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Module – 1:   Introduction to Advanced Computer Architectures   [5L] 

Different types of architectural classifications – instruction vs. data (SISD, SIMD, MISD, MIMD), 
serial vs. parallel, pipelining vs. parallelism; Pipelining: Definition, different types of pipelining, 
hazards in pipelining.    
Concept of reservation tables, issue of multiple instructions with minimum average latency (MAL). 
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LECTURE 1 

 

Different types of architectural classifications: 

➢ FLYNN’S TAXONOMY OF COMPUTER ARCHITECTURE: Flynn classification (1966) is based 

on multiplicity of instruction streams and the data streams in computer systems. 

➢ FENG’S CLASSIFICATION : Feng’s classification (1972) is based on serial versus parallel 

processing. 

➢ Handler Classification : Handler’s classification (1977) is determined by the degree of parallelism 

and pipelining in various subsystem levels. 

 Other types of architectural classification 

➢ Classification based on coupling between processing elements  

➢ Classification based on mode of accessing memory 

 

Flynn's Classical Taxonomy: 

 

 
 

Figure 1.1 

Among mentioned above the one widely used since 1966, is Flynn's Taxonomy. This taxonomy 

distinguishes multi-processor computer architectures according two independent dimensions of 

Instruction stream and Data stream. An instruction stream is sequence of instructions executed by 

machine. And a data stream is a sequence of data including input, partial or temporary results used by 

instruction stream. Each of these dimensions can have only one of two possible states: Single or Multiple. 

Flynn’s classification depends on the distinction between the performance of control unit and the data 

processing unit rather than its operational and structural interconnections. Following are the four category 

of Flynn classification and characteristic feature of each of them. 

 

 

 



 

1. Single instruction stream, single data stream (SISD) 

 

Figure 1.2 Execution of instruction in SISD processors  
 

The figure 1.1 is represents an organization of simple SISD computer having one control unit, one 

processor unit and single memory unit. 

 

Figure 1.3 SISD processor organizations  
 

• They are also called scalar processor i.e., one instruction at a time and each instruction have only 
one set of operands.  

• Single instruction: only one instruction stream is being acted on by the CPU during any one clock 
cycle.  

• Single data: only one data stream is being used as input during any one clock cycle. 
• Deterministic execution.  
• Instructions are executed sequentially.  
• This is the oldest and until recently, the most prevalent form of computer.  
• Examples: most PCs, single CPU workstations and mainframes. 

 
b) Single instruction stream, multiple data stream (SIMD) processors  

• A type of parallel computer.  
• Single instruction: All processing units execute the same instruction issued by the control unit at any 

given clock cycle as shown in figure 5.4 where there are multiple processor executing instruction 
given by one control unit.  

 

• Multiple data: Each processing unit can operate on a different data element as shown if figure 
below the processor are connected to shared memory or interconnection network providing 
multiple data to processing unit.  



 
                        Figure 1.4 SIMD processor organizations 
 

This type of machine typically has an instruction dispatcher, a very high-bandwidth internal 
network, and a very large array of very small-capacity instruction units.  

• Thus single instruction is executed by different processing unit on different set of data as shown in 
figure 1.4  

• Best suited for specialized problems characterized by a high degree of regularity, such as image 
processing and vector computation.  

• Synchronous (lockstep) and deterministic execution. 
 

 
Figure 1.5 Execution of instructions in SIMD processors 
 
 
c) Multiple instruction streams, single data stream (MISD)  

• A single data stream is fed into multiple processing units.  
• Each processing unit operates on the data independently via independent instruction streams as 

shown in figure 5.6 a single data stream is forwarded to different processing unit which are 
connected to different control unit and execute instruction given to it by control unit to which it is 
attached.  



 
                                           Figure 1.6 MISD processor organizations 
 
 

Thus in these computers same data flow through a linear array of processors executing different 
instruction streams as shown in figure 1.6  

• This architecture is also known as systolic arrays for pipelined execution of specific instructions.  
• Few actual examples of this class of parallel computer have ever existed. One is the experimental 

Carnegie-Mellon C.mmp computer (1971).  
• Some conceivable uses might be:  
1. Multiple frequency filters operating on a single signal stream  
2. Multiple cryptography algorithms attempting to crack a single coded message.  

 

 
Figure 1.7 Execution of instructions in MISD processors 
 
 
d) Multiple instruction stream, multiple data stream (MIMD)  

• Multiple Instructions: every processor may be executing a different instruction stream  
• Multiple Data: every processor may be working with a different data stream as shown in figure 5.8 

multiple data stream is provided by shared memory.  
• Can be categorized as loosely coupled or tightly coupled depending on sharing of data and control.  
• Execution can be synchronous or asynchronous, deterministic or non-deterministic. 

 



 
 
Figure 1.8 MIMD processor organizations 
 

As shown in figure 5.8 there are different processor each processing different task.  
• Examples: most current supercomputers, networked parallel computer "grids" and multi-processor 

SMP computers - including some types of PCs.  
 

 
Figure 1.9 Execution of instructions MIMD processors 
 
Here the some popular computer architecture and there types  
SISD IBM 701, IBM 1620, IBM 7090, PDP VAX11/ 780  
SISD (With multiple functional units) IBM360/91 (3); IBM 370/168 UP  
SIMD (Word Slice Processing) Illiac – IV; PEPE  
SIMD (Bit Slice processing) STARAN; MPP; DAP  
MIMD (Loosely Coupled) IBM 370/168 MP; Univac 1100/80  
MIMD (Tightly Coupled) Burroughs- D – 825 

 

 

 

 

 

 

 

 

 

 



LECTURE 2 

 

Introduction to Parallel Computing 

Computer software were written conventionally for serial computing. This meant that to solve a problem, 
an algorithm divides the problem into smaller instructions. These discrete instructions are then executed 
on Central Processing Unit of a computer one by one. Only after one instruction is finished, next one 
starts. 

Real life example of this would be people standing in a queue waiting for movie ticket and there is only 
cashier.Cashier is giving ticket one by one to the persons. Complexity of this situation increases when 
there are 2 queues and only one cashier. 

So, in short Serial Computing is following: 

1. In this, a problem statement is broken into discrete instructions. 
2. Then the instructions are executed one by one. 
3. Only one instruction is executed at any moment of time. 

Look at point 3. This was causing a huge problem in computing industry as only one instruction was 
getting executed at any moment of time. This was a huge waste of hardware resources as only one part 
of the hardware will be running for a particular instruction and of time. As problem statements were 
getting heavier and bulkier, so does the amount of time in execution of those statements. Example of 
processors are Pentium 3 and Pentium 4. 

 
Now let’s come back to our real life problem. We could definitely say that complexity will decrease when 
there are 2 queues and 2 cashier giving tickets to 2 persons simultaneously. This is an example of 
Parallel Computing. 
 

 
Parallel Computing – 
 
It is the use of multiple processing elements simultaneously for solving any problem. Problems are broken 
down into instructions and are solved concurrently as each resource which has been applied to work is 
working at the same time. 
 

Advantages of Parallel Computing over Serial Computing are as follows: 
 

1. It saves time and money as many resources working together will reduce the time and cut 
potential costs. 

2. It can be impractical to solve larger problems on Serial Computing. 
3. It can take advantage of non-local resources when the local resources are finite. 
4. Serial Computing ‘wastes’ the potential computing power, thus Parallel Computing makes better 

work of hardware. 
 

Types of Parallelism: 
 

1. Bit-level parallelism: It is the form of parallel computing which is based on the increasing 
processor’s size. It reduces the number of instructions that the system must execute in order to 
perform a task on large-sized data. 
 
Example: Consider a scenario where an 8-bit processor must compute the sum of two 16-bit 
integers. It must first sum up the 8 lower-order bits, then add the 8 higher-order bits, thus requiring 



two instructions to perform the operation. A 16-bit processor can perform the operation with just one 
instruction. 

2. Instruction-level parallelism: A processor can only address less than one instruction for each 
clock cycle phase. These instructions can be re-ordered and grouped which are later on executed 
concurrently without affecting the result of the program. This is called instruction-level parallelism. 

3. Task Parallelism: Task parallelism employs the decomposition of a task into subtasks and then 
allocating each of the subtasks for execution. The processors perform execution of sub tasks 
concurrently. 
 

Why parallel computing? 
 

• The whole real world runs in dynamic nature i.e. many things happen at a certain time but at 
different places concurrently. This data is extensively huge to manage. 

• Real world data needs more dynamic simulation and modeling, and for achieving the same, 
parallel computing is the key. 

• Parallel computing provides concurrency and saves time and money. 

• Complex, large datasets, and their management can be organized only and only using parallel 
computing’s approach. 

• Ensures the effective utilization of the resources. The hardware is guaranteed to be used 
effectively whereas in serial computation only some part of hardware was used and the rest 
rendered idle. 

• Also, it is impractical to implement real-time systems using serial computing. 
 

Applications of Parallel Computing: 
 

• Data bases and Data mining. 

• Real time simulation of systems. 

• Science and Engineering. 

• Advanced graphics, augmented reality and virtual reality. 
 

Limitations of Parallel Computing: 
 

• It addresses such as communication and synchronization between multiple sub-tasks and 
processes which is difficult to achieve. 

• The algorithms must be managed in such a way that they can be handled in the parallel 
mechanism. 

• The algorithms or program must have low coupling and high cohesion. But it’s difficult to create 
such programs. 

• More technically skilled and expert programmers can code a parallelism based program well. 
 

Future of Parallel Computing:  
 
The computational graph has undergone a great transition from serial computing to parallel computing. 
Tech giant such as Intel has already taken a step towards parallel computing by employing multicore 
processors. Parallel computation will revolutionize the way computers work in the future, for the better 
good. With all the world connecting to each other even more than before, Parallel Computing does a 
better role in helping us stay that way? With faster networks, distributed systems, and multi-processor 
computers, it becomes even more necessary. 
 
 
 
 
 
 
 



 

LECTURE 3 

 

Pipelining 
 
Pipelining is an implementation technique where multiple instructions are overlapped in execution. The 
computer pipeline is divided in stages. Each stage completes a part of an instruction in parallel. The 
stages are connected one to the next to form a pipe - instructions enter at one end, progress through the 
stages, and exit at the other end. 

Pipelining does not decrease the time for individual instruction execution. Instead, it increases instruction 
throughput. The throughput of the instruction pipeline is determined by how often an instruction exits the 
pipeline. 

Pipelining for instruction execution is similar to construction of factor assembly line for product 
manufacturing. The basic idea is to decompose the instruction execution process into a collection of 
smaller functions that can be independently performed by discrete subsystems in the processor 
implementation. An illustration of this decomposition into 4 parts is: 
 
 
 
 
 
For pipelining, we will organized these discrete subsystems (which are called pipeline stages) 
implementing the instruction interpretation process into concurrently executing systems each operating on 
distinct instructions in the instruction stream (much like a factory assembly line). 
 
Typical Non Pipelined Execution 

 

                                                Time     

Figure 1.10Idealized Pipeline Executions 

 

Stage 0 Stage 1 Stage 2 Stage 3 



Figure 1.11 Actual Pipeline Executions 

  Time to execute n instructions: (3+n)t. 

  Steady state :  

Speedup, Efficiency and Throughput 

Ideally, a linear pipeline ok k stages can process n tasks in  k + (n+1) clock cycles , where k cycles are 

needed to complete the execution of the very first task and the remaining  n-1 tasks require  n-1 cycles. 

Thus the total  time required is: 

  Tk =[k + (n-1)]  

where  is the clock period. Consider an equivalent function non-pipelined processor which has a flow-

through delay of  k . The amount of time it takes  to execute n tasks on this non pipelined processor is T1 

= nk . 

Speedup Factor 

The speedup factor of a k-stage pipeline over an equivalent non-pipelined processor is defined as: 

  Sk = =  =  

Efficiency and Throughput 

The efficiency Ek of a linear k-stage pipeline is defined as  

  Ek =  =  

Obviously, the efficiency approaches 1 when n→ ∞ , and a lower bound on Ek is 1/k when n = 1. The 
pipeline throughput Hk is defined as the number of tasks (operations) per unit time : 

  Hk =  =  

The maximum throughput f occurs when Ek →1 and n→ ∞. This coincides with the speedup definition 

given in chapter 3. Note that Hk = Ek . f = Ek/  = Sk/k . 

 

Consider the numerical example,  

let the time it takes to process a sub-operation in each segment be equal to tp = 20 ns. Assume that the 

pipeline has k = 4 segments and execute n = 100 tasks in sequence. The pipeline system will take (k + n - 

1)tp= (4+ 99)x20= 2060 ns to complete.  

 Assuming that tn= ktp = 4 x 20 = 80 ns, 

a non-pipeline system requires nktp = 100 x 80 = 8000 ns to complete the 100 tasks. The speedup ratio is 

equal to 8000/2060 = 3.88. As the number of tasks increases, the speedup will approach 4, which is 

equal to the number of segments in the pipeline. If we assume that tn = 60 ns, the speedup becomes 

60/20 = 3. 



 

LECTURE 4 

Linear vs Non-Linear,Static Vs Dynamic Vs Unifunction Vs Multifunction Pileline 

A linear pipelining is a series of processing stages and memory access.  

 

Figure 1.12 Linear Pipeline  

A non linear pipelining can be configured to perform various functions at different times. In a dynamic 

pipeline there is also feed forward or feedback connection. Non-linear pipeline also allows very long 

instruction words. 

 

Figure 1.13Linear Pipeline  

Linear Pipeline Non-Linear Pipeline 

Linear pipeline are static pipeline because they 
are used to perform fixed functions. 

Non-Linear pipeline are dynamic pipeline 
because they can be reconfigured to perform 
variable functions at different times. 

Linear pipeline allows only streamline 
connections. 

Non-Linear pipeline allows feed-forward and 
feedback connections in addition to the 
streamline connection. 

It is relatively easy to partition a given function 
into a sequence of linearly ordered sub 
functions. 

Function partitioning is relatively difficult 
because the pipeline stages are interconnected 
with loops in addition to streamline connections. 

The Output of the pipeline is produced from the 
last stage. 

The Output of the pipeline is not necessarily 
produced from the last stage. 



The reservation table is trivial in the sense that 
data flows in linear streamline. 

The reservation table is non-trivial in the sense 
that there is no linear streamline for data flows. 

Static pipelining is specified by single 
Reservation table. 

Dynamic pipelining is specified by more than 
one Reservation table. 

All initiations to a static pipeline use the same 
reservation table. 

A dynamic pipeline may allow different 
initiations to follow a mix of reservation tables. 

There are two types of pipelines: Static and Dynamic. A static pipeline can perform only one function at a 

time whereas a dynamic pipeline can perform more than one function at a time. 

Static pipelining - it is composition of stages one after another means that the output of one stage is 

become input to the next stage we also called it linear pipelining. it is further divided in two types 

synchronous and asynchronous.  

Dynamic pipelining- in it stages are connected in a liner fashion but this kind of pipelining used feed 

forward and feed backward connections as a input to the stages. It performs variable function but static 

perform fixed functions. In dynamic pipelining we can take intermediate outputs. 

Static Dynamic 

It may assume only one functional configuration 
at a time 

It permits several functional configurations to 
exist simultaneously 

It can be either unifunctional or multifunctional A dynamic pipeline must be multi-functional 
 

Static pipelines are preferred when instructions of 
same type are to be executed continuously 

The dynamic configuration requires more 
elaborate control and sequencing mechanisms 
than static pipelining 

A pipeline unit with a fixed and dedicated function is called unifunctional. 

A multifunction pipe may perform different functions, either at different times or at the same time. 

Unifunctional Pipelines Multifunctional Pipelines 

A pipeline unit with fixed and dedicated function is 
called unifunctional. 

A multifunction pipe may perform different 
functions either at different times or same 
time, by interconnecting different subset of 
stages in pipeline.  
 

It has 12 unifunctional pipelines described in four 
groups: 

– Address Functional Units:  
• Address Add Unit  
• Address Multiply Unit  

 

It has  
– one instruction processing 

unit 
– four memory buffer units and 
– four arithmetic units.  

Example: CRAY1 (Supercomputer - 1976) 
 

Example 4X-TI-ASC (Supercomputer - 1973) 
 

 

 

 



Instruction Pipeline 

A stream of instructions can be executed by a pipeline in an overlapped manner.  

The Instruction Cycle is given below: 
 
 
 
 
 

 FI 

 

 

 DI 

 

 -Calculate Operand Address(CO) 

 - Fetch Operand(FO) 

 

 -Execute Instruction(EI) 

 - Write back Operand(WO) 

 

 

 

Figure 1.14Instruction Cycle 

Instruction execution is extremely complex and involves several operations which are executed 
successively. This implies a large amount of hardware, but only one part of this 
hardware works at a given moment. 
 
Pipelining is an implementation technique whereby multiple instructions are overlapped in execution. This 
is solved without additional hardware but only by letting different parts of the hardware work for different 
instructions at the same time. 
 
The pipeline organization of a CPU is similar to an assembly line: the work to be done in an instruction is 
broken into smaller steps (pieces), each of which takes a fraction of the time needed to complete the 
entire instruction. Each of these steps is a pipe stage (or a pipe segment). 
The time required to execute a stage and move to the next is called a machine cycle (this is one or 
several clock cycles). The execution of one instruction takes several machine cycles as it passes through 
the pipeline. 
 
 
 

Fetch 

Instruction 

Decode 

Fetch 

Operand 

Execute 

Instruction 



The Four Segment Pipelining: 
 
Four segment pipeline: 
FI: fetch instruction 
DA: decode instruction 
FO: fetch operand 
EX: execute instruction 
 
cycle →       1        2           3          4           5        6           7        8     

 
instr. i    
 
 
 
instr. i+1               
 
 
 
instr.  i+2            
 
 
 
instr.   i+3                               
 
 
 
 
instr.  i+4                                                   
 
 
Figure 1.15 Pipelining by four Segments 

 
Acceleration by Pipelining Six Segments: 
 
Six stage pipeline: 
FI: fetch instruction    FO: fetch operand 
DI: decode instruction               EI: execute instruction 
CO: calculate operand address            WO:write operand 

 

 

 

 

 

 

 

 

   FI DA FO EX 

   FI DA FO EX 

   FI DA FO EX 

   FI DA FO EX 

   FI DA FO EX 



cycle →       1        2      3      4       5       6      7     8    9    10  11  12 

instr. i 

 

instr. i+1 

 

instr. i+2                      

 

instr. i+3 

 

instr. i+4                                       

 

instr. i+5 

 

instr. i+6                                                

 

Figure 1.16  Pipelining by Six Segments 

Execution time for the 7 instructions, with pipelining: 

(Tex/6)✕12= 2✕Tex 

 

• Acceleration: 7✕Tex /2✕Tex = 7/2 

 
After a certain time (N-1 cycles) all the N stages of the pipeline are working: the pipeline is filled. Now, 
theoretically, the pipeline works providing maximal parallelism (N instructions are active simultaneously).  
• τ: duration of one machine cycle 
• n: number of instructions to execute 
• k: number of pipeline stages 
• Tk,n : total time to execute n instructions on a 
pipeline with k stages 
• Sk,n : (theoretical) speedup produced by a pipeline with k stages when executing n instructions 

Tk,n = [k + (n-1)] xτ 

- The first instruction takes k ✕ τ to finish 

- The following n − 1 instructions produce one result per cycle. 
 
On a non-pipelined processor each instruction 

takes k ✕ τ, and n instructions: Tn= n ✕k ✕ τ 

 
 
 
 

FI DI CO FO EI WO 

FI DI CO FO EI WO 

FI DI CO FO EI WO 

FI DI CO FO EI WO 

FI DI CO FO EI WO 

FI DI CO FO EI WO 

FI DI CO FO EI WO 



Sk,n =  

 
 For large number of instructions (n → ∞) the speedup approaches k (number of stages). 
• Apparently a greater number of stages always 
provides better performance. However: 

- a greater number of stages increases the overhead in moving information between       stages 
and synchronization between stages. 

- with the number of stages the complexity of the CPU grows. 
- it is difficult to keep a large pipeline at maximum rate because of pipeline hazards. 

 
 
 

ARITHMETIC PIPELINE 

Pipeline arithmetic units are usually found in very high speed computers.  They are used to implement 
floating point operations. We will now discuss the pipeline unit for the floating 
point addition and subtraction. 
The inputs to floating point adder pipeline are two normalized floating point numbers. 
 

 
 
A  and B are mantissas and a and b are the exponents. 
 The floating point addition and subtraction can be performed in four segments. 
 



 
Figure 1.17  Arithmetic  Pipeline  

 

 



 

Figure 1.18 Operation on Pipeline segments 



 

LECTURE 5 

 

PIPELINE HAZARDS 

There are situations, called hazards, that prevent the next instruction in the instruction stream from being 
executing during its designated clock cycle. Hazards reduce the performance from the ideal speedup 
gained by pipelining.  

There are three classes of hazards:  

1.Structural Hazards. They arise from resource conflicts when the hardware cannot support all possible 

combinations of instructions in simultaneous overlapped execution.  

2.Data Hazards. They arise when an instruction depends on the result of a previous instruction in a way 

that is exposed by the overlapping of instructions in the pipeline.  

3.Control Hazards.They arise from the pipelining of branches and other instructions that change the PC. 

Hazards in pipelines can make it necessary to stall the pipeline.  The processor can stall on different 

events:  

A cache miss. A cache miss stalls all the instructions on pipeline both before and after the instruction 

causing the miss.  

A hazard in pipeline. Eliminating a hazard often requires that some instructions in the pipeline to be 

allowed to proceed while others are delayed. When the instruction is stalled, all the instructions issued 

later than the stalled instruction are also stalled. Instructions issued earlier than the stalled instruction 

must continue, since otherwise the hazard will never clear. 

HAZARDS 

Data hazards 

Data hazards occur when instructions that exhibit data dependence modify data in different stages of a 
pipeline. Ignoring potential data hazards can result in race conditions (also termed race hazards). There 
are three situations in which a data hazard can occur: 

1. read after write (RAW), a true dependency 
2. write after read (WAR), an anti-dependency 
3. write after write (WAW), an output dependency 

Consider two instructions i1 and i2, with i1 occurring before i2 in program order. 

Read after write (RAW) 

(i2 tries to read a source before i1 writes to it) A read after write (RAW) data hazard refers to a situation 
where an instruction refers to a result that has not yet been calculated or retrieved. This can occur 
because even though an instruction is executed after a prior instruction, the prior instruction has been 
processed only partly through the pipeline. 

http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/structHaz.html
http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/dataHaz.html
http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/controlHaz.html
https://en.wikipedia.org/wiki/Data_dependence
https://en.wikipedia.org/wiki/Race_condition


Example 

For example: 

i1. R2<- R1 + R3 
i2. R4 <- R2 + R3 

The first instruction is calculating a value to be saved in register R2, and the second is going to use this 
value to compute a result for register R4. However, in a pipeline, when operands are fetched for the 2nd 
operation, the results from the first will not yet have been saved, and hence a data dependency occurs. 

A data dependency occurs with instruction i2, as it is dependent on the completion of instruction i1. 

Write after read (WAR) 

(i2 tries to write a destination before it is read by i1) A write after read (WAR) data hazard represents a 
problem with concurrent execution. 

Example 

For example: 

i1. R4 <- R1 + R5 
i2. R5<- R1 + R2 

In any situation with a chance that i2 may finish before i1 (i.e., with concurrent execution), it must be 
ensured that the result of register R5 is not stored before i1 has had a chance to fetch the operands. 

Write after write (WAW) 

(i2 tries to write an operand before it is written by i1) A write after write (WAW) data hazard may occur in a 
concurrent execution environment. 

Example 

For example: 

i1. R2<- R4 + R7 
i2. R2<- R1 + R3 

The write back (WB) of i2 must be delayed until i1 finishes executing. 

Structural hazards: 

A structural hazard occurs when a part of the processor's hardware is needed by two or more instructions 
at the same time. A canonical example is a single memory unit that is accessed both in the fetch stage 
where an instruction is retrieved from memory, and the memory stage where data is written and/or read 
from memory. They can often be resolved by separating the component into orthogonal units (such as 
separate caches) or bubbling the pipeline. 

https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Orthogonal
https://en.wikipedia.org/wiki/Bubbling_the_pipeline


A structural hazard would for example result from memory access of instruction fetch and memory access 
of data, were it not for separate data and instruction caches:  
 

 

Figure 1.19  Structural hazards due to instruction fetch and memory access of data 

Another example of a structural hazard is when decoding (setting up input registers) makes reference to 
same register as a register write:  

 

Figure 1.20 Structural hazards due to reference to same register as a register write 



Control hazards (branch hazards): 

Branching hazards (also termed control hazards) occur with branches. On many instruction pipeline micro 
architectures, the processor will not know the outcome of the branch when it needs to insert a new 
instruction into the pipeline (normally the fetch stage). 

To avoid control hazards micro architectures can: 

• insert a pipeline bubble (discussed above), guaranteed to increase latency, or 

• use branch prediction and essentially make educated guesses about which instructions to insert, in 
which case a pipeline bubble will only be needed in the case of an incorrect prediction 

Pipeline bubble or Pipeline Stall: 

Bubbling the pipeline, also termed a pipeline break or pipeline stall, is a method to preclude data, 
structural, and branch hazards. As instructions are fetched, control logic determines whether a hazard 
could/will occur. If this is true, then the control logic inserts no operations (NOPs) into the pipeline. Thus, 
before the next instruction (which would cause the hazard) executes, the prior one will have had sufficient 
time to finish and prevent the hazard. If the number of NOPs equals the number of stages in the pipeline, 
the processor has been cleared of all instructions and can proceed free from hazards. All forms of stalling 
introduce a delay before the processor can resume execution. 

Flushing the pipeline occurs when a branch instruction jumps to a new memory location, invalidating all 
prior stages in the pipeline. These prior stages are cleared, allowing the pipeline to continue at the new 
instruction indicated by the branch. 

In computing, a bubble or pipeline stall is a delay in execution of an instruction in an instruction pipeline 
in order to resolve a hazard.  

During the decoding stage, the control unit will determine if the decoded instruction reads from a register 
that the instruction currently in the execution stage writes to. If this condition holds, the control unit will 
stall the instruction by one clock cycle. It also stalls the instruction in the fetch stage, to prevent the 
instruction in that stage from being overwritten by the next instruction in the program. 

To prevent new instructions from being fetched when an instruction in the decoding stage has been 
stalled, the value in the PC register and the instruction in the fetch stage are preserved to prevent 
changes. The values are preserved until the bubble has passed through the execution stage.  

The execution stage of the pipeline must always be performing an action. A bubble is represented in the 
execution stage as a NOP instruction, which has no effect other than to stall the instructions being 
executed in the pipeline. 

Timeline 

The following is two executions of the same four instructions through a 4-stage pipeline but, for whatever 
reason, a delay in fetching of the purple instruction in cycle #2 leads to a bubble being created delaying 
all instructions after it as well. 

https://en.wikipedia.org/wiki/Branch_(computer_science)
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Branch_prediction
https://en.wikipedia.org/wiki/NOP
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Hazard_(computer_architecture)
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/NOP


 

Figure 1.21 Bubbles in  Pipeline  

 

 

Branch Prediction: 

In computer science, predication is an architectural feature that provides an alternative to conditional 

branch instructions. Predication works by executing instructions from both paths of the branch and only 

permitting those instructions from the taken path to modify architectural state. The instructions from the 

taken path are permitted to modify architectural state because they have been associated (predicated) 

with a predicate, a Boolean value used by the instruction to control whether the instruction is allowed to 

modify the architectural state or not. 

Most computer programs contain conditional code, which will be executed only under specific conditions 

depending on factors that cannot be determined beforehand, for example depending on user input. As the 

majority of processors simply execute the next instruction in a sequence, the traditional solution is to 

insert branch instructions that allow a program to conditionally branch to a different section of code, thus 

changing the next step in the sequence. This was sufficient until designers began improving performance 

by implementing instruction pipelining, a method which is slowed down by branches. For a more thorough 

description of the problems which arose, and a popular solution, see branch predictor. 

Luckily, one of the more common patterns of code that normally relies on branching has a more elegant 

solution. Consider the following pseudo code: 

 

if condition 

    do this 

https://en.wikipedia.org/wiki/Branch_prediction


else 

    do that 

On a system that uses conditional branching, this might translate to machine instructions looking similar 

to:[1] 

branch if condition to label 1 

do that 

  branch to label 2 

 label 1: 

   do this 

 label 2: 

  ... 

With predication, all possible branch paths are coded inline, but some instructions execute while others 

do not. The basic idea is that each instruction is associated with a predicate (the word here used similarly 

to its usage in predicate logic) and that the instruction will only be executed if the predicate is true. The 

machine code for the above example using predication might look something like this: 

 

(condition) do this 

 

(not condition) do that 

Note that beside eliminating branches, less code is needed in total, provided the architecture provides 

predicated instructions. While this does not guarantee faster execution in general, it will if the do this and 

do that blocks of code are short enough. 

 

Predication's simplest form is partial predication, where the architecture has conditional move or 

conditional select instructions. Conditional move instructions write the contents of one register over 

another only if the predicate's value is true, whereas conditional select instructions choose which of two 

registers has its contents written to a third based on the predicate's value. A more generalized and 

capable form is full predication. Full predication has a set of predicate registers for storing predicates 

(which allows multiple nested or sequential branches to be simultaneously eliminated) and most 

instructions in the architecture have a register specifier field to specify which predicate register supplies 

the predicate. 

 

Advantages: 

The main purpose of predication is to avoid jumps over very small sections of program code, increasing 
the effectiveness of pipelined execution and avoiding problems with the cache. It also has a number of 
more subtle benefits: 

• Functions that are traditionally computed using simple arithmetic and bitwise operations may be 
quicker to compute using predicated instructions. 

• Predicated instructions with different predicates can be mixed with each other and with 
unconditional code, allowing better instruction scheduling and so even better performance. 

https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Instruction_scheduling


• Elimination of unnecessary branch instructions can make the execution of necessary branches, 
such as those that make up loops, faster by lessening the load on branch prediction mechanisms. 

• Elimination of the cost of a branch miss prediction which can be high on deeply pipelined 
architectures. 

Disadvantages: 

Predication's primary drawback is in increased encoding space. In typical implementations, every 
instruction reserves a bit field for the predicate specifying under what conditions that instruction should 
have an effect. When available memory is limited, as on embedded devices, this space cost can be 
prohibitive. However, some architecture such as Thumb-2 are able to avoid this issue (see below). Other 
detriments are the following:  

• Predication complicates the hardware by adding levels of logic to critical paths and potentially 
degrades clock speed. 

• A predicated block includes cycles for all operations, so shorter paths may take longer and be 
penalized. 

Predication is most effective when paths are balanced or when the longest path is the most frequently 
executed, but determining such a path is very difficult at compile time, even in the presence of profiling 
information. 

Pipeline Performance Analysis 

1. CPI of a Pipeline Processor 

Suppose an N-segment pipeline processes M instructions without stalls or penalties. We know that it 
takes N-1 cycles to load (setup) the pipeline, and M cycles to complete the instructions. Thus, the number 
of cycles is given by:  

Ncyc = N + M - 1  

The cycles per instruction are easily computed:  

CPI = Ncyc/M = 1 + (N - 1)/M  

 

2. Effect of Stalls 

Now let us add some stalls to the pipeline processing scheme. Suppose that we have a N-segment 
pipeline processing M instructions, and we must insert K stalls to resolve data dependencies. This means 
that the pipeline now has a setup penalty of N-1 cycles, as before, a stall penalty of K cycles, and a 
processing cost (as before) of M cycles to process the M instructions. Thus, our governing equations 
become:  

Ncyc = N + M + K - 1  

and  

CPI = Ncyc/M = 1 + (N + K - 1)/M  

https://en.wikipedia.org/wiki/Branch_prediction
https://en.wikipedia.org/wiki/Embedded_computing
https://en.wikipedia.org/wiki/Thumb-2
https://en.wikipedia.org/wiki/Control_unit
https://en.wikipedia.org/wiki/Datapath
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://en.wikipedia.org/wiki/Profiling_(computer_programming)


In practice, what does this tell us? Namely, that the stall penalty (and all the other penalties that we will 
examine) adversely impact CPI. Here is an example to show how we would analyze the problem of stalls 
in a pipelined program where the percentage of instructions that incur stalls versus non-stalls are 
specified.  

3. Suppose that an N-segment pipeline executes M instructions, and that a fraction fstall of the instructions 
require the insertion of K stalls per instruction to resolve data dependencies. The total number of stalls is 
given by fstall · M · K (fraction of instructions that are stalls, times the total number of instructions, times the 
average number of stalls per instruction). By substitution, our preceding equations for pipeline 
performance become:  

Ncyc = N + M + (fstall · M · K) - 1  

and  

CPI = Ncyc/M = 1 + (fstall · K) + (N - 1)/M  

So, the CPI penalty due to the combined effects of setup cost and stalls now increases to fK + (N - 1)/M. 
If fstall = 0.1, K = 3, N = 5, and M = 100, then CPI = 1 + 0.3 + 4/100 = 1.34, which is 34 percent larger than 
the fallacious assumption of CPI = 1.  

3. Effect of Exceptions 

For purposes of discussion, assume that we have M instructions executing on an N-segment pipeline with 
no stalls, but that a fraction fex of the instructions raise an exception in the EX stage. Further assume that 
each exception requires that (a) the pipeline segments before the EX stage be flushed, (b) that the 
exception be handled, requiring an average of H cycles per exception, then that (c) the instruction 
causing the exception and its following instructions be reloaded into the pipeline.  

Thus, fex · M instructions will cause exceptions. In the MIPS pipeline, each of these instructions causes 
three instructions to be flushed out of the pipe (IF, ID, and EX stages), which incurs a penalty of four 
cycles (one cycle to flush, and three to reload) plus H cycles to handle the exception. Thus, the pipeline 
performance equations become:  

Ncyc = N - 1 + (1 - fex) · M + (fex · M · (H + 4))  

which we can rewrite as  

Ncyc = M + [N - 1 - M + (1 - fex) · M + (fex · M · (H + 4))]  

Rearranging terms, the equation for CPI can be expressed as  

CPI = Ncyc/M = 1 + [1 - fex + (fex · (H+4)) - 1 + (N - 1)/M]  

After combining terms, this becomes:  

CPI = Ncyc/M = 1 + [(fex · (H+3)) + (N - 1)/M]  

4. Effect of Branches 

Branches present a more complex picture in pipeline performance analysis. Recall that there are three 
ways of dealing with a branch: (1) Assume the branch is not taken, and if the branch is taken, flush the 



instructions in the pipe after the branch, then insert the instruction pointed to by the BTA; (2) the converse 
of 1); and (3) use a delayed branch with a branch delay slot and re-ordering of code (assuming that this 
can be done).  

The first two cases are symmetric. Assume that an error in branch prediction (i.e., taking the branch when 
you expected not to, and conversely) requires L instruction to be flushed from the pipeline (one cycle for 
flushing plus L-1 "dead" cycles, since the branch target can be inserted in the IF stage). Thus, the cost of 
each branch prediction error is L cycles. Further assume that a fraction fbr of the instructions are branches 
and fbe of these instructions result in branch prediction errors.  

The penalty in cycles for branch prediction errors is thus given by  

branch_penalty = fbr · fbe · M instructions · L cycles per instruction. 

The pipeline performance equations then become:  

Ncyc = N - 1 + (1 - fbr · fbe) · M + (fbr · fbe · M · L)  

which we can rewrite as  

Ncyc = M + [N - 1 - M + (1 - fbr · fbe) · M + (fbr · fbe · M · L)  

Rearranging terms, the equation for CPI can be expressed as  

CPI = Ncyc/M = 1 + [(1 - fbr · fbe) + (fbr · fbe · L) - 1 + (N - 1)/M]. 

After combining terms, this becomes:  

CPI = Ncyc/M = 1 + [(fbr · fbe · (L-1)) + (N - 1)/M]  

In the case of the branch delay slot, we assume that the branch target address is computed and the 
branch condition is evaluated at the ID stage. Thus, if the branch prediction is correct, there is no penalty. 
Depending on the method by which the pipeline evaluates the branch and fetches (or pre-fetches) the 
branch target, a maximum of two cycles penalty (one cycle for flushing, one cycle for fetching and 
inserting the branch target) is incurred for insertion of a stall in the case of a branch prediction error. In 
this case, the pipeline performance equations become:  

Ncyc = N - 1 + (1 - fbr · fbe) · M + (fbr · fbe · 2M)  

This implies the following equation for CPI as a function of branches and branch prediction errors:  

CPI = Ncyc/M = 1 + [fbr · fbe + (N - 1)/M]  

Since fbr<< 1 is usual, and fbe is, on average, assumed to be no worse than 0.5, the product fbr · fbe, which 
represents the additional branch penalty for CPI in the presence of delayed branch and BDS, is generally 
small.  
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Lecture 1 

 

Instruction set architecture (ISA)  

Instruction set architecture(ISA) is the set of processor design techniques used to implement the 

instruction work flow on hardware. In more practical words, ISA tells you that how your 

processor going to process your program instructions. 

 

Fig: 2.1   Instruction set architecture (ISA) 

There is no standard computer architecture accepting different types like CISC, RISC, etc. 

Complex instruction set computer (CISC)  

A complex instruction set computer (CISC /pronounce as ˈsisk’/) is a computer where single 

instructions can execute several low-level operations (such as a load from memory, an arithmetic 

operation, and a memory store) or are capable of multi-step operations or addressing modes 

within single instructions, as its name suggest “COMPLEX INSTRUCTION SET”. 

CISC Characteristics: 

1. A large number of instructions-typically from 100 to 250 instructions. 

2. Some instructions that perform specialized tasks and are used infrequently. 

3. A large variety of addressing modes-typically from 5 to 20 different modes. 



4. Variable-length instruction formats. 

5. Instructions that manipulate operands in memory. 

 

Reduced instruction set computer (RISC) 

A reduced instruction set computer (RISC /pronounce as ˈrisk’/) is a computer which only use 

simple instructions that can be divide into multiple instructions which perform low-level 

operation within single clock cycle, as its name suggest “REDUCED INSTRUCTION SET”. 

RISC Characteristics: 

1. Relatively few instructions. 

2. Relatively few addressing modes. 

3. Memory access limited to load and store instructions. 

4. All operations done within the registers of the CPU. 

5. Fixed-length, easily decoded instruction format. 

6. Single-cycle instruction execution. 

7. Hardwired rather than micro programmed control. 

 

RISC & CISC architecture with example 

Let we take an example of multiplying two numbers 

A = A * B; <<<======this is C statement 

 

The CISC Approach: - The primary goal of CISC architecture is to complete a task in as 

few lines of assembly as possible. This is achieved by building processor hardware that is 

capable of understanding & executing a series of operations, this is where our CISC architecture 

introduced. 

  For this particular task, a CISC processor would come prepared with a specific instruction 

(we’ll call it “MULT”). When executed, this instructionLoads the two values into separate 

registers 

Multiplies the operands in the execution unitAnd finally third, stores the product in the 

appropriate register.Thus, the entire task of multiplying two numbers can be completed with one 

instruction: 



MULT A,B<<<======this is assembly statement 

MULT is what is known as a “complex instruction.” It operates directly on the computer’s 

memory banks and does not require the programmer to explicitly call any loading or storing 

functions. 

Advantages:- 

• Compiler has to do very little work to translate a high-level language statement into 

assembly 

• Length of the code is relatively short 

• Very little RAM is required to store instructions 

• The emphasis is put on building complex instructions directly into the hardware. 

 

The RISC Approach: - RISC processors only use simple instructions that can be executed 

within one clock cycle. Thus, the “MULT” command described above could be divided into 

three separate commands: 

“LOAD” which moves data from the memory bank to a register 

“PROD” which finds the product of two operands located within the registers 

“STORE” which moves data from a register to the memory banks. 

In order to perform the exact series of steps described in the CISC approach, a programmer 

would need to code four lines of assembly: 

                                          LOAD R1, A          <<<======this is assembly statement 

                                          LOAD R2,B<<<======this is assembly statement 

                                          PROD A, B           <<<======this is assembly statement 

                                          STORE R3, A       <<<======this is assembly statement 

 

                          At first, this may seem like a much less efficient way of completing the 

operation. Because there are more lines of code, more RAM is needed to store the assembly level 

instructions. The compiler must also perform more work to convert a high-level language 

statement into code of this form. 

Advantages:- 

• Each instruction requires only one clock cycle to execute, the entire program will execute 

in approximately the same amount of time as the multi-cycle “MULT” command. 

• These RISC “reduced instructions” require less transistors of hardware space than the 

complex instructions, leaving more room for general purpose registers. Because all of the 

instructions execute in a uniform amount of time (i.e. one clock) 

• Pipelining is possible. 

• LOAD/STORE mechanism:- Separating the “LOAD” and “STORE” instructions actually 

reduces the amount of work that the computer must perform. After a CISC-style 

“MULT” command is executed, the processor automatically erases the registers. If one of 

the operands needs to be used for another computation, the processor must re-load the 

data from the memory bank into a register. In RISC, the operand will remain in the 

register until another value is loaded in its place. 



Example of RISC & CISC 

                          Examples of CISC instruction set architectures are PDP-11, VAX, Motorola 

68k, and your desktop PCs on Intel’s x86 architecture based too. 

                          Examples of RISC families include DEC Alpha, AMD 29k, ARC, Atmel AVR, 

Blackfin, Intel i860 and i960, MIPS, Motorola 88000, PA-RISC, Power (including PowerPC), 

SuperH, SPARC and ARM too. 

Which one is better? 

We cannot differentiate RISC and CISC technology because both are suitable at its specific 

application. What counts are how fast a chip can execute the instructions it is given and how well 

it runs existing software. Today, both RISC and CISC manufacturers are doing everything to get 

an edge on the competition. 

What’s new? 

You might thinking that RISC is now-a-days used in microcontroller application widely, so it’s 

better for that particular application and CISC at desktop application. But reality is both are at 

threat position cause of a new technology called EPIC. 

EPIC (Explicitly Parallel Instruction Computing) :-EPIC is a invented by Intel and is in a 

way, a combination of both CISC and RISC. This will in theory allow the processing of 

Windows-based as well as UNIX-based applications by the same CPU. 

                         Intel is working on it under code-name Merced. Microsoft is already developing 

their Win64 standard for it. Like the name says, Merced will be a 64-bit chip. 

                        If Intel’s EPIC architecture is successful, it might be the biggest thread for RISC. 

All of the big CPU manufactures but Sun and Motorola are now selling x86-based products, and 

some are just waiting for Merced to come out (HP, SGI). Because of the x86 market it is not 

likely that CISC will die soon, but RISC may. 

So the future might bring EPIC processors and more CISC processors, while the RISC 

processors are becoming extinct. 

CISC RISC 

Larger set of instructions. Easy to program Smaller set of Instructions. Difficult to 

program. 



Simpler design of compiler, considering 

larger set of instructions. 

Complex design of compiler. 

Many addressing modes causing complex 

instruction formats. 

Few addressing modes, fix instruction 

format. 

Instruction length is variable. Instruction length varies. 

Higher clock cycles per second. Low clock cycle per second. 

Emphasis is on hardware. Emphasis is on software. 

Control unit implements large instruction 

set using micro-program unit. 

Each instruction is to be executed by 

hardware. 

Slower execution, as instructions are to be 

read from memory and decoded by the 

decoder unit. 

Faster execution, as each instruction is to 

be executed by hardware. 

Pipelining is not possible. Pipelining of instructions is possible, 

considering single clock cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lecture 2 
Reduced Code Size in RISCs  
As RISC computers started being used in embedded applications, the 32-bit fixed format became 

a liability since cost and hence smaller code are important. In response, several manufacturers 

offered a new hybrid version of their RISC instruction sets, with both 16-bit and 32-bit 

instructions. The narrow instructions support fewer operations, smaller address and immediate 

fields, fewer registers, and two-address format rather than the classic three-address format of 

RISC computers.  

The Role of Compilers 
Today almost all programming is done in high-level languages for desktop and server 

applications. This development means that since most instructions executed are the output of a 

compiler, an instruction set architecture is essentially a compiler target. In earlier times for 

these applications, architectural decisions were often made to ease assembly language 

programming or for a specific kernel. Because the compiler will significantly affect the 

performance of a computer, understanding compiler technology today is critical to designing 

and efficiently implementing an instruction set. Once it was popular to try to isolate the 

compiler technology and its effect on hardware performance from the architecture and its 

performance, just as it was popular to try to separate architecture from its implementation. This 

separation is essentially impossible with today’s desktop compilers and computers. Architectural 

choices affect the quality of the code that can be generated for a computer and the complexity 

of building a good compiler for it, for better or for worse. 

 

The Structure of Recent Compilers 

 
Figure: the structure of recent compilers 



 
 

Compilers typically consist of two to four passes, with more highly optimizing 

compilers having more passes. This structure maximizes the probability that a program 

compiled at various levels of optimization will produce the same output when given the same 

input. The optimizing passes are designed to be optional and may be skipped when faster 

compilation is the goal and lower-quality code is acceptable. A pass is simply one phase in which 

the compiler reads and transforms the entire program. (The term phase is often used 

interchangeably with pass.) Because the optimizing passes are separated, multiple languages 

can use the same optimizing and code generation passes. Only a new front end is required for a 

new language. 

A compiler writer’s first goal is correctness—all valid programs must be compiled correctly. The 

second goal is usually speed of the compiled code. Typically, a whole set of other goals follows 

these two, including fast compilation, debugging support, and interoperability among languages. 

Normally, the passes in the compiler transform higher-level, more abstract representations into 

progressively lower-level representations. Eventually it reaches the instruction set. This 

structure helps manage the complexity of the transformations and makes writing a bug-free 

compiler easier. The complexity of writing a correct compiler is a major limitation on the 

amount of optimization that can be done. Although the multiple-pass structure helps reduce 

compiler complexity, it also means that the compiler must order and perform some 

transformations before others. In the diagram of the optimizing compiler, we can see that 

certain high-level optimizations are performed long before it is known what the resulting code 

will look like. Once such a transformation is made, the compiler can’t afford to go back and 

revisit all steps, possibly undoing transformations. Such iteration would be prohibitive, both in 

compilation time and in complexity. Thus, compilers make assumptions about the ability of later 

steps to deal with certain problems. For example, compilers usually have to choose which 

procedure calls to expand inline before they know the exact size of the procedure being called. 

Compiler writers call this problem the phase-ordering problem.  

How does this ordering of transformations interact with the instruction set architecture? A good 

example occurs with the optimization called global common sub expression elimination. This 

optimization finds two instances of an expression that compute the same value and saves the 

value of the first computation in a temporary. It then uses the temporary value, eliminating the 

second computation of the common expression.  

For this optimization to be significant, the temporary must be allocated to a register. Otherwise, 

the cost of storing the temporary in memory and later reloading it may negate the savings 

gained by not re-computing the expression. There are, in fact, cases where this optimization 

actually slows down code when the temporary is not register allocated. Phase ordering 

complicates this problem because register allocation is typically done near the end of the global 

optimization pass, just before code generation. Thus, an optimizer that performs this 

optimization must assume that the register allocator will allocate the temporary to a register.  



Optimizations performed by modern compilers can be classified by the style of the 

transformation, as follows:  

■ High-level optimizations are often done on the source with output fed to later optimization 

passes.  

■ Local optimizations optimize code only within a straight-line code fragment (called a basic 

block by compiler people).  

■ Global optimizations extend the local optimizations across branches and introduce a set of 

transformations aimed at optimizing loops.  

■ Register allocation associates registers with operands. 

■ Processor-dependent optimizations attempt to take advantage of specific architectural 

knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lecture 3 
 

 

PARALLELISM 

With the era of increasing processor speeds slowly coming to an end, computer architects are 

exploring new ways of increasing throughput. One of the most promising is to look for and 

exploit different types of parallelism in code. 

Levels of parallelism are described below:  

1. Instruction Level: At instruction level, a grain is consist of less than 20 instruction called fine grain. 

Fine grain parallelism at this level may range from two thousands depending an individual program 

single instruction stream parallelism is greater than two but the average parallelism at instruction level 

is around fine rarely exceeding seven in ordinary program. For scientific applications average parallel is 

in the range of 500 to 300 fortran statements executing concurrently in an idealized environment.  

2. Loop Level: It embrace iterative loop operations. A loop may contain less than 500 instructions. Some 

loop independent operation can be vectorized for pipelined execution or for look step execution of 

SIMD machines. Loop level parallelism is the most optimized program construct to execute on a parallel 

or vector computer. But recursive loops are different to parallelize. Vector processing is mostly exploited 

at the loop level by vectorizing compiler. 

 3. Procedural Level: It communicate to medium grain size at the task, procedure, subroutine levels. 

Grain at this level has less than 2000 instructions. Detection of parallelism at this level is much more 

difficult than a finer grain level. Communication obligation is much less as compared with 16 that MIMD 

execution mode. But here major efforts are requisite by the programmer to reorganize a program at this 

level.  

4. Subprogram Level: Subprogram level communicate to job steps and related subprograms. Grain size 

here have less than 1000 instructions. Job steps can overlap across diverse jobs. Multiprogramming an 

uniprocessor or multiprocessor is conducted at this level.  

5. Job Level: It corresponds to parallel executions of independent tasks on parallel computer. Grain size 

here can be tens of thousands of instructions. It is handled by program loader and by operating system. 

Time sharing & space sharing multiprocessors explores this level of parallelism. 

Instruction Level Parallelism 

Instruction-level parallelism (ILP) is a measure of how many of the instructions in a computer program 

can be executed simultaneously. 



Pipelining can overlap the execution of instructions when they are independent of one another. 

This potential overlap among instructions is called instruction-level parallelism (ILP) since the 

instructions can be evaluated in parallel. 

(ILP) is a measure of how many of the operations in a computer program can be performed 

simultaneously. Consider the following program: 

1. e = a + b 

2. f = c + d 

3. g = e * f 

 Operation 3 depends on the results of operations 1 and 2, so it cannot be calculated until both of 

them are completed. However, operations 1 and 2 do not depend on any other operation, so 

theycan be calculated simultaneously. If we assume that each operation can be completed in one 

unitof time then these three instructions can be completed in a total of two units of time, giving 

anILP of 3/2. 

A goal of compiler and processor designers is to identify and take advantage of as much ILP as 

possible. ILP allowsthe compiler and the processor to overlap the execution of multiple 

instructions or even tochange the order in which instructions are executed. 

How much ILP exists in programs is very application specific. In certain fields, such as 

graphicsand scientific computing the amount can be very large. However, workloads such 

ascryptography exhibit much less parallelism. 

The simplest and most common way to increase the amount of parallelism available among 

instructions is to exploit parallelism among iterations of a loop. This type of parallelism is often 

called loop-level parallelism. 

 

Fig: 2.1 ILP Processor  



LECTURE 4 

Superscalar processor 

 A superscalar processor is a CPU that implements a form of parallelism called 

instruction-level parallelism within a single processor. 

In contrast to a scalar processor that can execute at most one single instruction per clock cycle, a 

superscalar processor can execute more than one instruction during a clock cycle by 

simultaneously dispatching multiple instructions to different execution units on the processor. It 

therefore allows for more throughput (the number of instructions that can be executed in a unit of 

time) than would otherwise be possible at a given clock rate. Each execution unit is not a 

separate processor (or a core if the processor is a multi-core processor), but an execution 

resource within a single CPU such as an arithmetic logic unit. 

The superscalar technique is traditionally associated with several identifying characteristics 

(within a given CPU): 

1.Instructions are issued from a sequential instruction stream 

2.The CPU dynamically checks for data dependencies between instructions at run time (versus 

software checking at compile time) 

3.The CPU can execute multiple instructions per clock cycle. 

 

fig:- Simple superscalar pipeline. By fetching and 

dispatching two instructions at a time, a maximum 

of two instructions per cycle can be completed. (IF 

= Instruction Fetch, ID = Instruction Decode, EX = 

Execute, MEM = Memory access, WB = Register 

write back, i = Instruction number, t = Clock cycle 

[i.e., time]) 

 

Fig:2.2 Superscalar Execution 

Super pipelined Processors 

Traditional pipelined architectures have a single pipeline stage for each of instruction cycle 

stage:  instruction fetch, instruction decode, memory read, ALU operation and memory write.  

        A super pipelined processor has a pipeline where each of these logical steps may be sub 

divided into multiple pipeline stages. 
In contrast to a superscalar processor, a super pipelined one has split the main computational 

pipeline into more stages. Each stage is simpler (does less work) and thus the clock speed can be 

https://encyclopedia2.thefreedictionary.com/pipelined
https://encyclopedia2.thefreedictionary.com/ALU
https://encyclopedia2.thefreedictionary.com/processor
https://encyclopedia2.thefreedictionary.com/pipeline


increased. However the latency, measured in clock cycles, for any instruction to complete has 

increased from 4 cycles in early RISC processors to 8 or more. 

Benefit 

The major benefit of super pipelining is the increase in the number of instructions which can be 

in the pipeline at one time and hence the level of parallelism. 

Drawbacks 

The larger number of instructions "in flight" (ie in some part of the pipeline) at any time, 

increases the potential for data dependencies to introduce stalls. Simulation studies have 

suggested that a pipeline depth of more than 8 stages tends to be counter-productive. 

Superscalar vs. Superpipelined 

❑ Superscalar machines can issue several instructions per cycle. Superpipelined machines 

can issue only one instruction per cycle, but they have cycle times shorter than the time 

required for any operation.  

Both of these techniques exploit instruction-level parallelism, which is often limited in 

many applications. Superpipelined machines are shown to have better performance and 

less cost than superscalar machines. 

 

 

 

 

 

 

 

 

 

 



LECTURE 5 

 

Overcoming Data Hazards with Dynamic Scheduling 
A major limitation of simple pipelining techniques is that they use in-order instruction issue and 

execution: Instructions are issued in program order, and if an instruction is stalled in the 

pipeline, no later instructions can proceed. Thus, if there is a dependence between two closely 

spaced instructions in the pipeline, this will lead to a hazard and a stall will result. If there are 

multiple functional units, these units could lie idle. If instruction j depends on a long-running 

instruction i, currently in execution in the pipeline, then all instructions after j must be stalled 

until i is finished and j can execute. For example, consider this code:  

DIV.D F0, F2, F4 

ADD.D F10, F0, F8 

SUB.D F12, F8, F14 

The SUB.D instruction cannot execute because the dependence of ADD.D on DIV.D causes the 

pipeline to stall; yet SUB.D is not data dependent on anything in the pipeline. This hazard 

creates a performance limitation that can be eliminated by not requiring instructions to execute 

in program order.  

In the classic five-stage pipeline, both structural and data hazards could be checked during 

instruction decode (ID): When an instruction could execute without hazards, it was issued from 

ID knowing that all data hazards had been resolved.  

To allow us to begin executing the SUB.D in the above example, we must separate the issue 

process into two parts:  

° checking for any structural hazards and waiting for the absence of a data hazard. Thus, 

we still use in-order instruction issue (i.e., instructions issued in program order),  

° but we want an instruction to begin execution as soon as its data operands are 

available. Such a pipeline does out-of-order execution, which implies out-of-order 

completion. 

Out-of-order execution 

Out-of-order execution introduces the possibility of WAR and WAW hazards, which do not 

exist in the five-stage integer pipeline and its logical extension to an in-order floating-point 

pipeline. Consider the following MIPS floating-point code sequence:  

DIV.D F0, F2, F4 

ADD.D F6, F0, F8 

SUB.D F8, F10, F14 

MUL.D F6, F10, F8 



There is an antidependence between the ADD.D and the SUB.D, and if the pipeline executes 

the SUB.D before the ADD.D (which is waiting for the DIV.D), it will violate the 

antidependence, yielding a WAR hazard. Likewise, to avoid violating output dependences, 

such as the write of F6 by MUL.D, WAW hazards must be handled. As we will see, both these 

hazards are avoided by the use of register renaming. Out-of-order completion also creates 

major complications in handling exceptions. Dynamic scheduling with out-of-order 

completion must preserve exception behavior in the sense that exactly those exceptions 

that would arise if the program were executed in strict program order actually do arise. 

Dynamically scheduled processors preserve exception behavior by ensuring that no 

instruction can generate an exception until the processor knows that the instruction raising 

the exception will be executed; we will see shortly how this property can be guaranteed.  

Although exception behavior must be preserved, dynamically scheduled processors may 

generate imprecise exceptions. An exception is imprecise if the processor state when an 

exception is raised does not look exactly as if the instructions were executed sequentially in 

strict program order. Imprecise exceptions can occur because of two possibilities:  

1. The pipeline may have already completed instructions that are later in program order 

than the instruction causing the exception.  

2. The pipeline may have not yet completed some instructions that are earlier in program 

order than the instruction causing the exception. 

 

 

 

 

 

 

 

 

 

 



LECTURE 6 

VLIW (Very Long Instruction Word) 

Very long instruction word (VLIW) describes a computer processing architecture in which a 

language compiler or pre-processor breaks program instruction down into basic operations that 

can be performed by the processor in parallel (that is, at the same time). These operations are put 

into a very long instruction word which the processor can then take apart without further 

analysis, handing each operation to an appropriate functional unit. 

 

VLIW is sometimes viewed as the next step beyond the reduced instruction set computing 

( RISC ) architecture, which also works with a limited set of relatively basic instructions and can 

usually execute more than one instruction at a time (a characteristic referred to as superscalar ). 

 

The VLIW architecture is generalized from two well-established concepts: horizontal 

microcoding and superscalar processing. A typical VLIW (very long instruction word) machine 

has instruction words hundreds of bits in length. As illustrated in fig. 4.14a, multiple functional 

units are used concurrently in a VLIW processor. All functional units share the use of a common 

large register file. The operations to be simultaneously executed by the functional units are 

synchronised in a VLIW instruction, say , 256 or 1024 bits per instruction word, as implemented 

in the Multi-flow computer models . 

 

Fig: 2.3VLIW Architecture 

 

The VLIW concept is borrowed from horizontal micro coding. Different fields of the long 

instruction word carry the opcodes to be dispatched to different functional units. Programs 

written in conventional short instruction words(say 32 bits) must be compacted together to form 

http://whatis.techtarget.com/definition/compiler
http://searchcio-midmarket.techtarget.com/definition/instruction
http://searchcio-midmarket.techtarget.com/definition/processor
http://searchcio-midmarket.techtarget.com/definition/parallel
http://searchcio-midmarket.techtarget.com/definition/word
http://search400.techtarget.com/definition/RISC


the VLIW instructions. This code compaction must be done by a compiler which can predict 

branch outcomes using elaborate heuristics or run-time statistics. 

 

The main advantage of VLIW processors is that complexity is moved from the hardware to the 

software, which means that the hardware can be smaller, cheaper, and require less power to 

operate. The challenge is to design a compiler or pre-processor that is intelligent enough to 

decide how to build the very long instruction words. If dynamic pre-processing is done as the 

program is run, performance may be a concern. 

 

Fig: 2.4 Superscalar Vs VLIW Architecture 
Super Pipelined:  

In contrast to a superscalar processor, a superpipelined one has split the main computational 

pipeline into more stages. Each stage is simpler (does less work) and thus the clock speed can be 

increased. However the latency, measured in clock cycles, for any instruction to complete has 

increased from 4 cycles in early RISC processors to 8 or more. 

The major benefit of superpipelining is the increase in the number of instructions which can be in 

the pipeline at one time and hence the level of parallelism. 



.  

 

Fig: 2.5 Pipelining Vs Super pipelining Architecture 

The larger number of instructions "in flight" (ie in some part of the pipeline) at any time, 

increases the potential for data dependencies to introduce stalls. Simulation studies have 

suggested that a pipeline depth of more than 8 stages tends to be counter-productive 

Super pipelining is based on dividing the stages of a pipeline into sub-stages and thus increasing 

thenumber of instructions which are supported by the pipeline at a given moment.  By dividing 

each stage into two, the clock cycle period t will be reduced to the half, t/2; hence, at the 

maximum capacity, the pipeline produces a result every t/2 s.  For a given architecture and the 

correspondingInstruction set there is an optimal number of pipeline stages; increasing the 

number of stagesover this limit reduces the overall performance. A solution to further improve 

speed is theSuperscalar architecture. 



 

Fig: 2.6 Pipeline Vs Super Pipeline Vs Superscalar  

 

 

 

 

 

 

 

 

 

 

 



Lecture 7 

Program flow mechanisms 
Traditional computers are founded on control flow mechanism by which the order of program 

execution is explicitly stated in the user program. Data flow computers have high degree of 

parallelism at the fine grain instruction level reduction computers are based on demand driven 

method which commence operation based on the demand for its result by other computations.  

Data flow & control flow computers : There are mainly two sort of computers. Data flow 

computers are connectional computer based on Von Neumann machine. It carry out instructions 

under program flow control whereas control flow computer, executes instructions under 

availability of data.  

Control flow Computers : Control Flow computers employ shared memory to hold program 

instructions and data objects. Variables in shared memory are updated by many instructions. 

The execution of one instruction may produce side effects on other instructions since memory is 

shared. In many cases, the side effects prevent parallel processing from taking place. In fact, a 

uniprocessor computer is inherently sequential due to use of control driven mechanism.  

Data Flow Computers :In data flow computer, the running of an instruction is determined by 

data availability instead of being guided by program counter. In theory any instruction should be 

ready for execution whenever operands become available. The instructions in data driven 

program are not ordered in any way. Instead of being stored in shared memory, data are 

directly held inside instructions. Computational results are passed directly between instructions. 

The data generated by instruction will be duplicated into many copies and forwarded directly to 

all needy instructions. 

 This data driven scheme requires no shared memory, no program counter and no control 

sequencer. However it requires special method to detect data availability, to match data tokens 

with needy instructions and to enable the chain reaction of asynchronous instructions 

execution. 
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LECTURE 1 

 
Interconnection Network:  

An interconnection network in a parallel machine transfers information from any source node 

to any desired destination node. This task should be completed with as small latency as possible. 

It should allow a large number of such transfers to take place concurrently. Moreover, it should 

be inexpensive as compared to the cost of the rest of the machine. 

The network is composed of links and switches, which helps to send the information from the 

source node to the destination node. A network is specified by its topology, routing algorithm, 

switching strategy, and flow control mechanism. 

 
Desirable properties of interconnection networks 
The topology of an interconnection network can be either static or dynamic. Static networks are 

created point-to-point direct connections which will not alter during execution. Dynamic 

networks are applied with switched channels, which are dynamically configured to match the 

communication demand in user programs.  Static networks are used for fixed connections amid 

sub systems of a centralized system or multiple computing nodes of a distributed system. 

Dynamic networks consist of buses, crossbar switches, multistage networks, which are often 

used in shared memory multi processors. Both types of network have also been employ for inter 

PE data routing in SIMD computers.  In general, a network is characterized by graph of finite 

number of nodes linked by directed or undirected edges. The number of nodes in the graph is 

called the network size.   

Node Degree and Network Diameter : The number of edges incident on a node is called the 

node degree d. In the case of unidirectional channels, the number of channels into a node is the 

‗in; degree and that out of a node is the ‗out‘ degree. Then the node degree is the total of the 

two. The node degree reveals the number of I/O ports required per node and their cost of a node. 

Hence, the node degree should be kept a constant, as small as possible in order to reduce cost. A 

constant node degree is very much preferred to get modularity in building blocks for scalable 

systems.  

 The diameter D of a network is the maximum shortest path amid any two nodes. The path length 

is measured by the number of links visited. The network diameter show the maximum number of 

distinct hops amid any two nodes, thus giving a figure of communication pros for the network. 

thus, the network diameter should be as small as doable from communication point of view. 

  

Bisection Width: When a specified network is cut into two identical halves, the minimum 

number of edges along the cut is termed as channel bisection width b. In the case of 

communication network, each edge match up to a channel with w bit wires. Then the wire 

bisection width is B = bw. This parameter B reflects the wiring density of a network. When B is 

fixed, the channel width w = B/b. Thus the bisection width offer a fine estimate of maximum 



communication band width along the bisect ion of a network. Rest cross sections should be 

bounded by bisection width. 

 

Data routing functions: Data routing networks is used for inter PE data exchange. Data routing 

network can be static or dynamic. In multicomputer network data routing is achieved by message 

among multiple computer nodes. Routing network reduces the time required for data exchange 

and thus system performance is enhanced. Commonly used data routing functions are shifting, 

rotation, permutations, broadcast, multicast, personalized communication, shuffle etc.  Some 

Data routing functions are described below:   

 

(a) Permutations: Let there are n objects, and then there are nf permutations by 

which n objects can be recorded. Set of all permutations form a permutation group 

with respect to composition operation. Generally cycle notation is used to specify 

permutation function. Cross can be used to implement the permutation. Multi 

stage network can implement some of the permutations in one or multiple passes 

through the network. Shifting and broadcast operation are also used to implement 

permutation operation. Permutation capability of a network is used to indicate the 

data routing capacity. Permutation speed dominates the performance of data 

routing network, when n is large.   

 

 

(b) Hypercube routing function: Three dimensional cube is shown below:  

Routing functions are defined by three bits in the node address. Bit order is C2C1Co. Data can 

be exchanged among adjacent nodes which differs in the least significant bit Co as shown below. 

 

 

 
  



 common pattern informs that n-dimensional, cube has n-routing functions, which are defined by 

each bit of the n-bit address. These data  routing task are used in routing messages in a 

hypercube multi workstation. 

 

(c) Broadcast & Multicast: Broad cast is one to all mapping. This is achieved by SIMD 

computers using a broadcast bus extending from array controller to all PEs. A mechanism is used 

to broadcast a message in message passing multi computer. Multicast means mapping from one 

subset to another. There is a variation of broadcast called personalized broadcast. Personalized 

broadcast sends messages to only selected receivers. Broadcast is a global operation in multi 

computer. Personalized broadcast may have to be implemented with matching of destination 

codes in the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LECTURE 2 

Organizational Structure 

Interconnection networks are composed of following three basic components − 

• Links − A link is a cable of one or more optical fibers or electrical wires with a 

connector at each end attached to a switch or network interface port. Through this, an 

analog signal is transmitted from one end, received at the other to obtain the original 

digital information stream. 

• Switches − A switch is composed of a set of input and output ports, an internal “cross-

bar” connecting all input to all output, internal buffering, and control logic to effect the 

input-output connection at each point in time. Generally, the number of input ports is 

equal to the number of output ports. 

• Network Interfaces − The network interface behaves quite differently than switch nodes 

and may be connected via special links. The network interface formats the packets and 

constructs the routing and control information. It may have input and output buffering, 

compared to a switch. It may perform end-to-end error checking and flow control. 

Hence, its cost is influenced by its processing complexity, storage capacity, and number 

of ports. 

Classification of Interconnection network: 

 

Figure: 3.1 Classification of Interconnection network 



Static Interconnection Networks: 

Static interconnection networks for elements of parallel systems (ex. processors, memories) are 

based on fixed connections that can’t be modified without a physical re-designing of a system. 

Static interconnection networks can have many structures such as a linear structure (pipeline), a 

matrix, a ring, a torus, a complete connection structure, a tree, a star, a hyper-cube. 

 

 

 

                                  Figure: 3.2 Static interconnection network topologies 

 

LECTURE 3 



Hypercube Interconnection Network: 

In a hypercube structure, processors are interconnected in a network, in which connections 

between processors correspond to edges of a n-dimensional cube. The hypercube structure is 

very advantageous since it provides a low network diameter equal to the degree of the 

cube. The network diameter is the number of edges between the most distant nodes. . The 

network diameter determines the number in intermediate transfers that have to be done to send 

data between the most distant nodes of a network. In this respect the hyper cubes have very good 

properties, especially for a very large number of constituent nodes. Due to this hyper cubes are 

popular networks in existing parallel systems. 

                  

                                       Figure: 3.3 Hypercube Network. 

Dynamic Interconnection Networks: 

Dynamic interconnection networks between processors enable changing (reconfiguring) of the 

connection structure in a system. It can be done before or during parallel program execution. 

 

 

 

 

 

 

LECTURE 4 



Interconnection networks are composed of switching elements. Topology is the pattern to 

connect the individual switches to other elements, like processors, memories and other switches. 

A network allows exchange of data between processors in the parallel system. 

• Direct Connection Networks − Direct networks have point-to-point connections 

between neighboring nodes. These networks are static, which means that the point-to-

point connections are fixed. Some examples of direct networks are rings, meshes and 

cubes. 

• Indirect connection networks − Indirect networks have no fixed neighbors. The 

communication topology can be changed dynamically based on the application 

demands. Indirect networks can be subdivided into three parts: bus networks, multistage 

networks and crossbar switches. 

o Bus networks − A bus network is composed of a number of bit lines onto which 

a number of resources are attached. When busses use the same physical lines for 

data and addresses, the data and the address lines are time multiplexed. When 

there are multiple bus-masters attached to the bus, an arbiter is required. 

o Multistage networks − A multistage network consists of multiple stages of 

switches. It is composed of ‘axb’ switches which are connected using a particular 

inter stage connection pattern (ISC). Small 2x2 switch elements are a common 

choice for many multistage networks. The number of stages determines the delay 

of the network. By choosing different inter stage connection patterns, various 

types of multistage network can be created. 

o Crossbar switches − A crossbar switch contains a matrix of simple switch 

elements that can switch on and off to create or break a connection. Turning on a 

switch element in the matrix, a connection between a processor and a memory 

can be made. Crossbar switches are non-blocking, that is all communication 

permutations can be performed without blocking. 

 

 

 

 LECTURE 5 



Bus Networks: 

• A bus is the simplest type  dynamic interconnection networks. It constitutes a common 

data transfer path for many devices. Depending on the type of implemented transmissions 

we have serial busses and parallel busses. The devices connected to a bus can be 

processors, memories, I/O units, as shown in the figure below. 

 

 

                          Figure: 3.4 a diagram of a system based on a single bus 

 

Only one device connected to a bus can transmit data. Many devices can receive data. In the last 

case we speak about a multicast transmission. If data are meant for all devices connected to a 

bus we speak about a broadcast transmission. Accessing the bus must be synchronized. It is 

done with the use of two methods: a token method and a bus arbiter method. With the token 

method, a token (a special control message or signal) is circulating between the devices 

connected to a bus and it gives the right to transmit to the bus to a single device at a time. The 

bus arbiter receives data transmission requests from the devices connected to a bus. It selects one 

device according to a selected strategy (ex. using a system of assigned priorities) and sends an 

acknowledge message (signal) to one of the requesting devices that grants it the transmitting 

right. After the selected device completes the transmission, it informs the arbiter that can select 

another request. The receiver (s) address is usually given in the header of the message. Special 

header values are used for the broadcast and multicasts. All receivers read and decode headers. 

These devices that are specified in the header, read-in the data transmitted over the bus. 

The throughput of the network based on a bus can be increased by the use of a multi-bus 

network shown in the figure below. In this network, processors connected to the busses can 

transmit data in parallel (one for each bus) and many processors can read data from many busses 

at a time. 

 



 
                       Figure: 3.5 a diagram of a system based on a multi- bus. 

 

 

 

 

 

 

 

 

 

 

 

 



LECTURE: 6 

 

Crossbar switches: 

A crossbar switch is a circuit that enables many interconnections between elements of a parallel 

system at a time. A crossbar switch has a number of input and output data pins and a number of 

control pins. In response to control instructions set to its control input, the crossbar switch 

implements a stable connection of a determined input with a determined output. The diagrams of 

a typical crossbar switch are shown in the figure below. 

 

  
Figure: 3.6 Crossbar Switch, general scheme. 

 

 



 

Figure: 3.7 Crossbar switch, internal structure 

 

Control instructions can request reading the state of specified input and output pins i.e. their 

current connections in a crossbar switch. Crossbar switches are built with the use of multiplexer 

circuits, controlled by latch registers, which are set by control instructions. Crossbar switches 

implement direct, single non-blocking connections, but on the condition that the necessary input 

and output pins of the switch are free. The connections between free pins can always be 

implemented independently on the status of other connections. New connections can be set 

during data transmissions through other connections. The non-blocking connections are a big 

advantage of crossbar switches. Some crossbar switches enable broadcast transmissions but in a 

blocking manner for all other connections. The disadvantage of crossbar switches is that 

extending their size, in the sense of the number of input/output pins, is costly in terms of 

hardware. Because of that, crossbar switches are built up to the size of 100 input/output pins. The 

crossbar switches that contain hundreds of pins are implemented using the technique of 

multistage interconnection networks that is discussed in the next section of the lecture. 

 

 



 

LECTURE: 7 

Multistage Interconnection (Omega) Networks: 

Multistage connection networks are designed with the use of small elementary crossbar switches 

(usually they have two inputs) connected in multiple layers. The elementary crossbar switches 

can implement 4 types of connections: straight, crossed upper broadcast and lower broadcast. All 

elementary switches are controlled simultaneously. The network like this is an alternative for 

crossbar switches if we have to switch a large number of connections, over 100. The extension 

cost for such a network is relatively low. 

In such networks, there is no full freedom in implementing arbitrary connections when some 

connections have already been set in the switch. Because of this property, these networks belong 

to the category of so called blocking networks. 

However, if we increase the number of levels of elementary crossbar switches above the number 

necessary to implement connections for all pairs of inputs and outputs, it is possible to 

implement all requested connections at the same time but statically, before any communication is 

started in the switch. It can be achieved at the cost of additional redundant hardware included 

into the switch. The block diagram of such a network, called the Benes network, is shown in the 

figure below. 

 

Figure: 3.8 Multistage Connection Network For Parallel Systems. 

 

To obtain non blocking properties of the multistage connection network, the redundancy level in 

the circuit should be much increased. To build a non blocking multistage network n x n, the 

elementary two-input switches have to be replaced by 3 layers of switches n x m, r x r and m x n, 

where m , 2n - 1 and r is the number of elementary switches in the layer 1 and 3. Such a switch 



was designed by a French mathematician Clos and it is called the Clos network. This switch is 

commonly used to build large integrated crossbar switches. The block diagram of the Clos 

network is shown in the figure below. 

 

Figure: 3.9 A non-blocking Clos interconnection network 

 

 

 

 

 

 

 

 

 



LECTURE: 8 

Baseline Network: 

Baseline network is one of the important interconnection networks employed in parallel 

computing systems. Baseline network is a type of permutation network, which connects an equal 

number of inputs and outputs and realizes a set of permutations. In the Baseline network, the 

maximum number of allowable permutations is 2n *N/2, where n is the number of switching 

stages (n = log2N) and each switch has two inputs and two outputs. Fig. 5.30 depict Baseline 

networks. 

 

 

                  Figure: 3.9 8x8 Baseline network 

 

Butterfly Network: 

A butterfly network is a computer science technique to link multiple computers into a high-

speed computing network. This form of multistage interconnection network topology can be 

used to connect different nodes in a multiprocessor system. The interconnect network for 

a shared memory multiprocessor system must have low latency and high bandwidth compared to 

other network systems, like local area networks (LANs) or internet. Multiprocessor systems must 

have low latency and high bandwidth for three reasons: (1) Messages are relatively short as most 

messages consist of coherence protocol requests and responses without data. (2) Messages are 

generated frequently because each read or write miss generates messages to every node in the 

system to ensure coherence. Read or write misses occur when the requested data is not in the 

https://en.wikipedia.org/wiki/Multistage_interconnection_networks
https://en.wikipedia.org/wiki/Topology_(electrical_circuits)
https://en.wikipedia.org/wiki/Node_(networking)
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/Local_area_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Memory_coherence


processor's cache and must be fetched from either memory or another processor's cache. (3) 

Messages are generated frequently, therefore rendering it difficult for processors to hide the 

communication delay. 

 

                                Figure: 3.10: Butterfly Network for 8 processors. 

 

The major components of an interconnect network are: 

• Processor Nodes which consist of one or more processors along with their caches, 

memories and communication assist. 

• Switching Nodes (Router) which connect communication assist of different processor 

nodes in a system. In multistage topologies, higher level switching nodes connect to lower 

level switching nodes as shown in figure 1, where switching nodes in rank 0 connect to 

processor nodes directly while switching nodes in rank 1 connect to switching nodes in rank 

0. 

• Links which are physical wires between two switching nodes (routers). They can be uni-

directional or bi-directional. 

These multistage networks have lower cost than a cross bar but still obtain lower contention than 

a bus. The ratio of switching nodes to processor nodes is greater than one in a butterfly network. 

Such topology where the ratio of switching nodes to processor nodes is greater than one is called 

an indirect topology.  

The network derived its name from connections between nodes in two adjacent ranks (as shown 

in figure 5.31), which resembles a butterfly. When top and bottom ranks are merged into a single 

rank, it is called a Wrapped Butterfly Network. In figure 5.31, if rank 3 nodes are connected back 

to respective rank 0 nodes, then it becomes a wrapped butterfly network. 

BBN Butterfly, a massive parallel computer built by Bolt, Beranek and Newman in the 1980s, 

used a butterfly interconnect network.  Later in 1990, Cray Research's machine Cray C90, used a 

butterfly network to communicate between its 16 processors and 1024 memory banks.  

https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Multistage_interconnection_networks#Crossbar_Switch_Connections
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Butterfly_diagram
https://en.wikipedia.org/wiki/BBN_Butterfly
https://en.wikipedia.org/wiki/Parallel_computer
https://en.wikipedia.org/wiki/Bolt,_Beranek_and_Newman
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LECTURE 9 

Butterfly network building: 

For a butterfly network with 'p' processor nodes, there needs to be p (log2 p + 1) switching nodes. 

Figure 5.31 shows a network with 8 processor nodes, which means there are 32 switching nodes. 

It also represents each node as N (rank, column number). For example, node at column 6 in rank 

1 is represented as (1, 6) and node at column 2 in rank 0 is represented as (0, 2). 

For any 'i' greater than zero, a switching node N (i,j) gets connected to N(i-1, j) and N(i-1, m), 

where 'm' is obtained by flipping the ith most significant bit of j. For example, consider the node 

N (1,6): i equals 1 and j equals 6, therefore m is obtained by flipping the first most significant bit 

of 6. 

Variable 
Binary 

representation 

Decimal 

Representation 

j 110 6 

m 010 2 

Table 3.1 

As a result, the nodes connected to N (1,6) are :- 

N(i,j) N(i-1,j) N(i-1,m) 

(1,6) (0,6) (0,2) 

Table 3.2 

Thus, N (0,6), N(1,6), N(0,2), N(1,2) form a butterfly pattern. Several butterfly patterns exist in 

the figure and therefore, this network is called a Butterfly Network. 

 

CPU path, and for cache coherent systems, geometrically increase traffic associated with 

cache/memory management.  

• Programmer responsibility for synchronization constructs that insure "correct" access of 

global memory.  



• Expense: it becomes increasingly difficult and expensive to design and produce shared 

memory machines with ever increasing numbers of processors.  
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LECTURE 1 

Multiprocessor: 

A multiprocessor system is a computer system comprising of two or more processor. An 

interconnection network links this processor. The primary objective of multiprocessor system is 

to enhance the performance by means of parallel processing. It falls under MIMD architecture. 

Besides providing high performance, the multiprocessor also offers the following benefits: 

1. Fault tolerance and graceful degradation. 

2. Scalability and modular growth. 

 

 
Figure 4.1 Multiprocessor systems. 

 
Classification: 

 
 

 



                                                Figure 4.2 Classification of Multiprocessor 

Tightly Coupled Multiprocessor System: In tightly coupled multiprocessor; the multiple 

processor share information by a common memory (Global Memory).Hence, this type is also 

known as shared memory multiprocessor system. Beside sharing the global memory dedicated to 

its which cannot be accessed by other processors in the system. 

 
Figure: 4.3 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 2 

 
Loosely Coupled Multiprocessor System: In loosely coupled multiprocessor system memory is 

not shared and each processor has its own memory. This type of a system is known as distributed 

memory multiprocessor system. The information is exchanged network by a common message 

passing protocol. 

 

     
Figure: 4.4 Loosely Coupled Multiprocessor System 

 
 
Uniform Memory Access: 

Uniform memory access (UMA) is a shared memory architecture used in parallel computers. All 

the processors in the UMA model share the physical memory uniformly. In UMA architecture, 

access time to a memory location is independent of which processor makes the request or which 

memory chip contains the transferred data. Uniform memory access computer architectures are 

often contrasted with non-uniform memory access (NUMA) architectures. In the UMA 

architecture, each processor may use a private cache. Peripherals are also shared in some fashion. 

The UMA model is suitable for general purpose and time sharing applications by multiple users. 

It can be used to speed up the execution of a single large program in time critical applications. 

 
In a uniform memory access system the access time of memory is equal for all processor. A 

symmetric multiprocessor is UMA multiprocessor system with identical processors, equally 

capable of performing similar function in a identical manner. All the processors have equal 

access time for the memory and I/O resources. 

Types of UMA architectures: 

1. UMA using bus-based symmetric multiprocessing (SMP) architectures. 

2. UMA using crossbar switches. 



3. UMA using multistage interconnection networks. 
 

 
 

Figure: 4.5 UMA architectures 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE: 3 

Non-Uniform Memory Access: 
Non-uniform memory access (NUMA) is a computer memory design used in multiprocessing, 

where the memory access time depends on the memory location relative to the processor. Under 

NUMA, a processor can access its own local memory faster than non-local memory (memory 

local to another processor or memory shared between processors). The benefits of NUMA are 

limited to particular workloads, notably on servers where the data are often associated strongly 

with certain tasks or users. 

NUMA architectures logically follow in scaling from symmetric multiprocessing (SMP) 

architectures. They were developed commercially during the 1990s by Burroughs (later Unisys), 

Convex Computer (later Hewlett-Packard), Honeywell Information Systems Italy (HISI) (later 

Groupe Bull), Silicon Graphics (later Silicon Graphics International), Sequent Computer 

Systems (later IBM), Data General (later EMC), and Digital (later Compaq, now HP). 

Techniques developed by these companies later featured in a variety of Unix-like operating 

systems, and to an extent in Windows NT. The first commercial implementation of a NUMA-

based UNIX system was the Symmetrical Multi Processing XPS-100 family of servers, designed 

by Dan Gielan of VAST Corporation for Honeywell Information Systems Italy. 

 
Modern CPUs operate considerably faster than the main memory they use. In the early days of 

computing and data processing, the CPU generally ran slower than its own memory. The 

performance lines of processors and memory crossed in the 1960s with the advent of the first 

supercomputers. Since then, CPUs increasingly have found themselves "starved for data" and 

having to stall while waiting for data to arrive from memory. Many supercomputer designs of the 

1980s and 1990s focused on providing high-speed memory access as opposed to faster 

processors, allowing the computers to work on large data sets at speeds other systems could not 

approach. 

 
Limiting the number of memory accesses provided the key to extracting high performance from 

a modern computer. For commodity processors, this meant installing an ever-increasing amount 

of high-speed cache memory and using increasingly sophisticated algorithms to avoid cache 

misses. But the dramatic increase in size of the operating systems and of the applications run on 

them has generally overwhelmed these cache-processing improvements. Multi-processor systems 

without NUMA make the problem considerably worse. Now a system can starve several 

processors at the same time, notably because only one processor can access the computer's 

memory at a time. NUMA attempts to address this problem by providing separate memory for 

each processor, avoiding the performance hit when several processors attempt to address the 

same memory. For problems involving spread data(common for servers and similar 

applications), NUMA can improve the performance over a single shared memory by a factor of 

roughly the number of processors (or separate memory banks). Another approach to addressing 

this problem, utilized mainly by non-NUMA systems, is the multi-channel memory architecture; 

multiple memory channels are increasing the number of simultaneous memory accesses. 

 
 



 
                                      Figure: 4.6 Architecture of a NUMA system. 
No-Remote Memory Access 

No Remote Memory Access (NORMA) is a computer memory architecture for multiprocessor 

system. 

In NORMA architecture, the address space globally is not unique and the memory is not globally 

accessible by the processor. 

Accesses to remote memory modules are only indirectly possible by message through the 

interconnection network to other processors, which in turn possibly deliver the desired data in a 

reply message.  

 

Two categories of parallel computers are discussed below namely shared common memory or 

unshared distributed memory. 

 

Shared memory multiprocessors 

 

      Shared memory parallel computers vary widely, but generally have in common the ability 

for all processors to access all memory as global address space.  

• Multiple processors can operate independently but share the same memory resources.  

• Changes in a memory location effected by one processor are visible to all other processors.  

• Shared memory machines can be divided into two main classes based upon memory access 

times: UMA, NUMA and COMA.  



 

                                      Figure: 4.7 Shared memory multiprocessors 
 

 

Advantages:  

• Global address space provides a user-friendly programming perspective to memory.  

• Data sharing between tasks is both fast and uniform due to the proximity of memory to 

CPUs.  

 

Disadvantages:  

• Primary disadvantage is the lack of scalability between memory and CPUs. Adding more CPUs can 

geometrically increases traffic on the shared memory. 

 

 

 

 



LECTURE 4 

AMDAHL'S LAW 

The theory of doing computational work in parallel has some fundamental laws that place limits 

on the benefits one can derive from parallelizing a computation (or really, any kind of work). To 

understand these laws, we have to first define the objective. In general, the goal in large scale 

computation is to get as much work done as possible in the shortest possible time within our 

budget. We ``win'' when we can do a big job in less time or a bigger job in the same time and not 

go broke doing so. The ``power'' of a computational system might thus be usefully defined to be 

the amount of computational work that can be done divided by the time it takes to do it, and we 

generally wish to optimize power per unit cost, or cost-benefit. 

Physics and economics conspire to limit the raw power of individual single processor systems 

available to do any particular piece of work even when the dollar budget is effectively unlimited. 

The cost-benefit scaling of increasingly powerful single processor systems is generally nonlinear 

and very poor - one that is twice as fast might cost four times as much, yielding only half the 

cost-benefit, per dollar, of a cheaper but slower system. One way to increase the power of a 

computational system (for problems of the appropriate sort) past the economically feasible single 

processor limit is to apply more than one computational engine to the problem. 

This is the motivation for Beowulf design and construction; in many cases a Beowulf may 

provide access to computational power that is available in a alternative single or multiple 

processor designs, but only at a far greater cost. 

In a perfect world, a computational job that is split up among N processors would complete 

in 1/N time, leading to an N -fold increase in power. However, any given piece of parallelized 

work to be done will contain parts of the work that must be done serially, one task after another, 

by a single processor. This part does not run any faster on a parallel collection of processors (and 

might even run more slowly). Only the part that can be parallelized runs as much as N-fold 

faster. 

 The ``speedup'' of a parallel program is defined to be the ratio of the rate at which work is done 

(the power) when a job is run on N processors to the rate at which it is done by just one. To 

simplify the discussion, we will now consider the ``computational work'' to be accomplished to 

be an arbitrary task (generally speaking, the particular problem of greatest interest to the reader). 

We can then define the speedup (increase in power as a function of N ) in terms of the time 

required to complete this particular fixed piece of work on 1 to N processors. 

In many cases the time T(1) has, as noted above, both a serial portion Ts and a parallelizable 

portion     . The serial time does not diminish when the parallel part is split up. If one is 

Let T(N)be the time required to complete the task on N  processors. The speedup S(N) is the ratio                                                        S(N)=T(1)/T(N)                                                      (1)  



"optimally" fortunate, the parallel time is decreased by a factor of 1/N. The speedup one can 

expect is thus  

 

(2) 

 

This elegant expression is known as Amdahl's Law and is usually expressed as an inequality. 

This is in almost all cases the best speedup one can achieve by doing work in parallel, so the real 

speed up  is less than or equal to this quantity. 

Amdahl's Law immediately eliminates many, many tasks from consideration for parallelization. 

If the serial fraction of the code is not much smaller than the part that could be parallelized (if we 

rewrote it and were fortunate in being able to split it up among nodes to complete in less time 

than it otherwise would), we simply won't see much speedup no matter how many nodes or how 

fast our communications. Even so, Amdahl's law is still far too optimistic. It ignores the 

overhead incurred due to parallelizing the code. We must generalize it. 

A fairer (and more detailed) description of parallel speedup includes at least two more times of 

interest: 

 The original single-processor serial time. 

 The (average) additional serial time spent doing things like interprocessor communications 

(IPCs), setup, and so forth in all parallelized tasks. This time can depend on  in a variety of 

ways, but the simplest assumption is that each system has to expend this much time, one after the 

other, so that the total additional serial time is for example . 

 The original single-processor parallelizeable time. 

 The (average) additional time spent by each processor doing just the setup and work that it 

does in parallel. This may well include idle time, which is often important enough to be 

accounted for separately. 

It is worth remarking that generally, the most important element that contributes to  is the 

time required for communication between the parallel subtasks. This communication time is 

always there - even in the simplest parallel models where identical jobs are farmed out and run in 

parallel on a cluster of networked computers, the remote jobs must be begun and controlled with 

messages passed over the network. In more complex jobs, partial results developed on each CPU 

may have to be sent to all other CPUs in the beowulf for the calculation to proceed, which can 



be very costly in scaled time. As we'll see below,  in particular plays an extremely important 

role in determining the speedup scaling of a given calculation. For this (excellent!) reason many 

beowulf designers and programmers are obsessed with communications hardware and 

algorithms. 

It is common to combine ,  and  into a single expression  (the ``overhead 

time'') which includes any complicated -scaling of the IPC, setup, idle, and other times 

associated with the overhead of running the calculation in parallel, as well as the scaling of these 

quantities with respect to the ``size'' of the task being accomplished. The description above 

(which we retain as it illustrates the generic form of the relevant scalings) is still 

a simplified description of the times - real life parallel tasks can be much more complicated, 

although in many cases the description above is adequate. 

Using these definitions and doing a bit of algebra, it is easy to show that an improved (but still 

simple) estimate for the parallel speedup resulting from splitting a particular job up 

between  nodes (assuming one processor per node) is:  

 

(3) 

 

This expression will suffice to get at least a general feel for the scaling properties of a task that 

might be parallelized on a typical beowulf. 

 

Figure 4.8:  and  10, 100, 1000, 10000, 100000 (in increasing order). 

It is useful to plot the dimensionless ``real-world speedup'' (3 ) for various relative values of the 

times. In all the figures below,  = 10 (which sets our basic scale, if you like) and  = 10, 



100, 1000, 10000, 100000 (to show the systematic effects of parallelizing more and more work 

compared to ). 

 

Gustafson's law 
 

In 1988, Gustafson and Barsis at Sandia Laboratories studied the paradox created by Amdahl’s 

law and the fact that parallel architectures comprised of hundreds of processors were built with 

substantial improvement in performance. In introducing their law, Gustafson recognized that the 

fraction of indivisible tasks in a given algorithm might not be known a priori. They argued that in 

practice, the problem size scales with the number of processors, n. This contradicts the basis of 

Amdahl’s law. Recall that Amdahl’s law assumes that the amount of time spent on the parts of 

the program that can be done in parallel, (1 2 f), is independent of the number of processors, n. 

Gustafson and Brasis postulated that when using a more powerful processor, the problem tends 

to make use of the increased resources. They found that to a first approximation the parallel part 

of the program, not the serial part, scales up with the problem size. They postulated that if s and 

p represent respectively the serial and the parallel time spent on a parallel system, then sþpn 

represents the time needed by a serial processor to perform the computation. They therefore, 

introduced a new factor, called the scaled speedup factor, SS(n), which can be computed as: 

 
This equation shows that the resulting function is a straight line with a slope¼(1 2 n). This shows 

clearly that it is possible, even easier, to achieve efficient parallel performance than is implied by 

Amdahl’s speedup formula. Speedup should be measured by scaling the problem to the number 

of processors, not by fixing the problem size. Having considered computational models and 

rebutted some of the criticism set forth by a number of computer architects in the face of using 

parallel architectures, we now move to consider some performance issues in dynamic and static 

interconnection networks. The emphasis will be on the performance of the interconnection 

networks rather than the computational aspects of the processors. 
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