter, near-synonyms, plesionyms or poecilonyms.
Synonyms can be any part of speech, as long as both words belong to the same part of speech.
Examples:

67

noun: drink and beverage
verb : buy and purchase
adjective : big and large
adverb :quickly and speedily
preposition :on and upon
Synonyms are defined with respect to certain senses of words: pupil as the aperture in the iris of the
eye is not synonymous with student. Such like, he expired means the same as he died, yet my
passport has expired cannot be replaced by my passport has died.

1.5 Thesaurus:

 A thesaurus is a resource that groups words according to similarity. Thesauruses such as Roget and
WordNet are produced manually, whereas others, as in pioneering work by Sparck Jones (1986) and
more recent advances from Grefenstette (1994) and Lin (1998) are produced automatically from text
corpora. One might consider the manually-produced ones to be semantic, since lexicographers put
words in the same group according to their meaning, whereas the automatically produced ones are
distributional, since the computer classifies them according to distribution. However there are both
theoretical and practical arguments against viewing them as different sorts of objects.
The theoretical argument refers to Wittgenstein's “don't ask for the meaning, ask for the use” (1953).
When invoking meaning as an organizing principle, we are invoking a highly problematic concept
about which philosophers have argued since Plato, and they show no signs of stopping now. It is not
clear what it means to say words in the same thesaurus cluster have similar meanings: the logician’s
response that synonyms are words that can always be exchanged salve vertitate –without affecting
the truth value of the sentence– tells us nothing about word senses, or about circumstances where
one word is more apt or accurate then another, and probably implies there are no, or very few,
synonyms. Justeson and Katz (1991) demonstrate how one supposedly semantic relation, antonymy,
key to the mental lexicon for adjectives (Miller 1998), ceases to be mysterious exactly when it is re-
interpreted as a distributional relation. To understand or evaluate any thesaurus, we would do well to
consider the distributional as well as the semantic evidence.
The practical argument is simply that semantic and distributional thesauruses are both tools we
might use for the same purposes. If we wish to know what thesaurus is best for a given task, both
kinds are candidates and should be compared.
Some thesauruses, usually manual ones, have hierarchical structure involving a number of layers.
Others, usually the automatic ones, simply comprise groups of words (so may be viewed as one-
level hierarchies). Hierarchical clustering algorithms may be applied to automatic thesauruses to
make them multi-level (though this is hard to do well). The more-than-one-level hierarchies
produced by algorithm will generally be simple hierarchies. The hierarchies produced manually are
not --which leads us on to the vexed question of word senses.
1.5.1 WordNet:
WordNet® is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked
by means of conceptual-semantic and lexical relations. The resulting network of meaningfully
related words and concepts can be navigated with the browser. WordNet is also freely and publicly
available for download. WordNet's structure makes it a useful tool for computational linguistics and
natural language processing. WordNet superficially resembles a thesaurus, in that it groups words
together based on their meanings. However, there are some important distinctions. First, WordNet

68

interlinks not just word forms—strings of letters—but specific senses of words. As a result, words
that are found in close proximity to one another in the network are semantically disambiguated.
Second, WordNet labels the semantic relations among words, whereas the groupings of words in a
thesaurus does not follow any explicit pattern other than meaning similarity.

1.5.1.1 Structure:
The main relation among words in WordNet is synonymy, as between the words shut and close or
car and automobile. Synonyms--words that denote the same concept and are interchangeable in
many contexts--are grouped into unordered sets (synsets). Each of WordNet’s 117 000 synsets is
linked to other synsets by means of a small number of “conceptual relations.” Additionally, a synset
contains a brief definition (“gloss”) and, in most cases, one or more short sentences illustrating the
use of the synset members. Word forms with several distinct meanings are represented in as many
distinct synsets. Thus, each form-meaning pair in WordNet is unique.
1.5.1.2 Relations:
The most frequently encoded relation among synsets is the super-subordinate relation (also called
hyperonymy, hyponymy or ISA relation). It links more general synsets like {furniture,
piece_of_furniture} to increasingly specific ones like {bed} and {bunkbed}. Thus, WordNet states
that the category furniture includes bed, which in turn includes bunkbed; conversely, concepts like
bed and bunkbed make up the category furniture. All noun hierarchies ultimately go up the root node
{entity}. Hyponymy relation is transitive: if an armchair is a kind of chair, and if a chair is a kind of
furniture, then an armchair is a kind of furniture. WordNet distinguishes among Types (common
nouns) and Instances (specific persons, countries and geographic entities). Thus, armchair is a type
of chair, Barack Obama is an instance of a president. Instances are always leaf (terminal) nodes in
their hierarchies.

Meronymy, the part-whole relation holds between synsets like {chair} and {back, backrest}, {seat}
and {leg}. Parts are inherited from their superordinates: if a chair has legs, then an armchair has legs
as well. Parts are not inherited “upward” as they may be characteristic only of specific kinds of
things rather than the class as a whole: chairs and kinds of chairs have legs, but not all kinds of
furniture have legs.

Verb synsets are arranged into hierarchies as well; verbs towards the bottom of the trees (troponyms)
express increasingly specific manners characterizing an event, as in {communicate}-{talk}-
{whisper}. The specific manner expressed depends on the semantic field; volume (as in the example
above) is just one dimension along which verbs can be elaborated. Others are speed (move-jog-run)
or intensity of emotion (like-love-idolize). Verbs describing events that necessarily and
unidirectionally entail one another are linked: {buy}-{pay}, {succeed}-{try}, {show}-{see}, etc.

Adjectives are organized in terms of antonymy. Pairs of “direct” antonyms like wet-dry and young-
old reflect the strong semantic contract of their members. Each of these polar adjectives in turn is
linked to a number of “semantically similar” ones: dry is linked to parched, arid, dessicated and
bone-dry and wet to soggy, waterlogged, etc. Semantically similar adjectives are “indirect
antonyms” of the contral member of the opposite pole. Relational adjectives ("pertainyms") point to
the nouns they are derived from (criminal-crime).
There are only few adverbs in WordNet (hardly, mostly, really, etc.) as the majority of English
adverbs are straightforwardly derived from adjectives via morphological affixation (surprisingly,
strangely, etc.)
1.5.1.3 Cross-POS relations
The majority of the WordNet’s relations connect words from the same part of speech (POS). Thus,
WordNet really consists of four sub-nets, one each for nouns, verbs, adjectives and adverbs, with

69

few cross-POS pointers. Cross-POS relations include the “morphosemantic” links that hold among
semantically similar words sharing a stem with the same meaning: observe (verb), observant
(adjective) observation, observatory (nouns). In many of the noun-verb pairs the semantic role of the
noun with respect to the verb has been specified: {sleeper, sleeping_car} is the LOCATION for
{sleep} and {painter}is the AGENT of {paint}, while {painting, picture} is its RESULT.

More Information
Fellbaum, Christiane (2005). WordNet and wordnets. In: Brown, Keith et al. (eds.), Encyclopedia of
Language and Linguistics, Second Edition, Oxford: Elsevier, 665-670.

1.5.2 VerbNet:

VerbNet (VN) (Kipper-Schuler 2006) is the largest on-line verb lexicon currently available for
English. It is a hierarchical domain-independent, broad-coverage verb lexicon with mappings to
other lexical resources such as WordNet (Miller, 1990; Fellbaum, 1998), Xtag (XTAG Research
Group, 2001), and FrameNet (Baker et al., 1998). VerbNet is organized into verb classes extending
Levin (1993) classes through refinement and addition of subclasses to achieve syntactic and
semantic coherence among members of a class. Each verb class in VN is completely described by
thematic roles, selectional restrictions on the arguments, and frames consisting of a syntactic
description and semantic predicates with a temporal function, in a manner similar to the event
decomposition of Moens and Steedman (1988). Each VN class contains a set of syntactic
descriptions, or syntactic frames, depicting the possible surface realizations of the argument structure
for constructions such as transitive, intransitive, prepositional phrases, resultatives, and a large set of
diathesis alternations. Semantic restrictions (such as animate, human, organization) are used to
constrain the types of thematic roles allowed by the arguments, and further restrictions may be
imposed to indicate the syntactic nature of the constituent likely to be associated with the thematic
role. Syntactic frames may also be constrained in terms of which prepositions are allowed. Each
frame is associated with explicit semantic information, expressed as a conjunction of boolean
semantic predicates such as `motion,' `contact,' or `cause.' Each semantic predicate is associated with
an event variable E that allows predicates to specify when in the event the predicate is true (start(E)
for preparatory stage, during(E) for the culmination stage, and end(E) for the consequent stage).
Figure 1. shows a complete entry for a frame in VerbNet class Hit-18.1.

Figure 1: Simplified VerbNet entry for Hit-18.1 class

Class Hit-18.1

Roles and Restrictions: Agent[+int_control] Patient[+concrete] Instrument[+concrete]

Members: bang, bash, hit, kick, ...

Frames:

Name Example Syntax Semantics

Basic
Transitive

Paula hit
the ball

Agent V
Patient

cause(Agent, E)manner(during(E), directedmotion, Agent) !
contact(during(E), Agent, Patient) manner(end(E),forceful,
Agent) contact(end(E), Agent, Patient)

70

VerbNet has recently been integrated with 57 new classes from Korhonen and Briscoe's (2004)
(K&B) proposed extension to Levin's original classification (Kipper et al., 2006). This work has
involved associating detailed syntactic-semantic descriptions to the K&B classes, as well as
organizing them appropriately into the existing VN taxonomy. An additional set of 53 new classes
from Korhonen and Ryant (2005) (K&R) have also been incorporated into VN. The outcome is a
freely available resource which constitutes the most comprehensive and versatile Levin-style verb
classification for English. After the two extensions VN has now also increased our coverage of
PropBank tokens (Palmer et. al., 2005) from 78.45% to 90.86%, making feasible the creation of a
substantial training corpus annotated with VN thematic role labels and class membership
assignments, to be released in 2007. This will finally enable large-scale experimentation on the
utility of syntax-based classes for improving the performance of syntactic parsers and semantic role
labelers on new domains.

Integrating the two recent extensions to Levin classes into VerbNet was an important step in order to
address a major limitation of Levin's verb classification, namely the fact that verbs taking ADJP,
ADVP, predicative, control and sentential complements were not included or addressed in depth in
that work. This limitation excludes many verbs that are highly frequent in language. A summary of
how this integration affected VN and the result of the extended VN is shown in Table 1. The figures
show that our work enriched and expanded VN considerably. The number of first-level classes grew
significantly (from 191 to 274), there was also a significant increase in the number of verb senses
and lemmas, along with the set of semantic predicates and the syntactic restrictions on sentential
complements.

Table 1: Summary of the Lexicon's Extension

 Original VN Extended VN

First-level classes 191 274

Thematic roles 21 23

Semantic predicates 64 94

Syntactic restrictions (on sentential compl) 3 55

Number of verb senses 4656 5257

Number of lemmas 3445 3769

Table 2: Thematic roles and example classes that use them

Actor:
used for some communication classes (e.g., Chitchat-37.6, Marry-36.2, Meet-
36.2) when both arguments can be considered symmetrical (pseudo-agents).

Agent:
generally a human or an animate subject. Used mostly as a volitional agent, but
also used in VerbNet for internally controlled subjects such as forces and
machines.

Asset:
used for the Sum of Money Alternation, present in classes such as Build-26.1,
Get-13.5.1, and Obtain-13.5.2 with `currency' as a selectional restriction.

71

Attribute:

attribute of Patient/Theme refers to a quality of something that is being changed,
as in (The price)att of oil soared. At the moment, we have only one class using
this role Calibratable cos-45.6 to capture the Possessor Subject Possessor-
Attribute Factoring Alternation. The selectional restriction `scalar' (defined as a
quantity, such as mass, length, time, or temperature, which is completely
specified by a number on an appropriate scale) ensures the nature of Attribute.

Beneficiary:

the entity that benefits from some action. Used by such classes asBuild-26.1,
Get-13.5.1, Performance-26.7, Preparing-26.3, and Steal-10.5. Generally
introduced by the preposition `for', or double object variant in the benefactive
alternation.

Cause:
used mostly by classes involving Psychological Verbs and Verbs Involving the
Body.

Location,
Destination,

Source:
used for spatial locations.

Destination:

end point of the motion, or direction towards which the motion is directed. Used
with a `to' prepositional phrase by classes of change of location, such as Banish-
10.2, and Verbs of Sending and Carrying. Also used as location direct objects in
classes where the concept of destination is implicit (and location could not be
Source), such as Butter-9.9, or Image impression-25.1.

Source:
start point of the motion. Usually introduced by a source prepositional phrase
(mostly headed by `from' or `out of'). It is also used as a direct object in such
classes as Clear-10.3, Leave-51.2, and Wipe instr-10.4.2.

Location:
underspecified destination, source, or place, in general introduced by a locative
or path prepositional phrase.

Experiencer:
used for a participant that is aware or experiencing something. In VerbNet it is
used by classes involving Psychological Verbs, Verbs of Perception, Touch, and
Verbs Involving the Body.

Extent:
used only in the Calibratable-45.6 class, to specify the range or degree of change,
as in The price of oil soared (10%)ext. This role may be added to other classes.

Instrument:

used for objects (or forces) that come in contact with an object and cause some
change in them. Generally introduced by a `with' prepositional phrase. Also used
as a subject in the Instrument Subject Alternation and as a direct object in the
Poke-19 class for the Through/With Alternation and in the Hit-18.1 class for the
With/Against Alternation.

Material and
Product:

used in the Build and Grow classes to capture the key semantic components of
the arguments. Used by classes from Verbs of Creation and Transformation that
allow for the Material/Product Alternation.

Material: start point of transformation.

Product: end result of transformation.

Patient: used for participants that are undergoing a process or that have been affected in
some way. Verbs that explicitly (or implicitly) express changes of state have
Patient as their usual direct object. We also use Patient1 and Patient2 for some

72

classes of Verbs of Combining and Attaching and Verbs of Separating and
Disassembling, where there are two roles that undergo some change with no clear
distinction between them.

Predicate: used for classes with a predicative complement.

Recipient:

target of the transfer. Used by some classes of Verbs of Change of Possession,
Verbs of Communication, and Verbs Involving the Body. The selection
restrictions on this role always allow for animate and sometimes for organization
recipients.

Stimulus:
used by Verbs of Perception for events or objects that elicit some response from
an xperiencer. This role usually imposes no restrictions.

Theme:

used for participants in a location or undergoing a change of location. Also,
Theme1 and Theme2 are used for a few classes where there seems to be no
distinction between the arguments, such as Differ-23.4 and Exchange-13.6
classes.

Time: class-specific role, used in Begin-55.1 class to express time.

Topic:

topic of communication verbs to handle theme/topic of the conversation or
transfer of message. In some cases, like the verbs in the Say-37.7 class, it would
seem better to have `Message' instead of `Topic', but we decided not to
proliferate the number of roles.

Each verb argument is assigned one (usually unique) thematic role within the class. A few
exceptions to this uniqueness are classes which contain verbs with symmetrical arguments, such as
Chitchat-37.6 class, or the ContiguousLocation-47.8 class. These classes have indexed roles such as
Actor1 and Actor2, as explained above.

Figure 2: Selectional Restrictions associated with thematic role

73

2. Computational Lexical Semantics
2.1 Word Similarity: Thesaurus Methods:
Synonymy is a binary relation between words; two words are either synonyms or not. For most
computational purposes we use instead a looser metric of word similar WORD SIMILARITY or
semantic distance. Two words are more similar if they share more features of SEMANTIC
DISTANCE meaning, or are near-synonyms. Two words are less similar, or have greater semantic
distance, if they have fewer common meaning elements. Although we have described them as
relations between words, synonymy, similarity, and distance are actually relations between word
senses. For example of the two senses of bank, we might say that the financial sense is similar to one
of the senses of fund while the riparian sense is more similar to one of the senses of slope. In the
next few sections of this chapter, we will need to compute these relations over both words and
senses. The ability to compute word similarity is a useful part of many language understanding
applications. In information retrieval or question answering we might want to retrieve documents
whose words have similar meanings to the query words. In summarization, generation, and machine
translation, we need to know whether two words are similar to know if we can substitute one for the
other in particular contexts. In language modeling, we can use semantic similarity to cluster words
for class-based models. One interesting class of applications for word similarity is automatic grading
of student responses. For example algorithms for automatic essay grading use word similarity to
determine if an essay is similar in meaning to a correct answer. We can also use word-similarity as
part of an algorithm to take an exam, such as a multiple choice vocabulary test. Automatically taking
exams is useful in test designs in order to see how easy or hard a particular multiple-choice question
or exam is.
There are two classes of algorithms for measuring word similarity. This section focuses on
thesaurus-based algorithms, in which we measure the distance between two senses in an on-line
thesaurus like WordNet or MeSH. The next section focuses on distributional algorithms, in which
we estimate word similarity by finding words that have similar distributions in a corpus.
The Thesaurus-based algorithms use the structure of the thesaurus to define word similarity. In
principle we could measure similarity using any information available in a thesaurus (meronymy,
glosses, etc). In practice, however, thesaurus-based word similarity algorithms generally use only the
hypernym/hyponym(is-a or subsumption) hierarchy. In WordNet, verbs and nouns are in separate
hypernym hierarchies, so a thesaurus-based algorithm for WordNet can thus only compute noun-

74

noun similarity, or verb-verb similarity; we can’t compare nouns to verbs, or do anything with
adjectives or other parts of speech.
Resnik (1995) and Budanitsky and Hirst (2001) draw the important distinction between word
similarity and word relatedness. Two words are similar if they are near-synonyms, or roughly
substitutable in context. Word relatedness characterizes a larger set of potential relationships
between words; antonyms, for example, have high relatedness,
but low similarity. The words car and gasoline are very related, but not similar, while car and
bicycle are similar. Word similarity is thus a subcase of word relatedness. In general, the five
algorithms we describe in this section do not attempt to distinguish between similarity and semantic
relatedness; for convenience we will call them similarity measures, although some would be more
appropriately described as relatedness measures.

Section 20.6. Word Similarity: Thesaurus Methods 17
The oldest and simplest thesaurus-based algorithms are based on the intuition that the shorter the
path between two words or senses in the graph defined by the thesaurus hierarchy, the more similar
they are. Thus a word/sense is very similar to its parents or its siblings, and less similar to words that
are far away in the network. This notion can
be operationalized by measuring the number of edges between the two concept nodes in the
thesaurus graph. Fig. 20.6 shows an intuition; the concept dime is most similar to nickel and coin,
less similar to money, and even less similar to Richter scale. Formally, we specify path length as
follows:
pathlen(c1,c2) = the number of edges in the shortest path in the thesaurus graph between the
sense nodes c1 and c2

Path-based similarity can be can be defined just as the path length, often with a log transform
(Leacock and Chodorow, 1998), resulting in the following common definition of path length based
similarity:
simpath(c1,c2) = −log pathlen(c1,c2)
For most applications, we don’t have sense-tagged data, and thus we need our algorithm to give us
the similarity between words rather than between senses or concepts.
For any of the thesaurus-based algorithms, following Resnik (1995), we can approximate the correct
similarity (which would require sense disambiguation) by just using the pair of senses for the two
words that results in maximum sense similarity. Thus based on sense similarity we can define word
similarity as follows:
wordsim(w1,w2) = max sim(c1,c2)

c1∈senses(w1)
c2∈senses(w2)

The basic path-length algorithm makes the implicit assumption that each link in the network
represents a uniform distance. In practice, this assumption is not appropriate. Some links (for
example those that are very deep in the WordNet hierarchy) often seem to represent an intuitively
narrow distance, while other links (e.g., higher up in the WordNet hierarchy) represent an intuitively
wider distance. For example, in Fig. 20.6, the distance from nickel to money (5) seems intuitively
much shorter than the distance from nickel to an abstract word standard; the link between medium of
exchange and standard seems wider than that between, say, coin and coinage. It is possible to refine
path-based algorithms with normalizations based on depth in the hierarchy (Wu and Palmer, 1994),
but in general we’d like an approach which lets us represent the distance associated with each edge
independently.
A second class of thesaurus-based similarity algorithms attempts to offer just such a fine-grained
metric. These information content word similarity algorithms still rely on the structure of the
thesaurus, but also add probabilistic information derived from a corpus.

75

Using similar notions to those we introduced earlier to define soft selectional restrictions, let’s first
define P(c), following Resnik (1995), as the probability that a randomly selected word in a corpus is
an instance of concept c (i.e., a separate random variable, ranging over words, associated with each
concept). This implies that P(root) = 1, since any word is subsumed by the root concept. Intuitively,
the lower a concept in the hierarchy, the lower its probability. We train these probabilities by
counting in a corpus; each word in the corpus counts as an occurrence of each concept that contains
it. For example, in Fig. 20.6 above, an occurrence of the word dime would count toward the
frequency of coin, currency, standard, etc. More formally,
Resnik computes P(c) as follows:

where word(c) is the set of words subsumed by concept c, and N is the total number of words in the
corpus that are also present in the thesaurus. Fig. 20.7, from Lin (1998b), shows a fragment of the
WordNet concept hierarchy
augmented with the probabilities P(c).
We now need two additional definitions. First, following basic information theory,
we define the information content (IC) of a concept c as:

Second, we define the lowest common subsumer or LCS of two concepts:

LCS(c1,c2) = the lowest common subsumer, i.e., the lowest node in the hierarchy that subsumes (is a
hypernym of) both c1 and c2
There are now a number of ways to use the information content of a node in a word similarity
metric. The simplest way was first proposed by Resnik (1995). We think of the similarity between
two words as related to their common information; the more two words have in common, the more
similar they are. Resnik proposes to estimate the
common amount of information by the information content of the lowest common subsumer of
the two nodes. More formally, the Resnik similarity measure is:

Lin extended the Resnik intuition by pointing out that a similarity metric between objects A and B
needs to do more than measure the amount of information in common between A and B. For
example, he pointed out that in addition, the more differences between A and B, the less similar they
are.

Lin measures the commonality between A and B as the information content of the proposition that
states the commonality between A and B:
 IC(Common(A,B))
He measures the difference between A and B as

IC(description(A,B))−IC(common(A,B))
where description(A,B) describes A and B. Given a few additional assumptions about similarity, Lin
proves the following theorem:
Similarity Theorem: The similarity between A and B is measured by the ratio between the amount of
information needed to state the commonality of A and B and the information needed to fully
describe what A and B are:

76

Applying this idea to the thesaurus domain, Lin shows (in a slight modification of Resnik’s
assumption) that the information in common between two concepts is twice the information in the
lowest common subsumer LCS(c1,c2). Adding in the above definitions of the information content of
thesaurus concepts,the final Lin similarity
function is:

For example, using simlin, Lin (1998b) shows that the similarity between the concepts of hill and
coast from Fig. 20.7 is

A very similar formula, Jiang-Conrath distance (Jiang and Conrath, 1997) (al-though derived in a
completely different way from Lin, and expressed as a distance rather than similarity function) has
been shown to work as well or better than all the other thesaurus-based methods

distJC can be transformed into a similarity by taking the reciprocals.

Finally, we describe a dictionary-based method, an extension of the Lesk algorithm for word-sense
disambiguation described in Sec. 20.4.1. We call this a dictionary rather than a thesaurus method
because it makes use of glosses, which are in general a property of dictionaries rather than thesauri
(although WordNet does have glosses). Like the Lesk algorithm, the intuition of this Extended
Gloss Overlap, or Extended Lesk measure (Banerjee and Pedersen, 2003) is that two
concepts/senses in a thesaurus are similar if their glosses contain overlapping words. We’ll begin by
sketching an overlap function for two glosses. Consider these two concepts, with their glosses:

 drawing paper: paper that is specially prepared for use in drafting
 decal: the art of transferring designs from specially prepared paper to a wood or glass or

metal surface.
For each n-word phrase that occurs in both glosses, Extended Lesk adds in a score of n2 (the relation
is non-linear because of the Zipfian relationship between lengths of phrases and their corpus
frequencies; longer overlaps are rare so should be weighted more heavily). Here the overlapping
phrases are paper and specially prepared, for a total similarity score of 12+22 = 5.
Given such an overlap function, when comparing two concepts (synsets), Extended Lesk not only
looks for overlap between their glosses, but also between the glosses of the senses which are
hypernyms, hyponyms, meronyms, and other relations of the two concepts. For example if we just
considered hyponyms, and defined gloss(hypo(A)) as
the concatenation of all the glosses of all the hyponymsenses of A, the total relatedness between two
concepts A and B might be:
similarity(A,B) = overlap(gloss(A), gloss(B)) + overlap(gloss(hypo(A)),
gloss(hypo(B)))+ overlap(gloss(A), gloss(hypo(B))) + overlap(gloss(hypo(A)),gloss(B))
Let RELS be the set of possible WordNet relations whose glosses we compare; assuming a basic
overlap measure as sketched above, we can then define the Extended Lesk overlap measure as:

77

Evaluating Thesaurus-based Similarity:
Which of these similarity measures is best?
Word similarity measures have been evaluated in two ways. One intrinsic method is to compute the
correlation coefficient between word similarity scores from an algorithm and word similarity ratings
assigned by humans; such human ratings have been obtained for 65 word pairs by Rubenstein and
Goodenough (1965), and 30 word pairs by Miller and Charles (1991). Another more extrinsic
evaluation method is to embed the similarity measure in some end application like detection of
malapropisms (real-word spelling errors) (Budanitsky and Hirst, 2006; Hirst and Budanitsky,
2005), or other NLP applications like word-sense disambiguation (Patwardhan et al., 2003;
McCarthy et al., 2004) and evaluate its impact on end-to-end performance. All of these evaluations
suggest that all the above measures perform relatively well, and that of these, Jiang-Conrath
similarity and Extended Lesk similarity are two of the best approaches,
depending on the application.

Word Similarity: Distributional Methods
The previous section showed how to compute similarity between any two senses in a thesaurus, and
by extension between any two words in the thesaurus hierarchy. But of course we don’t have such
thesauri for every language. Even for languages where we do have such resources, thesaurus-based
methods have a number of limitations. The
obvious limitation is that thesauri often lack words, especially new or domain-specific words. In
addition, thesaurus-based methods only work if rich hyponymy knowledge is present in the
thesaurus. While we have this for nouns, hyponym information for verbs tends to be much sparser,
and doesn’t exist at all for adjectives and adverbs.
Finally, it is more difficult with thesaurus-based methods to compare words in different hierarchies,
such as nouns with verbs. For these reasons, methods which can automatically extract synonyms and
other word relations from corpora have been developed. In this section we introduce such
distributional methods, which can be applied directly to supply a word relatedness measure for
NLP tasks. Distributional methods can also be used for automatic thesaurus generation for
automatically populating or augmenting on-line thesauruses like WordNet with new synonyms and,
as we will see in Sec. 20.8, with other relations like hyponymy and meronymy.
The intuition of distributional methods is that the meaning of a word is related to the distribution of
words around it; in the famous dictum of Firth (1957), “You shall know a word by the company it
keeps!”. Consider the following example, modified by Lin (1998a) from (?):
 A bottle of tezguino is on the table.

78

Everybody likes tezguino.
Tezguino makes you drunk.
We make tezguino out of corn.

The context in which tezguino occurs suggest that it might be some kind of fermented alcoholic
drink made of corn.The distributional method tries to capture this intuition by representing features
of the context of tezguino that might overlap with features of similar words like beer, liquor, tequila,
and so on. For example such features might be occurs before drunk or occurs after bottle or is the
direct object of likes.

We can then represent a word w as a feature vector. For example, suppose we had one binary
feature fi representing each of the N words in the lexicon vi. The feature means w occurs in the
neighborhood of word vi, and hence takes the value 1 if w and vi occur in some context window, and
0 otherwise. We could represent the meaning of word w as the feature vector.

If w= tezguino, v1=bottle, v2=drunk, and v3=matrix, the co-occurrence vector for w from the corpus
above would be:

Given two words represented by such sparse feature vectors, we can apply a vector distance measure
and say that the words are similar if the two vectors are close by this measure. Fig. 20.9 shows an
intuition about vector similarity for the four words apricot, pineapple, digital, and information.
Based on the meanings of these four
words, we would like a metric that shows apricot and pineapple to be similar, digital and
information, to be similar, and the other four pairings to produce low similarity. For each word, Fig.
20.9 shows a short piece (8 dimensions) of the (binary) word co occurrence vectors, computed from
words that occur within a two-line context in the Brown corpus. The reader should convince
themselves that the vectors for apricot and pineapple are indeed more similar than those of, say,
apricot and information. For pedagogical purposes we’ve shown the context words that are
particularly good at discrimination. Note that since vocabularies are quite large (10,000-100,000
words) and most words don’t occur near each other in any corpus, real vectors are quite sparse.

let’s move on to examine the details of these measures. Specifying a distributional similarity
measure requires that we specify three parameters: (1) how the co-occurrence terms are defined (i.e.
what counts as a neighbor), (2) how these terms are weighted (binary? frequency? mutual

79

information?) and (3) what vector distance metric we use (cosine? Euclidean distance?). Let’s look
at each of these requirements in the next three subsections.

Defining a Word’s Co-occurrence Vectors

In our example feature vector, we used the feature w occurs in the neighborhood of word vj. That is,
for a vocabulary size N, each word w had N features, specifying whether vocabulary element vj
occurred in the neighborhood. Neighborhoods range from a small window of words (as few as one
or two words on either side) to very large windows of ±500 words. In a minimal window, for
example, we might have two features for each word vj in the vocabulary, word vk occurs
immediately before word w and word vk occurs immediately after word w. To keep these contexts
efficient, we often ignore very frequent words which tend not to be very discriminative, e.g.,
function words such as a, am, the, of, 1, 2, and so on. These removed words are called stopwords or
the stoplist. Even with the removal of the stopwords, when used on very large corpora these co
occurrence vectors tend to be very large. Instead of using every word in the neighborhood, Hindle
(1990) suggested choosing words that occur in some sort of grammatical relation or dependency
to the target words. Hindle suggested that nouns which bear the same grammatical relation to the
same verb might be similar. For example, the words tea, water, and beer are all frequent direct
objects of the verb drink. The words senate, congress, panel, and legislature all tend to be subjects
of the verbs consider, vote, and approve.
There have been a wide variety of realizations of Hindle’s idea since then. In general, in these
methods each sentence in a large corpus is parsed and a dependency parse is extracted. We saw in
Ch. 12 lists of grammatical relations produced by dependency parsers, including noun-verb relations
like subject, object, indirect object, and noun-noun relations like genitive, ncomp, and so on. A
sentence like the following would result in the set of dependencies shown here:
I discovered dried tangerines
discover (subject I) I (subj-of discover)
tangerine (obj-of discover) tangerine (adj-mod dried)
dried(adj-mod-of-tangerine)
Since each word can be in a varity of different dependency relations with other
words, we’ll need to augment the feature space. Each feature is now a pairing of a
word and a relation, so instead of a vector of N features, we have a vector of N ×R
features, where R is the number of possible relations. Fig. 20.10 shows a schematic
example of such a vector, taken from Lin (1998a), for the word cell. As the value of each attribute
we have shown the frequency of the feature co-occurring with cell; the next section will discuss the
use of what values and weights to use for each attribute. Since full parsing is very expensive, it is
common to use a chunker or shallow parser.
With the goal of extracting only a smaller set of relations like subject, direct object, and
prepositional object of a particular preposition (Curran,2003).

Measures of Association with Context
We have a definition for the features or dimensions of a word’s context vector, we are ready to
discuss the values that should be associated with those features. These values are typically thought
of as weights or measures of association between each target word w and a given feature f . In the
example in Fig. 20.9, our association
measure was a binary value for each feature, 1 if the relevant word had occurred in the context, 0 if
not. In the example in Fig. 20.10, we used a richer association measure, the relative frequency with
which the particular context feature had co-occurred with the target word.

80

Frequency, or probability, is certainly a better measure of association than just a binary value;
features that occur often with a target word are more likely to be good indicators of the word’s
meaning. Let’s define some terminology for implementing a probabilistic measure of association.
For a target word w, each element of its co occurrence
vector is a feature f , consisting of a relation r and a related word w′; we can say f = (r,w′). For
example, one of the features of the word cell in Fig. 20.10 is f = (r,w′) =(obj-of, attack).

The probability of a feature f given a target word w is P(f |w), for which the maximum likelihood
estimate is

Similarly the maximum likelihood estimate for the joint probability P(f ,w) is:

P(w) and P(f) are computed similarly.
Thus if we were to define simple probability as a measure of association it would look as follows:

It turns out, however, that simple probability doesn’t work as well as more sophisticated association
schemes for word similarity. We, therefore, need a weighting or measure of association which asks
how much more often than chance that the feature co-occurs with the target word. As Curran (2003)
points out, such a weighting is what we also want for finding good collocations, and so the measures
of association used for weighting context words for semantic similarity are exactly the same measure
used for finding a word’s collocations. One of the most important measures of association was first
proposed by Church and Hanks (1989, 1990) and is based on the notion of mutual information. The
mutual information between two random variables X and Y is

The pointwise mutual information (Fano, 1961)3 is a measure of how often two events x and y
occur, compared with what we would expect if they were independent

81

We can apply this intuition to co-occurrence vectors, by defining the pointwise mutual information
association between a target word w and a feature f as

The intuition of the PMI measure is that the numerator tells us how often we observed the two words
together (assuming we compute probability using MLE as above). The denominator tells us how
often we would expect the two words to co-occur assuming they each occurred independently, so
their probabilities could just be multiplied.

For both assocPMI and assocLin, we generally only use the feature f for a word w if the assoc value is
positive, since negative PMI values (implying things are co occurring less often than we would
expect by chance) tend to be unreliable unless the training corpora are enormous (Dagan et al., 1993;
Lin, 1998a). In addition, when we are using the assoc-weighted features to compare two target
words, we only use features that co-occur with both target words.
Fig 20.11 from Hindle (1990) shows the difference between raw frequency counts and PMI-style
association, for some direct objects of the verb drink.

One of the most successful association measures for word similarity attempts to capture the same
intuition as mutual information, but uses the t-test statistic to measure how much more frequent the
association is than chance. This measure was proposed for collocation-detection by Manning and
Schutze (1999, Chapter 5) and then applied
to word similarity by Curran and Moens (2002), Curran (2003). The t-test statistic computes the
difference between observed and expected means, normalized by the variance. The higher the value
of t, the more likely we can reject the null hypothesis that the observed and expected means are the
same.

When applied to association between words, the null hypothesis is that the two words are
independent, and hence P(f ,w) = P(f)P(w) correctly models the relationship between the two
words. We want to know how different the actual MLE probability P(f ,w) is from this null
hypothesis value, normalized by the variance. Note the similarity to the comparison with the product
model in the PMI measure above. The variance s2 can be approximated by the expected probability

82

P(f)P(w) (see Manning and Schutze (1999)). Ignoring N (since it is constant), the resulting t-test
association measure from Curran(2003) is thus

Defining Similarity between two vectors
To define similarity between two target words v and w, we need a measure for taking two such
vectors and giving a measure of vector similarity. Perhaps the simplest two measures of vector
distance are the Manhattan and Euclidean distance. Fig. 20.12 shows a graphical intuition for
Euclidean and Manhattan distance between two two dimensional vectors ~a and ~b. The Manhattan
distance, also known as Levenshtein distance or L1 norm, is

The Euclidean distance, also called the L2 norm is:

Although the Euclidean and Manhattan distance metrics provide a nice geometric intuition for vector
similarity and distance, these measures are rarely used for word similarity. If we assume a feature
vector is a binary vector, we can define such a similarity metric as follows, using the dot product
or inner product operator from

In most cases, though, as we saw in the previous section, the values of our vector are not binary.
Let’s assume for the rest of this section that the entries in the co-occurrence vector are the

83

association values between the target words and each of the features. In other words, let’s define the
vector for a target word ~w with N features f1.. fN as:

Now we can apply simdot-product to vectors with values defined as associations, to get the dot-product
similarity between weighted values. This raw dot-product, however, has a problem as a similarity
metric: it favors long vectors. The vector length is defined as:

A vector can be longer because it has more non-zero values, or because each dimension has a higher
value. Both of these facts will increase the dot product. It turns out that both of these can occur as a
by-product of word frequency. A vector from a very frequent word will have more non-zero co-
occurrence association values, and will probably have higher values in each (even using association
weights that control somewhat for frequency). The raw dot product thus favors frequent words.
We need to modify the dot product to normalize for the vector length. The simplest way is just to
divide the dot product by the lengths of each of the two vectors. This normalized dot product turns
out to be the same as the cosine of the angle between the two vectors. The cosine or normalized dot
product similarity metric is thus:

84

Evaluating Distributional word Similarity
Distributional similarity can evaluated in the same ways as thesaurus-based similarity; we can
compare intrinsically to human similarity scores, or we can evaluate it extrinsically as part of end-to-
end applications. Besides word sense disambiguation and malapropism detection, similarity
measures have been used as a part of systems for the grading of exams and essays(Landauer et al.,
1997), or taking TOEFL multiple choice exams (Landauer and Dumais, 1997; Turney et al., 2003).
Let S be the set of words that are defined as similar in the thesaurus, by being in the same synset, or
perhaps sharing the same hypernym, or being in the hypernym-hyponym relation. Let S′ be the
set of words that are classified as similar by some algorithm. We can define precision and recall as:

Curran (2003) evaluated a number of distributional algorithms using comparison with thesauri and
found that the Dice and Jaccard methods performed best as measures of vector similarity, while t-test
performed best as a measure of association. Thus the best metric weighted the associations with t-
test, and then used either Dice or Jaccard
to measure vector similarity.

Lexemes:
A lexicon generally has a highly structured form. It stores the meanings and uses of each word. It
encodes the relations between words and meanings.
A lexeme is the minimal unit represented in the lexicon. It pairs a stem (the
orthographic/phonological form chosen to represent words) with a symbolic form for meaning
representation (sense).
A dictionary is a kind of lexicon where meanings are expressed through definitions and examples.

Several kinds of relationships can be defined between lexemes and senses (some of them are
important for automatic processing).
Homonymy
It is a relation between words that have the same form (and the same POS) but unrelated meanings
e.g. bank (the financial institution, the river bank).
It causes ambiguities for the interpretation of a sentence since it defines a set of different lexemes
with the same orthographic form (bank1 , bank2,..). Related properties are homophony (same
pronunciation but different orthography, e.g. be-bee) and homography (same orthography but
different pronunciation pésca/pèsca)
Polysemy
It happens when a lexeme has more related meanings .It depends on the word etymology (unrelated
meanings usually have a different origin) - e.g. bank/data bank/blood bank.
For polysemous lexemes we need to manage all the meanings. We should define a method to
determine the meanings (their number and semantics) and if they are really distinct (by experts in
lexicography) .We need to describe the eventual correlations among the meanings. We need to

85

define how the meanings can be distinguished in order to attach the correct meaning to a word in a
given context (word sense disambiguation).
Synonymy
It is a relationship between two distinct lexemes with the same meaning (i.e. they can be substituted
for one another in a given context without changing its meaning and correctness) – e.g. I received a
gift/present
The substitutability may not be valid for any context due to small semantic differences (e.g.
price/fare of a service – the bus fare/the ticket price) . In general substitutability depends on the
“semantic intersection” of the senses of the two lexemes and, in same cases, also by social factors
(father/dad).

Hyponymy is a relationship between two lexemes (more precisely two senses) such that one denotes
a subclass of the other
▫ car, vehicle – shark, fish – apple, fruit
▫ The relationship is not symmetric
 The more specialized concept is the hyponym of the more general one
 The more general concept is the hypernym of the more specialized one
Hyponymy (hypernymy) is the basis for the definition of a taxonomy (a tree structure that defines
inclusion relationships in an object ontology) even if it is not properly a taxonomy
 The definition of a formal taxonomy would require a more uniform/rigorous
formalism in the interpretation of the inclusion relationship
 However the relationship defines a inheritance mechanism of the properties
from the ancestors of a given a concept in the hierarchy
Metaphor
 Situations where we refer to, and reason about, concepts using words and phrases whose meanings
are
appropriate to other completely different kinds of concepts.
– Love is a rose. Time is money.
 Conventional metaphors
– That doesn’t scare Digital, which has grown to be the world’s second-largest computer maker by
poaching customers of IBM’s mid-range machines.
– COMPANY AS PERSON metaphor
– Fuqua Industries Inc. said Triton Group Ltd., a company it helped resuscitate, has begun acquiring
Fuqua shares.
– And Ford was hemorrhaging; its losses would hit $1.54 billion in 1980.
Metonymy
 Situations where we denote a concept by naming some other concept closely related to it.
– He likes Shakespeare.
 AUTHOR FOR AUTHOR’S WORKS
– The White House had no comment.
 PLACE FOR INSTITUTION

Word-Sense Disambiguation
Word sense ambiguity is a central problem for many established Human Language Technology
applications (e.g., machine translation, information extraction, question answering, information
retrieval, text classification, and text summarization) Ide1998. This is also the case for associated
subtasks (e.g., reference resolution, acquisition of sub categorization patterns, parsing, and,

86

obviously, semantic interpretation). For this reason, many international research groups are working
on WSD, using a wide range of approaches. However, to date, no large-scale, broad-coverage,
accurate WSD system has been built Snyder2004. With current state-of-the-art accuracy in the range
60-70%, WSD is one of the most important open problems in NLP.
Word Sense Disambiguation (WSD), has been a trending area of research in Natural Language
Processing and Machine Learning. WSD is basically solution to the ambiguity which arises due to
different meaning of words in different context.

For example, consider the two sentences.

“The bank will not be accepting cash on Saturdays. ”

“The river overflowed the bank.”
The word bank in the first sentence refers to the commercial (finance) banks, while in second
sentence, it refers to the river bank. The ambiguity that arises due to this, is tough for a machine to
detect and resolve. Detection of ambiguity is the first issue and resolving it and displaying the
correct output is the second issue. Here, the code presented is for solving the second issue. Feel free
to contribute to it.
import nltk
import codecs
from nltk.tokenize import PunktSentenceTokenizer,sent_tokenize, word_tokenize
from nltk.corpus import stopwords, wordnet
from nltk.stem import WordNetLemmatizer, PorterStemmer

def simpleFilter(sentence):

filtered_sent = []
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words("english"))
words = word_tokenize(sentence)

for w in words:
 if w not in stop_words:
 filtered_sent.append(lemmatizer.lemmatize(w))

 return filtered_sent

The simpleFilter function takes the given query/sentence as an input and returns list of tokens which
are lemmatized. Lemmatization refers to deriving the root word which is morphologically correct.
There rises a slight confusion between lemmatization and stemming. However, the two words differ
in their flavor. Stemming usually refers to a crude heuristic process that chops off the ends of words
in the hope of achieving this goal correctly most of the time, and often includes the removal of
derivational affixes. Lemmatization usually refers to doing things properly with the use of a
vocabulary and morphological analysis of words, normally aiming to remove inflectional endings
only and to return the base or dictionary form of a word, which is known as the lemma.
Stopwords, are the high frequency words in a language which do not contribute much to the topic of
the sentence. In English, such words include, ‘a’ , ‘an’ , ‘the’, ‘of’ , ‘to’ , etc.. We remove these
words and focus on our main subject/topic, to solve ambiguity. The function is applied to the
training data sets as well as user input.

87

def simlilarityCheck(word1, word2):

word1 = word1 + ".n.01"
word2 = word2 + ".n.01"
try:

w1 = wordnet.synset(word1)
w2 = wordnet.synset(word2)

return w1.wup_similarity(w2)

except:
return 0

Next we perform similarity check, function : similarityCheck, for the filtered sentence tokens that
are returned by the first function. Similarity is checked between the given query/sentence tokens and
the training data set tokens. For this, the synonym set is loaded for each token word from wordnet
corpus. The depth and closeness of a word is calculated and returned on scale of 0–1 . This is the
main data that will resolve the ambiguity. The more data you provide, the more accurate it gets. The
normalized similarity between sentences is stored.

def synonymsCreator(word):
synonyms = []

for syn in wordnet.synsets(word):
for i in syn.lemmas():

synonyms.append(i.name())

return synonyms
synonymsCreator is a simplistic function to store the synonyms of the given input word. This will be
used is storing the synonyms of the given data set and query tokens. The synonyms will also be
taken into consideration while performing similarity check for the sentences.

Remove Stop Words . Word Stemming . Return new tokenised list.
def filteredSentence(sentence):

filtered_sent = []
lemmatizer = WordNetLemmatizer() #lemmatizes the words
ps = PorterStemmer() #stemmer stems the root of the word.

stop_words = set(stopwords.words("english"))
words = word_tokenize(sentence)

for w in words:
 if w not in stop_words:

88

 filtered_sent.append(lemmatizer.lemmatize(ps.stem(w)))
 for i in synonymsCreator(w):
 filtered_sent.append(i)

return filtered_sent

Once the similarity is stored, we apply the next level filter, function: filteredSentence , to apply
lemmatization over stemmed tokens and again removing stop words. In the filtered sentence list, we
now store the token word along with its synonyms for more precised matching / similarity check.
Next, we put all these together.
if __name__ == '__main__':

cricfile = codecs.open("cricketbat.txt", 'r', "utf-8")
sent2 = cricfile.read().lower()
vampirefile = codecs.open("vampirebat.txt", 'r', 'utf-8')
sent1 = vampirefile.read().lower()
sent3 = "start"

FOR TEST , replace the above variables with below sent1 and sent 2
sent1 = "the commercial banks are used for finance. all the financial matters are managed

by financial banks and they have lots of money, user accounts like salary account and savings
account, current account. money can also be withdrawn from this bank."

sent2 = "the river bank has water in it and it has fishes trees . lots of water is stored in the
banks. boats float in it and animals come and drink water from it."

sent3 = "from which bank should i withdraw money"

while(sent3 != "end"):

sent3 = raw_input("Enter Query: ").lower()

filtered_sent1 = []
filtered_sent2 = []
filtered_sent3 = []

counter1 = 0
counter2 = 0
sent31_similarity = 0
sent32_similarity = 0

filtered_sent1 = simpleFilter(sent1)
filtered_sent2 = simpleFilter(sent2)
filtered_sent3 = simpleFilter(sent3)

for i in filtered_sent3:

for j in filtered_sent1:
counter1 = counter1 + 1
sent31_similarity = sent31_similarity + simlilarityCheck(i,j)

for j in filtered_sent2:
counter2 = counter2 + 1

89

sent32_similarity = sent32_similarity + simlilarityCheck(i,j)

filtered_sent1 = []
filtered_sent2 = []
filtered_sent3 = []

filtered_sent1 = filteredSentence(sent1)
filtered_sent2 = filteredSentence(sent2)
filtered_sent3 = filteredSentence(sent3)

sent1_count = 0
sent2_count = 0

for i in filtered_sent3:

for j in filtered_sent1:

if(i==j):
sent1_count = sent1_count + 1

for j in filtered_sent2:
if(i==j):

sent2_count = sent2_count + 1

if((sent1_count + sent31_similarity)>(sent2_count+sent32_similarity)):
print "Mammal Bat"

else:
print "Cricket Bat"

#---
#Sentence1: the river bank has water in it and it has fishes trees . lots of water is

stored in the banks. boats float in it and animals come and drink water from it.
#sentence2: the commercial banks are used for finance. all the financial matters

are managed by financial banks and they have lots of money, user accounts like salary account and
savings account, current account. money can also be withdrawn from this bank.

#query: from which bank should i withdraw money.

#sen1: any of various nocturnal flying mammals of the order Chiroptera, having
membranous wings that extend from the forelimbs to the hind limbs or tail and anatomical
adaptations for echolocation, by which they navigate and hunt prey.

#sen 2: a cricket wooden bat is used for playing criket. it is rectangular in shape
and has handle and is made of wood or plastic and is used by cricket players.

print "\nTERMINATED"

What done here, is, the application has been fed with two data set files, first cricketbat.txt , which
contains few sentences referring to bat used in cricket sport, and second, vampirebat.txt, which
contains few sentences referring to the mammal bird bat. sent1 stores the lowered case string data
from the vampirebat.txt file and sent2 does for cricketbat.txt, sent3 stores user query. Next, the
sentences are filtered and similarity is checked using the functions explained above. The comparison

90

is normalized, and output is given accordingly whether the query refers to Cricket bat or Mammal
bat.

The program gives quiet accurate answers. The only thing it cannot handle are the negation
sentences, like “which bat is not used to play cricket” , “which bat does not fly” , etc.
The data set and code has been included in the
https://github.com/omkar-dsd/mini_projects/tree/master/word_sense_disambiuation

91

https://github.com/omkar-dsd/mini_projects/tree/master/word_sense_disambiuation

Information Retrieval

The meaning of the term information retrieval can be very broad. Just getting a credit card out of
your wallet so that you can type in the card number is a form of information retrieval. However, as
an academic field of study, information retrieval might be defined thus:

Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually stored on computers).

As defined in this way, information retrieval used to be an activity that only a few people engaged
in: reference librarians, paralegals, and similar professional searchers. Now the world has changed,
and hundreds of millions of people engage in information retrieval every day when they use a web
search engine or search their email. Information retrieval is fast becoming the dominant form of
information access, overtaking traditional database-style searching. IR can also cover other kinds of
data and information problems beyond that specified in the core definition above. The term
``unstructured data'' refers to data which does not have clear, semantically overt, easy-for-a-
computer structure. It is the opposite of structured data, the canonical example of which is a
relational database, of the sort companies usually use to maintain product inventories and personnel
records. In reality, almost no data are truly "unstructured''. This is definitely true of all text data if
you count the latent linguistic structure of human languages. But even accepting that the intended
notion of structure is overt structure, most text has structure, such as headings and paragraphs and
footnotes, which is commonly represented in documents by explicit markup (such as the coding
underlying web pages). IR is also used to facilitate "semi structured'' search such as finding a
document where the title contains Java and the body contains threading. The field of information
retrieval also covers supporting users in browsing or filtering document collections or further
processing a set of retrieved documents. Given a set of documents, clustering is the task of coming
up with a good grouping of the documents based on their contents. It is similar to arranging books on

92

a bookshelf according to their topic. Given a set of topics, standing information needs, or other
categories (such as suitability of texts for different age groups), classification is the task of deciding
which class(es), if any, each of a set of documents belongs to. It is often approached by first
manually classifying some documents and then hoping to be able to classify new documents
automatically.
Information retrieval systems can also be distinguished by the scale at which they operate, and it is
useful to distinguish three prominent scales. In web search , the system has to provide search over
billions of documents stored on millions of computers. Distinctive issues are needing to gather
documents for indexing, being able to build systems that work efficiently at this enormous scale, and
handling particular aspects of the web, such as the exploitation of hypertext and not being fooled by
site providers manipulating page content in an attempt to boost their search engine rankings, given
the commercial importance of the web. We focus on all these issues in web char link. At the other
extreme is personal information retrieval . In the last few years, consumer operating systems have
integrated information retrieval (such as Apple's Mac OS X Spotlight or Windows Vista's Instant
Search). Email programs usually not only provide search but also text classification: they at least
provide a spam (junk mail) filter, and commonly also provide either manual or automatic means for
classifying mail so that it can be placed directly into particular folders. Distinctive issues here
include handling the broad range of document types on a typical personal computer, and making the
search system maintenance free and sufficiently lightweight in terms of startup, processing, and disk
space usage that it can run on one machine without annoying its owner. In between is the space of
enterprise, institutional, and domain-specific search , where retrieval might be provided for
collections such as a corporation's internal documents, a database of patents, or research articles on
biochemistry. In this case, the documents will typically be stored on centralized file systems and one
or a handful of dedicated machines will provide search over the collection.
Term-document Incidence:

A fat book which many people own is Shakespeare's Collected Works. Suppose you wanted to
determine which plays of Shakespeare contain the words Brutus AND Caesar and NOT Calpurnia.
One way to do that is to start at the beginning and to read through all the text, noting for each play
whether it contains Brutus and Caesar and excluding it from consideration if it contains Calpurnia.
The simplest form of document retrieval is for a computer to do this sort of linear scan through
documents. This process is commonly referred to as grepping through text, after the Unix command
grep, which performs this process. Grepping through text can be a very effective process, especially
given the speed of modern computers, and often allows useful possibilities for wildcard pattern
matching through the use of . With modern computers, for simple querying of modest collections
(the size of Shakespeare's Collected Works is a bit under one million words of text in total), you
really need nothing more.

But for many purposes, you do need more:

1. To process large document collections quickly. The amount of online data has grown at least
as quickly as the speed of computers, and we would now like to be able to search collections
that total in the order of billions to trillions of words.

2. To allow more flexible matching operations. For example, it is impractical to perform the
query Romans NEAR countrymen with grep, where NEAR might be defined as ``within 5
words'' or ``within the same sentence''.

3. To allow ranked retrieval: in many cases you want the best answer to an information need
among many documents that contain certain words.

93

The way to avoid linearly scanning the texts for each query is to index the documents in advance.
Let us stick with Shakespeare's Collected Works, and use it to introduce the basics of the Boolean
retrieval model. Suppose we record for each document - here a play of Shakespeare's - whether it
contains each word out of all the words Shakespeare used (Shakespeare used about 32,000 different
words). The result is a binary term-document incidence matrix , as in Figure 1.1 . Terms are the
indexed units; they are usually words, and for the moment you can think of them as words, but the
information retrieval literature normally speaks of terms because some of them, such as perhaps I-9
or Hong Kong are not usually thought of as words. Now, depending on whether we look at the
matrix rows or columns, we can have a vector for each term, which shows the documents it appears
in, or a vector for each document, showing the terms that occur in it.

To answer the query Brutus AND Caesar AND NOT Calpurnia, we take the vectors for Brutus,
Caesar and Calpurnia, complement the last, and then do a bitwise AND:
110100 AND 110111 AND 101111 = 100100
The answers for this query are thus Antony and Cleopatra and Hamlet (Figure 1.2).
The Boolean retrieval model is a model for information retrieval in which we can pose any query
which is in the form of a Boolean expression of terms, that is, in which terms are combined with the
operators and, or, and not. The model views each document as just a set of words.

Let us now consider a more realistic scenario, simultaneously using the opportunity to introduce
some terminology and notation. Suppose we have N = 1million documents. By documents we mean
whatever units we have decided to build a retrieval system over. They might be individual memos or
chapters of a book . We will refer to the group of documents over which we perform retrieval as the
(document) collection . It is sometimes also referred to as a corpus (a body of texts). Suppose each
document is about 1000 words long (2-3 book pages). If we assume an average of 6 bytes per word
including spaces and punctuation, then this is a document collection about 6 GB in size. Typically,

94

https://nlp.stanford.edu/IR-book/html/htmledition/an-example-information-retrieval-problem-1.html#fig:termdoc

there might be about M = 500000 distinct terms in these documents. There is nothing special about
the numbers we have chosen, and they might vary by an order of magnitude or more, but they give
us some idea of the dimensions of the kinds of problems we need to handle.
Our goal is to develop a system to address the ad hoc retrieval task. This is the most standard IR
task. In it, a system aims to provide documents from within the collection that are relevant to an
arbitrary user information need, communicated to the system by means of a one-off, user-initiated
query. An information need is the topic about which the user desires to know more, and is
differentiated from a query , which is what the user conveys to the computer in an attempt to
communicate the information need. A document is relevant if it is one that the user perceives as
containing information of value with respect to their personal information need. Our example above
was rather artificial in that the information need was defined in terms of particular words, whereas
usually a user is interested in a topic like ``pipeline leaks'' and would like to find relevant documents
regardless of whether they precisely use those words or express the concept with other words such as
pipeline rupture. To assess the effectiveness of an IR system (i.e., the quality of its search results), a
user will usually want to know two key statistics about the system's returned results for a query:
Precision : What fraction of the returned results are relevant to the information need?
Recall : What fraction of the relevant documents in the collection were returned by the system?

We now cannot build a term-document matrix in a naive way. A 500K X 1M matrix has half-a-
trillion 0's and 1's - too many to fit in a computer's memory. But the crucial observation is that the
matrix is extremely sparse, that is, it has few non-zero entries. Because each document is 1000
words long, the matrix has no more than one billion 1's, so a minimum of 99.8% of the cells are
zero. A much better representation is to record only the things that do occur, that is, the 1 positions.

This idea is central to the first major concept in information retrieval, the inverted index . The name
is actually redundant: an index always maps back from terms to the parts of a document where they
occur. Nevertheless, inverted index, or sometimes inverted file , has become the standard term in
information retrieval. The basic idea of an inverted index is shown in Figure 1.3 . We keep a
dictionary of terms (sometimes also referred to as a vocabulary or lexicon ; here, we use dictionary
for the data structure and vocabulary for the set of terms). Then for each term, we have a list that
records which documents the term occurs in. Each item in the list - which records that a term
appeared in a document (and, later, often, the positions in the document) - is conventionally called a
posting . The list is then called a postings list (or), and all the postings lists taken together are
referred to as the postings . The dictionary in Figure 1.3 has been sorted alphabetically and each
postings list is sorted by document ID.

A first take at building an inverted index:

95

To gain the speed benefits of indexing at retrieval time, we have to build the index in advance. The
major steps in this are:

Here, we assume that the first 3 steps have already been done, and we examine building a basic
inverted index by sort-based indexing .

Figure 1.4 Building an index by sorting and grouping. The sequence of terms in each document,
tagged by their documentID (left) is sorted alphabetically (middle). Instances of the same term are
then grouped by word and then by documentID. The terms and documentIDs are then separated out
(right). The dictionary stores the terms, and has a pointer to the postings list for each term. It
commonly also stores other summary information such as, here, the document frequency of each
term. We use this information for improving query time efficiency and, later, for weighting in ranked

96

retrieval models. Each postings list stores the list of documents in which a term occurs, and may
store other information such as the term frequency (the frequency of each term in each document) or
the position(s) of the term in each document.

Within a document collection, we assume that each document has a unique serial number, known as
the document identifier (docID). During index construction, we can simply assign successive
integers to each new document when it is first encountered. The input to indexing is a list of
normalized tokens for each document, which we can equally think of as a list of pairs of term and
docID, as in Figure 1.4 . The core indexing step is sorting this list so that the terms are alphabetical,
giving us the representation in the middle column of Figure 1.4 . Multiple occurrences of the same
term from the same document are then merged. Instances of the same term are then grouped, and the
result is split into a dictionary and postings , as shown in the right column of Figure 1.4 . Since a
term generally occurs in a number of documents, this data organization already reduces the storage
requirements of the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency , which is here also the length of each
postings list). This information is not vital for a basic Boolean search engine, but it allows us to
improve the efficiency of the search engine at query time, and it is a statistic later used in many
ranked retrieval models. The postings are secondarily sorted by docID. This provides the basis for
efficient query processing. This inverted index structure is essentially without rivals as the most
efficient structure for supporting ad hoc text search.
In the resulting index, we pay for storage of both the dictionary and the postings lists. The latter are
much larger, but the dictionary is commonly kept in memory, while postings lists are normally kept
on disk, so the size of each is important. What data structure should be used for a postings list? A
fixed length array would be wasteful as some words occur in many documents, and others in very
few. For an in-memory postings list, two good alternatives are singly linked lists or variable length
arrays. Singly linked lists allow cheap insertion of documents into postings lists (following updates,
such as when recrawling the web for updated documents), and naturally extend to more advanced
indexing strategies such as skip lists, which require additional pointers. Variable length arrays win in
space requirements by avoiding the overhead for pointers and in time requirements because their use
of contiguous memory increases speed on modern processors with memory caches. Extra pointers
can in practice be encoded into the lists as offsets. If updates are relatively infrequent, variable
length arrays will be more compact and faster to traverse. We can also use a hybrid scheme with a
linked list of fixed length arrays for each term. When postings lists are stored on disk, they are stored
(perhaps compressed) as a contiguous run of postings without explicit pointers (as in Figure 1.3), so
as to minimize the size of the postings list and the number of disk seeks to read a postings list into
memory.

Query Optimization:
How do we process a query using an inverted index and the basic Boolean retrieval model? Consider
processing the simple conjunctive query:
Brutus and Calpurnia
over the inverted index partially shown in Figure 1.3 .We:
1. Locate Brutus in the dictionary.
2. Retrieve its postings.
3. Locate Calpurnia in the dictionary.
4. Retrieve its postings.
5. Intersect the two postings lists, as shown in Figure 1.5.

97

The intersection operation is the crucial one: We need to efficiently intersect intersection postings
lists so as to be able to quickly find documents that contain both postings terms. (This operation is
sometimes referred to as merging postings lists, this merge slightly counterintuitive name reflects
using the term merge algorithm for a general family of algorithms that combine multiple sorted lists
by interleaved advancing of pointers through each; here we are merging the lists with a logical and
operation.).
There is a simple and effective method of intersecting postings lists using the merge algorithm (see
Figure 1.6):We maintain pointers into both lists and walk through the two postings lists
simultaneously, in time linear in the total
number of postings entries. At each step, we compare the docID pointed to by both pointers. If they
are the same, we put that docID in the results list, and advance both pointers. Otherwise we advance
the pointer pointing to the smaller docID. If the lengths of the postings lists are x and y, the
intersection takes O(x + y) operations. Formally, the complexity of querying is , where N is
the number of documents in the collection. Our indexing methods gain us just a constant, not a
difference in time complexity compared with a linear scan, but in practice the constant is huge.
To use this algorithm, it is crucial that postings be sorted by a single global ordering. Using a
numeric sort by docID is one simple way to achieve this.
We can extend the intersection operation to process more complicated queries like:

(Brutus or Caesar) and not Calpurnia

Query optimization is the process of selecting how to organize the work of answering a query so that
the least total amount of work needs to be done by the system. A major element of this for Boolean
queries is the order in which
postings lists are accessed. What is the best order for query processing? Consider a query that is an
and of t terms, for instance:
Brutus and Caesar and Calpurnia

98

For each of the t terms, we need to get its postings, then and them together. The standard heuristic is
to process terms in order of increasing document frequency; if we start by intersecting the two
smallest postings lists, then all
intermediate results must be no bigger than the smallest postings list, and we are therefore likely to
do the least amount of total work. So, for the postings lists in Figure 1.3, we execute the above query
as:
(Calpurnia and Brutus) and Caesar
This is a first justification for keeping the frequency of terms in the dictionary; it allows us to make
this ordering decision based on in-memory data before accessing any postings list. Consider now the
optimization of more general queries, such as:
(madding or crowd) and (ignoble or strife) and (killed or slain)
As before, we get the frequencies for all terms, and we can then (conservatively) estimate the size of
each or by the sum of the frequencies of its disjuncts. We can then process the query in increasing
order of the size of each disjunctive term.

For arbitrary Boolean queries, we have to evaluate and temporarily store the answers for
intermediate expressions in a complex expression. However, in many circumstances, either because
of the nature of the query language, or just because this is the most common type of query that users
submit, a query is purely conjunctive. In this case, rather than viewing merging postings lists as a
function with two inputs and a distinct output, it is more efficient to intersect each retrieved postings
list with the current intermediate result in memory, where we initialize the intermediate result by
loading the postings list of the least frequent term. This algorithm is shown in Figure 1.7. The
intersection operation is then asymmetric: The intermediate results list is in memory while the list it
is being intersected with is being read from disk. Moreover, the intermediate results list is always at
least as short as the other list, and in many cases it is orders of magnitude shorter. The postings
intersection can still be done by the algorithm in Figure 1.6, but when the difference between the list
lengths is very large, opportunities to use alternative techniques open up. The intersection can be
calculated in place by destructively modifying or marking invalid items in the intermediate results
list. Or the intersection can be done as a sequence of binary searches in the long postings lists for
each posting in the intermediate results list. Another possibility is to store the long postings list as a
hash table, so that membership of an intermediate result item can be calculated in constant rather
than linear or log time. Moreover, standard postings list intersection operations remain necessary
when both terms of a query are very common.

99

Ranked Retrieval:
The Boolean retrieval model contrasts with ranked retrieval models such as the vector space model ,
in which users largely use free text queries, that is, just typing one or more words rather than using a
precise language with operators for building up query expressions, and the system decides which
documents best satisfy the query. Despite decades of academic research on the advantages of ranked
retrieval, systems implementing the Boolean retrieval model were the main or only search option
provided by large commercial information providers for three decades until the early 1990s
(approximately the date of arrival of the World Wide Web). However, these systems did not have
just the basic Boolean operations (and, or, and not) that have been presented so far. A strict Boolean
expression over terms with an unordered results set is too limited for many of the information needs
that people have, and these systems implemented extended Boolean retrieval models by
incorporating additional operators such as term proximity operator. A proximity operator is a way of
specifying that two terms in a operator query must occur close to each other in a document, where
closeness may be measured by limiting the allowed number of intervening words or by reference to a
structural unit such as a sentence or paragraph.
Example 1.1: Commercial Boolean searching: Westlaw. Westlaw (http://www.westlaw.com/) is the
largest commercial legal search service (in terms of the number of paying subscribers), with over
half a million subscribers performing millions of searches a day over tens of terabytes of text data.
The service was started in 1975. In 2005, Boolean search (called Terms and Connectors by Westlaw)
was still the default, and used by a large percentage of users, although ranked free text querying
(called Natural Language by Westlaw) was added in 1992. Here are some example Boolean queries
on Westlaw:
Information need: Information on the legal theories involved in preventing
the disclosure of trade secrets by employees formerly employed by a competing company.
Query: “trade secret” /s disclos! /s prevent /s employe!
Information need: Requirements for disabled people to be able to access a workplace.
Query: disab! /p access! /s work-site work-place (employment /3 place)
Information need: Cases about a host’s responsibility for drunk guests.
Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

Note the long, precise queries and the use of proximity operators, both uncommon in web search.
Submitted queries average about ten words in length. Unlike web search conventions, a space
between words represents disjunction (the tightest binding operator), & is and and /s, /p, and /k ask
for matches in the same sentence, same paragraph or within k words respectively. Double quotes
give a phrase search (consecutive words);. The exclamation mark (!) gives a trailing wildcard
query ; thus liab! matches all words starting with liab. Additionally work-site matches any of

100

worksite, work-site or work site. Typical expert queries are usually carefully defined and
incrementally developed until they obtain what look to be good results to the user.
Many users, particularly professionals, prefer Boolean query models. Boolean queries are precise: A
document either matches the query or it does not. This offers the user greater control and
transparency over what is retrieved. And some domains, such as legal materials, allow an effective
means of document ranking within a Boolean model: Westlaw returns documents in reverse
chronological order, which is in practice quite effective. In 2007, the majority of law librarians still
seem to recommend terms and connectors for high recall searches, and the majority of legal
users think they are getting greater control by using them. However, this does not mean that Boolean
queries are more effective for professional searchers. Indeed, experimenting on a Westlaw sub
collection, Turtle (1994) found that free text queries produced better results than Boolean queries
prepared by Westlaw’s own reference librarians for the majority of the information needs in his
experiments. A general problem with Boolean search is that using and operators tends to produce
high precision but low recall searches, while using or operators gives low precision but high recall
searches, and it is difficult or impossible to find a satisfactory middle ground.

Term Frequency and Inverse Document Frequency based Ranking:

Thus far, we have dealt with indexes that support Boolean queries: A document either matches or
does not match a query. In the case of large document collections, the resulting number of matching
documents can far exceed the
number a human user could possibly sift through. Accordingly, it is essential for a search engine to
rank-order the documents matching a query. To do this, the search engine computes, for each
matching document, a score with
respect to the query at hand. Here, we initiate the study of assigning a score to a (query, document)
pair.
We assign to each term in a document a weight for that term that depends on the number of
occurrences of the term in the document. We would like to compute a score between a query term t
and a document d, based on the weight of t in d. The simplest approach is to assign the weight to be
equal to the number of occurrences of term t in document d. This weighting scheme is referred term
to as term frequency and is denoted tft,d , with the subscripts denoting the term and the document in
order.
For a document d, the set of weights determined by the tf weights above (or indeed any weighting
function that maps the number of occurrences of t in d to a positive real value) may be viewed as a
quantitative digest of that
document. In this view of a document, known in the literature as the bag of words model, the exact
ordering of the terms in a document is ignored but the number of occurrences of each term is
material (in contrast with Boolean
retrieval). We only retain information on the number of occurrences of each term. Thus, the
document Mary is quicker than John is, in this view, identical to the document John is quicker than
Mary. Nevertheless, it seems intuitive that two documents with similar bag of words representations
are similar in content.

101

Raw term frequency as above suffers from a critical problem: All terms are considered equally
important when it comes to assessing relevancy on a query. In fact, certain terms have little or no
discriminating power in determining
relevance. For instance, a collection of documents on the auto industry is likely to have the term auto
in almost every document. To this end, we introduce a mechanism for attenuating the effect of terms
that occur too often in the collection to be meaningful for relevance determination. An immediate
idea is to scale down the term weights of terms with high collection frequency, defined to be the total
number of occurrences of a term in the collection. The idea is to reduce the tf weight of a term by a
factor that grows with its collection frequency.

Instead, it is more commonplace to use for this purpose the document frequency dft , defined to be
the number of documents in the collection that contain a term t. This is because in trying to
discriminate between documents
for the purpose of scoring, it is better to use a document-level statistic (such as the number of
documents containing a term) than to use a collection-wide statistic for the term. The reason to
prefer df to cf is illustrated in Figure 6.7,
where a simple example shows that collection frequency (cf) and document frequency (df) can
behave rather differently. In particular, the cf values for both try and insurance are roughly equal, but
their df values differ significantly. Intuitively, we want the few documents that contain insurance to
get a higher boost for a query on insurance than the many documents containing try get from a query
on try.
How is the document frequency df of a term used to scale its weight? Denoting as usual the total
number of documents in a collection by N, we define the inverse document frequency (idf) of a term
t as follows:

Thus the idf of a rare term is high, whereas the idf of a frequent term is likely to be low. Figure 6.8
gives an example of idfs in the Reuters-RCV1 collection of 806,791 documents; in this example,
logarithms are to the base 10.
We now combine the definitions of term frequency and inverse document frequency to produce a
composite weight for each term in each document. The tf–idf weighting scheme assigns to term t a
weight in document d given
by

In other words, tf–idft,d assigns to term t a weight in document d that is
1. highest when t occurs many times within a small number of documents (thus lending high
discriminating power to those documents);

102

2. lower when the term occurs fewer times in a document, or occurs in many documents (thus
offering a less pronounced relevance signal);
3. lowest when the term occurs in virtually all documents.
At this point, we may view each document as a vector with one component corresponding to each
term in the dictionary, together with a weight for each component that is given by (6.8). For
dictionary terms that do not occur in a document, this weight is zero. This vector form will prove to
be crucial to scoring and ranking;. As a first
step, we introduce the overlap score measure: The score of a document d is the sum, over all query
terms, of the number of times each of the query terms occurs in d. We can refine this idea so that we
add up not the number of
occurrences of each query term t in d, but instead the tf–idf weight of each term in d.

Zone Indexing:
Digital documents generally encode, metadata in machine-recognizable form, certain metadata
associated with each document. By metadata, we mean specific forms of data about a document,
such as its author(s), title, and date of publication. These metadata would generally include fields,
such as the date of creation and the format of the document, as well the author and possibly the title
of the document. The possible values of a field should be thought of as finite – for instance, the set
of all dates of authorship. Consider queries of the form “find documents authored by William
Shakespeare in 1601, containing the phrase alas poor Yorick.” Query processing then consists as
usual of postings intersections, except that we may merge postings from standard inverted as well as
parametric indexes. There is one parametric index for each field (say, date of creation); it allows us
to select only the documents matching a date specified in the query. Figure 6.1 illustrates the user’s
view of such a parametric search. Some of the fields may assume ordered values, such as dates; in
the example query above, the year 1601 is one such field value. The search engine may support
querying ranges on such ordered values; to this end, a structure like a B-tree may be used for the
field’s dictionary.
Zones are similar to fields, except the contents of a zone can be arbitrary free text. Whereas a field
may take on a relatively small set of values, a zone can be thought of as an arbitrary, unbounded
amount of text. For instance,
document titles and abstracts are generally treated as zones. We may build a separate inverted index
for each zone of a document, to support queries such as “find documents with merchant in the title
and william in the author
list and the phrase gentle rain in the body.” This has the effect of building an index that looks like
Figure 6.2. Whereas the dictionary for a parametric index comes from a fixed vocabulary (the set of
languages, or the set of dates), the dictionary for a zone index must structure whatever vocabulary
stems from the text of that zone.

103

In fact, we can reduce the size of the dictionary by encoding the zone in which a term occurs in the
postings. In Figure 6.3 for instance, we show how occurrences of william in the title and author
zones of various documents
are encoded. Such an encoding is useful when the size of the dictionary is a concern (because we
require the dictionary to fit in main memory). But there is another important reason why the
encoding of Figure 6.3 is useful:
the efficient computation of scores using a technique we call weighted zone. Given a Boolean query
q and a document d, weighted zone scoring assigns to the pair (q, d) a score in the interval [0, 1], by
computing a linear
combination of zone scores, where each zone of the document contributes a Boolean value. More
specifically, consider a set of documents, each of which

has zones. Let g1,.... g ∈ [0, 1] such that . For , let si be the Boolean score

denoting a match (or absence thereof) between q and the ith zone. For instance, the Boolean score
from a zone could be 1 if all the
query term(s) occur in that zone, and zero otherwise; indeed, it could be any Boolean function that
maps the presence of query terms in a zone to 0, 1. Then, the weighted zone score is defined to be

Weighted zone scoring is sometimes referred to also as ranked Boolean retrieval.
Example 6.1: Consider the query shakespeare in a collection in which each document has three
zones: author, title, and body. The Boolean score function for a zone takes on the value 1 if the
query term shakespeare is present in the zone, and 0 otherwise. Weighted zone scoring in such a
collection requires three weights g1, g2, and g3, respectively corresponding to the author, title, and
body zones. Suppose we set g1 = 0.2, g2 = 0.3, and g3 = 0.5 (so that the three weights add up to 1);
this corresponds to an application in which a match in the author zone is least important to the
overall score, the title zone somewhat more, and the body contributes even more. Thus, if the term
shakespeare were to appear in the title and body zones but not the author zone of a document, the
score of this document would be 0.8.

104

Cosine Ranking:
The representation of a set of documents as vectors in a common vector space
is known as the vector space model and is fundamental to a host of information
retrieval model (IR) operations including scoring documents on a query,
document classification, and document clustering. We first develop the basic
ideas underlying vector space scoring; a pivotal step in this development is the
view of queries as vectors in the same vector space as the document

collection. We denote by the vector derived from document d, with one

component in the vector for each dictionary term. Unless otherwise specified,
the reader may assume that the components are computed using the tf–idf
weighting scheme, although the particular weighting scheme is immaterial to
the discussion that follows. The set of documents in a collection then may be
viewed as a set of vectors in a vector space, in which there is one axis for each
term. This representation loses the relative ordering of the terms in each
document. A first attempt might consider the magnitude of the vector
difference between two document vectors. This measure suffers from a
drawback: Two documents with very similar content can have a significant
vector difference simply because one is much longer than the other. Thus, the
relative distributions of terms may be identical in the two documents, but the
absolute term frequencies of one may be far larger.
To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute the

cosine similarity of their vector representations and

where the numerator represents the dot product (also known as the inner

product) of the vectors and , and the denominator is the product of

their Euclidean lengths. The dot product of two vectors is defined as

Let denote the document vector for d, with M components

The Euclidean length of d is defined as

Search Engine Evaluation:
To measure ad hoc IR effectiveness in the standard way, we need a test collection consisting of three
things:
1. A document collection

105

2. A test suite of information needs, expressible as queries
3. A set of relevance judgments, standardly a binary assessment of either relevant or non relevant for
each query–document pair.
The standard approach to IR system evaluation revolves around the notion of relevant and non
relevant documents. With respect to a user information need, a document in the test collection is
given a binary classification as either relevant or non relevant. This decision is referred to as the gold
standard or ground truth judgment of relevance. The test document collection and of information
needs have to be of a reasonable size: You need to average performance
over fairly large test sets because results are highly variable over different documents and
information needs. As a rule of thumb, fifty information needs has usually been found to be a
sufficient minimum. Relevance is assessed relative to an information need, not a query. For example,
an information need might be:
Information on whether drinking red wine is more effective at reducing your risk of heart attacks
than drinking white wine. This might be translated into a query such as:

wine and red and white and heart and attack and effective

A document is relevant if it addresses the stated information need, not because it just happens to
contain all the words in the query. This distinction is often misunderstood in practice, because the
information need is not overt.
But, nevertheless, an information need is present. If a user types python into a web search engine,
they might be wanting to know where they can purchase a pet python. Or they might be wanting
information on the programming
language Python. From a one-word query, it is very difficult for a system to know what the
information need is. But, nevertheless, the user has one, and can judge the returned results on the
basis of their relevance to it. To evaluate
a system, we require an overt expression of an information need, which can be used for judging
returned documents as relevant or non relevant. At this point, we make a simplification: Relevance
can reasonably be thought of as a scale, with some documents highly relevant and others marginally
so. But, for the moment, we use just a binary decision of relevance. Many systems contain various
weights (often known as parameters) that can be adjusted to tune system performance. It is wrong to
report results on a test collection that were obtained by tuning these parameters to maximize
performance on that collection. That is because such tuning overstates the expected performance of
the system, because the weights will be set to maximize performance on one particular set of queries
rather than for a random sample of queries. In such cases, the correct procedure is to have one or
more development test collections, and to tune the parameters on the development test collection.
The tester then runs the system with those weights on the test collection and reports the results on
that collection as an unbiased estimate of performance.

The two most frequent and basic measures for information retrieval
effectiveness are precision and recall. These are first defined for the simple
case where an IR system returns a set of documents for a query. We will see
later how to extend these notions to ranked retrieval situations.
Precision (P) is the fraction of retrieved documents that are relevant.

106

Recall (R) is the fraction of relevant documents that are retrieved.

These notions can be made clear by examining the following contingency table:

Then

An obvious alternative that may occur to the reader is to judge an information retrieval system by its
accuracy, that is, the fraction of its classifications that are correct. In terms of the contingency table
above,
accuracy =(tp + tn)/(tp + f p + f n + tn).
This seems plausible, because there are two actual classes, relevant and non relevant, and an IR
system can be thought of as a two-class classifier that attempts to label them as such (it retrieves the
subset of documents it believes to be relevant). This is precisely the effectiveness measure often used
for evaluating machine-learning classification problems.
A single measure that trades off precision versus recall is the F measure, which
is the weighted harmonic mean of precision and recall:

where α ∈ [0, 1] and thus β2 ∈ [0,∞]. The default balanced F measure equally
weights precision and recall, which means making α = 1/2 or β = 1. It is
commonly written as F1, which is short for Fβ=1, even though the formulation
in terms of α more transparently exhibits the F measure as a weighted
harmonic mean. When using β = 1, the formula on the right simplifies to:

However, using an even weighting is not the only choice. Values of β < 1
emphasize precision, whereas values ofβ > 1 emphasize recall. For example, a
value of β = 3 or β = 5 might be used if recall is to be emphasized. Recall,
precision, and the F measure are inherently measures between 0 and 1, but
they are also very commonly written as percentages, on a scale between 0 and
100.

107

Resource Management with XML:
Information retrieval (IR) systems are often contrasted with relational databases. Traditionally, IR
systems have retrieved information from unstructured text – by which we mean “raw” text without
markup. Databases are
designed for querying relational data, sets of records that have values for predefined attributes such
as employee number, title, and salary. There are fundamental differences between IR and database
systems in terms of retrieval
model, data structures, and query language as shown in Table 10.1. Some highly structured text
search problems are most efficiently handled by a relational database; for example, if the employee
table contains an attribute for short textual job descriptions and you want to find all employees who
are involved with invoicing. In this case, the SQL query:
select lastname from employees where job_desc like ’invoic%’;

may be sufficient to satisfy your information need with high precision and recall.

One standard for encoding structured documents: EX tensible markup language or XML, which is
currently the most widely used such standard. We will not cover the specifics that distinguish XML
from other types of markup such as HTML and SGML. But most of what we say in this chapter is
applicable to markup languages in general. In the context of IR, we are only interested in XML as a
language for encoding text and documents. A perhaps more widespread use of XML is to encode
non text data. For example, we may want to export data in XML format from
an enterprise resource planning system and then read them into an analytics program to produce
graphs for a presentation. This type of application of XML is called data-centric because numerical
and non text attribute-value data XML dominate and text is usually a small fraction of the overall
data. Most data centric XML is stored in databases – in contrast to the inverted index-based methods
for text-centric XML that we present in this chapter.

We call XML retrieval structured retrieval in this chapter. Some researchers prefer the term
semistructured retrieval to distinguish XML retrieval from retrieval database querying. We have
adopted the terminology that is widespread in the XML retrieval community. For instance, the
standard way of referring to XML queries is structured queries, not semistructured queries. The
term structured retrieval is rarely used for database querying and it always refers to XML retrieval
here.

108

An XML document is an ordered, labeled tree. Each node of the tree is an XML element and is
written with an opening and closing tag. An element can XML have one or more XML attributes. In
the XML document in Figure 10.1, the attribute scene element is enclosed by the two tags
<scene ...> and </scene>. It has an attribute number with value vii and two child elements, title and
verse.

Figure 10.2 shows Figure 10.1 as a tree. The leaf nodes of the tree consist of text, for example,
Shakespeare, Macbeth, and Macbeth’s castle. The tree’s internal nodes encode either the structure of
the document (title, act, and scene) or metadata functions (author). The standard for accessing and
processing XML documents is the XML DOM document object model or DOM. The DOM
represents elements, attributes, and text within elements as nodes in a tree. Figure 10.2 is a
simplified DOM representation of the XML document in Figure 10.1.With a DOM API, we can
process an XML document by starting at the root element and then descending down the tree from
parents to children. XPath is a standard for enumerating paths in an XML document collection. We
will also refer to paths as XML contexts or simply contexts in this chapter. Only a small subset of
XPath is needed for our purposes. The XPath expression

109

node selects all nodes of that name. Successive elements of a path are separated by slashes, so
act/scene selects all scene elements whose parent is an act element. Double slashes indicate that an
arbitrary number of elements
can intervene on a path: play//scene selects all scene elements occurring in a play element. In Figure
10.2, this set consists of a single scene element, which is accessible via the path play, act, scene from
the top. An initial slash starts the path at the root element. /play/title selects the play’s title in Figure
10.1, /play//title selects a set with two members (the play’s title and the scene’s title), and /scene/title
selects no elements. For notational convenience, we
allow the final element of a path to be a vocabulary term and separate it from the element path by the
symbol #, even though this does not conform to the XPath standard. For example, title#"Macbeth"
selects all titles containing the term Macbeth.

We also need the concept of schema in this chapter. A schema puts constraints on the structure of
allowable XML documents for a particular application. A schema for Shakespeare’s plays may
stipulate that scenes can only occur as children of acts and that only acts and scenes have the number
attribute. Two standards for schemas for XML documents are XML DTD XML schema (document
type definition) and XML schema. Users can only write structured
queries for an XML retrieval system if they have some minimal knowledge about the schema of the
collection. A common format for XML queries is NEXI (Narrowed Extended XPath I). We give an
example in Figure 10.3. We display the query on four lines for typographical convenience, but it is
intended to be read as one unit without
line breaks. In particular, //section is embedded under //article. The query in Figure 10.3 specifies a
search for sections about the summer holidays that are part of articles from 2001 or 2002. As in
XPath, double slashes indicate that an arbitrary number of elements can intervene on a path. The dot
in a clause in square brackets refers to the element the clause modifies. The clause [.//yr = 2001
or .//yr = 2002] modifies //article. Thus, the dot refers to //article in this case. Similarly, the dot in
[about(.,summer holidays)] refers to the section that the clause modifies.
The two yr conditions are relational attribute constraints. Only articles whose yr attribute is 2001 or
2002 (or that contain an element whose yr attribute is 2001 or 2002) are to be considered. The about
clause is a ranking constraint: Sections that occur in the right type of article are to be ranked
according to how relevant they are to the topic summer holidays. We usually handle relational
attribute constraints by prefiltering or postfiltering: We simply exclude all elements from the result
set that do not meet the relational attribute constraints. In this chapter, we will not address how to do
this efficiently and instead focus on the core information retrieval problem in XML retrieval,
namely, how to rank documents according to the relevance criteria expressed in the about conditions
of the NEXI query. If we discard relational attributes, we can represent documents as trees with only

110

one type of node: element nodes. In other words, we remove all attribute nodes from the XML
document, such as, the number attribute in
Figure 10.1. Figure 10.4 shows a subtree of the document in Figure 10.1 as an element–node tree
(labeled d1).
We can represent queries as trees in the same way. This is a query-by example approach to query
language design because users pose queries by creating objects that satisfy the same formal
description as documents. In Figure
10.4, q1 is a search for books whose titles score highly for the keywords Julius Caesar. q2 is a search
for books whose author elements score highly for Julius Caesar and whose title elements score
highly for Gallic war.

For further studies please refer Introduction to Information Retrieval by C.D Manning.
GATE:
GATE is an infrastructure for developing and deploying software components that process human
language. It is nearly 15 years old and is in active use for all types of computational task involving
human language. GATE excels at text analysis of all shapes and sizes. From large corporations to
small startups, from ¿multi-million research consortia to undergraduate projects, our user community
is the largest and most diverse of any system of this type, and is spread across all but one of the
continents. The GATE family of tools has grown over the years to include a desktop client for
developers, a workflow-based web application, a Java library, an architecture and a process. GATE
is:
ˆ (a) an IDE, GATE Developer: an integrated development environment for language processing
components bundled with a very widely used Information Extraction system and a comprehensive
set of other plug-ins.
ˆ (b) a cloud computing solution for hosted large-scale text processing, GATE Cloud
(https://cloud.gate.ac.uk/).
 (c) a web app, GATE Teamware: a collaborative annotation environment for factory style
semantic annotation projects built around a workflow engine and a heavily optimized backend
service infrastructure.
 (d) a multi-paradigm search repository, GATE Mímir, which can be used to index and search over
text, annotations, semantic schemas (ontologies), and semantic meta-data (instance data). It allows
queries that arbitrarily mix full-text, structural, linguistic and semantic queries and that can scale to
terabytes of text.
 (e) a framework, GATE Embedded: an object library optimized for inclusion in diverse
applications giving access to all the services used by GATE Developer and more.
 (f) an architecture: a high-level organizational picture of how language processing software
composition.
 (g) a process for the creation of robust and maintainable services.

GATE as an architecture suggests that the elements of software systems that process natural
language can usefully be broken down into various types of component, known as resources .

111

Components are reusable software chunks with well-defined interfaces, and are a popular
architectural form, used in Sun's Java Beans and Microsoft's .Net, for example. GATE components
are specialized types of Java Bean, and come in three flavours:
(a) LanguageResources (LRs) represent entities such as lexicons, corpora or ontologies;
(b) ProcessingResources (PRs) represent entities that are primarily algorithmic, such as parsers,
generators or ngram modellers
(c) VisualResources (VRs) represent visualization and editing components that participate in GUIs.

Collectively, the set of resources integrated with GATE is known as CREOLE: a Collection of
REusable Objects for Language Engineering. All the resources are packaged as Java Archive (or
`JAR') les, plus some XML configuration data. The JAR and XML files are made available to GATE
by putting them on a web server, or simply placing them in the local file space. When using GATE
to develop language processing functionality for an application, the developer uses GATE Developer
and GATE Embedded to construct resources of the three types. This may involve programming, or
the development of Language Resources such as grammars that are used by existing Processing
Resources, or a mixture of both. GATE
Developer is used for visualization of the data structures produced and consumed during processing,
and for debugging, performance measurement and so on. For example, figure 1.1 is a screenshot of
one of the visualization tools.

GATE Developer is analogous to systems like Mathematica for Mathematicians, or JBuilder for Java
programmers: it provides a convenient graphical environment for research and development of
language processing software. When an appropriate set of resources have been developed, they can
then be embedded in the target client application using GATE Embedded. GATE Embedded is

112

supplied as a series of JAR files. To embed GATE-based language processing facilities in an
application, these JAR files are all that is needed, along with JAR files and XML configuration files
for the various resources that make up the new facilities. GATE includes resources for common LE
data structures and algorithms, including documents, corpora and various annotation types, a set of
language analysis components for
Information Extraction and a range of data visualization and editing components. GATE supports
documents in a variety of formats including XML, RTF, email, HTML, SGML and plain text. In all
cases the format is analyzed and converted into a single unified model of annotation. The annotation
format is a modified form of the TIPSTER format [Grishman 97] which has been made largely
compatible with the Atlas format [Bird & Liberman 99], and uses the now standard mechanism of
`stand-omarkup'. GATE
documents, corpora and annotations are stored in databases of various sorts, visualized via the
development environment, and accessed at code level via the framework. A family of Processing
Resources for language analysis is included in the shape of ANNIE, A Nearly-New Information
Extraction system. These components use finite state techniques to implement various tasks from
tokenization to semantic tagging or verb phrase chunking. All ANNIE components communicate
exclusively via GATE's document and annotation resources. for further resources please read
https://gate.ac.uk/

NLTK(Natural Language Toolkit):
NLTK is a leading platform for building Python programs to work with human language data. It
provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along
with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing,
and semantic reasoning, wrappers for industrial-strength NLP libraries, and an active discussion
forum.
Thanks to a hands-on guide introducing programming fundamentals alongside topics in
computational linguistics, plus comprehensive API documentation, NLTK is suitable for linguists,
engineers, students, educators, researchers, and industry users alike. NLTK is available for
Windows, Mac OS X, and Linux. Best of all, NLTK is a free, open source, community-driven
project.

NLTK has been called “a wonderful tool for teaching, and working in, computational linguistics
using Python,” and “an amazing library to play with natural language.”

Natural Language Processing with Python provides a practical introduction to programming for
language processing. Written by the creators of NLTK, it guides the reader through the fundamentals
of writing Python programs, working with corpora, categorizing text, analyzing linguistic structure,
and more. The online version of the book has been updated for Python 3 and NLTK 3. For further
resources please read https://www.nltk.org/

Reference:

a. D. Jurafsky & J. H. Martin – “Speech and Language Processing – An introduction to Language
processing, Computational Linguistics, and Speech Recognition”,Pearson Education

b. Chris Manning and Hinrich Schütze, “Foundations of Statistical Natural Language Processing”,
MIT Press. Cambridge, MA: May 1999.

c. Allen, James. 1995. – “Natural Language Understanding”. Benjamin/Cummings, 2ed.

113

https://www.nltk.org/
http://nltk.org/book
http://groups.google.com/group/nltk-users
http://groups.google.com/group/nltk-users
http://nltk.org/nltk_data/

d. Bharathi, A., Vineet Chaitanya and Rajeev Sangal. 1995. Natural Language Processing- “A Pananian
Perspective”. Prentice Hll India, Eastern Economy Edition.

e. Siddiqui T., Tiwary U. S.. “Natural language processing and Information retrieval”, OUP, 2008.

f. Eugene Cherniak: “Statistical Language Learning”, MIT Press, 1993.

g. Manning, Christopher and Heinrich Schütze. 1999. “Foundations of Statistical Natural Language
Processing”. MIT Press.

114

	LECTURE No.:1
	INTRODUCTION to NLP
	DEFINITION
	Representing text

	Application domain
	Steps in NLP

	LECTURE No.:3
	Morphological processes

	input: form
	output: lemma + morphological features
	Input
	Output
	cat
	cat + N + sg
	cats
	cat + N + pl
	cities
	city + N + pl
	merging
	merge + V + pres_part
	Caught
	(catch + V + past) or (catch + V + past_part)
	LECTURE No.:4
	LECTURE No.:5
	Finite-state transducer
	Operations on finite-state transducers

	LECTURE No.:6
	LECTURE No.:7
	Unigram

	Chain rule:
	LECTURE No.:9
	LECTURE No.:10
	n-gram:
	Evaluation of Language model:
	Unigram

	Decision tree model:
	In principle, any collection of more than one text can be called a corpus.
	For e.g. Shakespeare corpus. Corpus in modern linguistic theories has more specific
	Sometimes, types are meant as lemma types. Sometimes, inflected and derived words count as different type

	LECTURE No.:11
	IIITH Tagset for Indian Languages:
	All the tags used in this tagset are broadly classified into three Groups.
	Group 1:
	All tags in this group are similar to the Penn tagset. For e.g.
	NN — Noun , NNP — Proper Nouns , PRP — Pronoun , VAUX — Verb Auxiliary , JJ — Adjective , RB — Adverb , RP — Particle , CC — Conjunction , UH — Interjection , SYM — Special Symbol.
	Group 2:
	This group includes those tags that are a modification of some tags in the Penn tagset. For e.g.
	PREP — Postposition , QF — Quantifiers , QFNUM — Quantifiers Number , VFM — Verb Finite Main , VJJ — Verb Non-Finite Adjectival , VRB — Verb Non-finite Adverbial , VNN — Verb Non-Finite Nominal , QW — Question Words.
	Group 3:
	This designed to cater some phenomena that are specific to Indian languages.
	For e.g.
	NLOC — Noun Location , INTF — Intensifier , NEG — Negative , NNC — Compound Nouns , NNPC — Compound Proper Nouns , NVB — Noun in Kriyamula , JVB — Adjective in Kriyamula , RBVB — Adverb in Kriyamula , INF — Verb infinitival , QT — Quotative.
	LECTURE No.:12
	POS Tagging:
	POS tagging is process of assigning a part-of-speech to each word in a corpus. Stochastic Tagging algorithm is implemented by the following models:
	1. Hidden Markov Model (HMM)
	2. Maximum Entropy Model (MEMM)
	3. Conditional Random Fields (CRF)
	The input to a tagging algorithm is a string of words and a specified tagset. The output is single best tag for each word.
	Useful for many NLP works where a large volume of corpus is required to train this model which depicts the corpus-based POS tagging. Here the input is Untagged New Corpus and the output is Tagged New Corpus.
	
	
	POS Tagged corpus
	
	
	Learn
	Untagged New Corpus --------POS Tagger---------------Tagged new corpus
	LECTURE No.:13
	LECTURE No.:14
	Markov chain:
	Suppose we want to calculate a probability of a sequence of observations in our example, {‘Dry’,’Rain’}.
	Consider all possible hidden state sequences:
	P({‘Dry’,’Rain’}) = P({‘Dry’,’Rain’} , {‘Low’,’Low’}) + P({‘Dry’,’Rain’} , {‘Low’,’High’}) + P({‘Dry’,’Rain’} , {‘High’,’Low’}) + P({‘Dry’,’Rain’} , {‘High’,’High’}) where first term is : P({‘Dry’,’Rain’} , {‘Low’,’Low’})= P({‘Dry’,’Rain’} | {‘Low’,’Low’}) P({‘Low’,’Low’})
	= P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low)
	= 0.4*0.4*0.6*0.4*0.3
	LECTURE No.:15
	Word recognition example:
	PARSE TREE 2:
	Tokenization

