

Online Courseware
for

B.Tech. Computer Science and Engineering

Program(Autonomy)
Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Distributed Operating System

IT(CS)605B

Contracts: 3L

Credits- 3

Total Lecture: [33L]

Module 1:

Fundamentals of Distributed System [5]

Definition of distributed system, Examples of distributed system, Types of distributed system, Distributed Operating

System, Issues in designing a distributed operating system.

System Architecture: Centralized architecture, decentralized architecture and hybrid architecture.

Communication [4]

Inter-process communication-Message Passing: features, issues, synchronization, multidatagram message, Remote

Procedure Call, RPC message, Marshaling arguments and results, Server management.

Module 2:

Clock Synchronization: [2]

Physical and Logical Clock synchronization algorithms: Cristian’s, Berkley, Lamport's. Global State

Distributed Mutual Exclusion:[4]

Classification of distributed mutual exclusion algorithm. Permission based: Centralized algorithm, Distributed

algorithms-Ricart-Agrawala algorithm. Token based Algorithm: Suzuki-Kasami's broadcast algorithm.

Election algorithm: Bully algorithm, ring algorithm.

Distributed Deadlock Detection: [4]

Deadlock handling strategies in distributed systems. Control organizations for distributed deadlock detection.

Centralized and Distributed deadlock detection algorithms: Completely Centralized algorithms, path pushing, edge

chasing, global state detection algorithm.

Module 3

Distributed file systems: [6]

Issues in the design of distributed file systems: naming, transparency, update semantics and fault resilience,File

Model, File accessing Models, File caching schemes, Fault Tolerance, Examples of distributed systems including

Sun NFS, the Andrew filestore, CODA file system and OSF DCE.

Distributed Shared Memory: [2]

Architecture and motivations. Algorithms for implementing DSM. Memory Coherence

Module 4

Case Study: [6]

AMOEBA:Introduction, Process management, Communication.

MACH: Introduction, Process management, Communication.

DCE: Introduction, Process management, Communication.

Comparative study
M

o

d

ul

e

No. of Lecture Existing Syllabus as per MAKAUT(Module

basis)

Addition/Deletion

/ Comment

Justification Syllabus for Autonomy

1 MAKAUT(9)

Introduction to Distributed System [2]

Introduction, Examples of distributed system,

Added System

Architecture:

Centralized

Student will learn

the deleted part

in Operating

Introduction to Distributed System [5]

Definition of distributed system, Examples of

distributed system, Types of distributed

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Autonomy(9)

Resource sharing, Challenges
Operating System Structures: [3]

Review of structures: monolithic kernel, layered

systems, virtual machines. Process based models
and client server architecture; Themicro-kernel

based client-server approach.

Communication [4]

Inter-process communication, Remote Procedure

Call, Remote Object Invocation, Tasks and Threads.
Examples from LINUX,

Solaris 2 and Windows NT.

architecture,
decentralized

architecture and

hybrid architecture.
DeletedReview of

structures:

monolithic kernel,
layered systems,

virtual machines.

Process based
models and client

server architecture;

The micro-kernel
based client-server

approach.

System. system, Distributed Operating System, Issues
in designing a distributed operation system.

System Architecture: Centralized

architecture, decentralized architecture and
hybrid architecture.

Communication [4]

Inter-process communication-Message

Passing: features, issues, synchronization,

multidatagram message,
Remote Procedure Call, RPC message,

Marshaling arguments and results, Server

management.

2 MAKAUT(10)

Autonomy(10)

Theoretical Foundations: [2]

Introduction. Inherent Limitations of distributed

Systems. Lamport's Logical clock. Global State
Distributed Mutual Exclusion:[4]

Classification of distributed mutual exclusion

algorithm. NonToken based Algorithm:Lamport's
algorithm, Ricart-Agrawala

algorithm. Token based Algorithm: Suzuki-

Kasami's broadcast algorithm.
Distributed Deadlock Detection: [4]

Deadlock handling strategies in distributed systems.

Control organizations for distributed deadlock
detection. Centralized and

Distributed deadlock detection algorithms:

Completely Centralized algorithms, path pushing,
edge chasing, global state detection

algorithm.

Added

Election

algorithms are
introduced

Those algorithms

are important to

learn the mutual
exclusion and

deadlock.

Theoretical Foundations: [2]

Introduction. Inherent Limitations of

distributed Systems. Clock synchronization,
Lamport's Logical clock. Global State

Distributed Mutual Exclusion:[4]

Classification of distributed mutual exclusion

algorithm. Centralized algorithm, Ricart-

Agrawala algorithm. Token based
Algorithm: Suzuki-Kasami's broadcast

algorithm.

Election algorithm: Bully algorithm, ring
algorithm.

Distributed Deadlock Detection: [4]

Deadlock handling strategies in distributed

systems. Control organizations for

distributed deadlock detection. Centralized
and Distributed deadlock detection

algorithms: Completely Centralized

algorithms, path pushing, edge chasing,
global state detection algorithm.

3 MAKAUT(8)

Autonomy(8)

Distributed file systems: [6]

Issues in the design of distributed file systems:

naming, transparency, update semantics and fault

resilience. Use of the Virtual File
System layer. Examples of distributed systems

including Sun NFS, the Andrew file store, CODA

file system and OSF DCE.

Distributed Shared Memory: [2]

Architecture and motivations. Algorithms for
implementing DSM. Memory Coherence

- - Distributed file systems: [6]

Issues in the design of distributed file

systems: naming, transparency, update

semantics and fault resilience. Use of the
Virtual File

System layer. Examples of distributed

systems including Sun NFS, the Andrew file
store, CODA file system and OSF DCE.

Distributed Shared Memory: [2]

Architecture and motivations. Algorithms for

implementing DSM. Memory Coherence

4 MAKAUT(7)

Autonomy(6)

Protection and Security: [4]

Requirements for protection and security regimes.

The access matrix model of protection. System and

user modes, rings of
protection, access lists, capabilities. User

authentication, passwords and signatures. Use of
single key and public key encryption.

CORBA: [3]

The Common Object Request Broker Architecture
model and software and its relationship to

Operating Systems.

Deleted Protection

and security and

CORBA

Added

Case study

CORBA is

obsolete so it is

not required to

study. Instead
student can learn

some existing
system

Case Study: [6]

AMOEBA:Introduction, Process

management, Communication.

MACH: Introduction, Process management,
Communication.

DCE: Introduction, Process management,
Communication.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Module 1: Fundamentals of Distributed System
Lecture 1: Definition and examples

Distributed computing is the process of aggregating the power of several computing entities to

collaboratively run a computational task in a transparent and coherent way, so that it appears as a

single, centralized system.

Important characteristics of distributed systems are:

• A distributed system consists of components (i.e., computers) that are autonomous.

• Users (be they people or programs) think they are dealing with a single system. In spite of

having the differences between the various computers and the ways in which they

communicate, are mostly hidden from users. The same holds for the internal organization of the

distributed system.

• Another important characteristic is that users and applications can interact with a distributed

system in a consistent and uniform way, regardless of where and when interaction takes place.

• In principle, distributed systems should also be relatively easy to expand or scale. This

characteristic is a direct consequence of having independent computers, but at the same time,

hiding how these computers actually take part in the system as a whole.

• A distributed system will normally be continuously available, although perhaps some parts may

be temporarily out of order. Users and applications should not notice that parts are being

replaced or fixed, or that new parts are added to serve more users or applications.

➢ Middleware:

In order to support heterogeneous computers and networks while offering a single-system view,

distributed systems are oftenorganized by means of alayer of software-that is, logically placed between

a higher-level layer consisting of users andapplications, and a layer underneath consisting of operating

systems and basic communication facilities, as shown in Fig. 1-1 Accordingly, such a distributed systemis

sometimes called middleware.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Fig. 1-1shows four networked computers and three applications, of which application B is distributed

across computers 2and 3.Each application, is offered the same interface. The distributed system

provides the means for components of a single distributed application to communicate with each other,

but also to let different applications communicate. At the same time, it hides, as best and reasonable as

possible, the differences in hardware and operating systems from each application.

Before going into the actual details of the distributed systems let us study how distributed computing

evolved.

➢ Computer architectures consisting of interconnected, multiple processors are

basically of two types:

1. Tightly coupled systems: In these systems, there is a single system wide primary

memory (address space) that is shared by all the processors. If any processor writes,

for example, the value 100 to the memory location x, any other processor

subsequently reading from location x will get the value 100. Therefore, in these

systems, any communication between the processors usually takes place through

the shared memory.

2. Loosely coupled systems: In these systems, the processors do not share memory,

and each processor has its own local memory. If a processor writes the value 100 to

the memory location x, this write operation will only change the contents of its local

memory and will not affect the contents of the memory. In these systems, all

physical communication between the processors is done by passing messages across

the network that interconnects the processors.

Tightly coupled systems are referred to as parallel processing systems, and loosely coupled

systems are referred to as distributed computing systems, or simply distributed systems.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 2 & 3: Issues in designing a distributed operating system

Design goals of distributed systems

In order to design a good distributed system, there are six key design goals. They are:
➢ Concurrency

➢ Scalability

➢ Openness

➢ Fault Tolerance

➢ Privacy and Authentication

➢ Transparency.

➢ Concurrency:-

A server must handle many client requests at the same time. Distributed systems are naturally

concurrent; that is, there are multiple workstations running programs independently and at the

same time. Concurrency is important because any distributed service that isn’t concurrent would

become a bottleneck that would serialize the actions of its clients and thus reduce the natural

concurrency of the system.

➢ Scalability:-

The goal is to be able to use the same software for different size systems. A distributed software

system is scalable if it can handle increased demand on any part of the system (i.e., more clients,

bigger networks, faster networks, etc.) without a change to the software. In other words, we

would like the engineering impact of increased demand to be proportional to that increase.

Distributed systems, however, can be built for a very wide range of scales and it is thus not a

good idea to try to build a system that can handle everything. A local-area network file server

should be built differently from a Web server that must handle millions of requests a day from

throughout the world. The key goal is to understand the target system’s expected size and

expected growth and to understand how the distributed system will scale as the system grows.

http://lycog.com/wp-content/uploads/2011/03/challenges-distributed-systems.png

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

➢ Openness:-

 Two types of openness are important: non-proprietary and extensibility. Public protocols are

important because they make it possible for many software manufacturers to build clients and

servers that will be able to talk to each other. Proprietary protocols limit the “players” to those

from a single company and thus limit the success of the protocol. A system is extensible if it

permits customisations needed to meet unanticipated requirements. Extensibility is important

because it aids scalability and allows a system to survive over time as the demands on it and the

ways it is used change.

➢ Fault Tolerance:-

 It is critically important that a distributed system be able to tolerate “partial failures”. Why is it

so important? Two reasons are as follows:

• Failures are more harmful: Many clients are affected by the failure of a distributed service,

unlike a non-distributed system in which a failure affects only a single node.

• Failures are more likely: A distributed service depends on many components (workstation

nodes, network interfaces, networks, switches, routers, etc.) all of which must work.

Furthermore, a client will often depend on multiple distributed services (e.g., multiple file

systems or databases) in order to function properly. The probability that such a client will

experience a failure can be approximated as the sum of the individual failure probabilities of

everything that it depends on. Thus, a client that depends on N components (hardware or

software) that each have failure probability P will fail with probability roughly N*P. (This

approximation is valid for small values of P. The exact failure probability is (1-(1-P)^N).)

There are two aspects of failure tolerance to be studied as shown below:

❖ Recovery

• A failure shouldn’t cause the loss (or corruption) of critical data, or computation.

• After a failure, the system should recover critical data, even data that was being modified when

the failure occurred. Data that survives failures is called “persistent” data.

• Very long-running computations must also be made recoverable in order to restart them where

they left off instead of from the beginning.

• For example, if a fileserver crashes, the data in the file system it serves should be intact after

the server is restarted.

❖ Availability

• A failure shouldn’t interrupt the service provided by a critical server.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

• This is a bit harder to achieve than recovery. We often speak of a highlyavailable service as

one that is almost always available even if failures occur.

• The main technique for ensuring availability is service replication.

• For example, a fileserver could be made highly available by running two copies of the server

on different nodes. If one of the servers fails, the other should be able to step in without service

interruption.

➢ Privacy and Authentication:-

Privacy is achieved when the sender of a message can control what other programs (or people)

can read the message. The goal is to protect against eavesdropping. For example, if you use your

credit card to buy something over the Web, you will probably want to prevent anyone but the

target Web server from reading the message that contains your credit card account number.

Authentication is the process of ensuring that programs can know who they are talking to. This is

important for both clients and servers.

For clients authentication is needed to enable a concept called trust. For example, the fact that

you are willing to give your credit card number to a merchant when you buy something means

that you are implicitly trusting that merchant to use your number according to the rules to which

you have both agreed (to debit your account for the amount of the purchase and give the number

to no one else). To make a Web purchase, you must trust the merchant’s Web server just like you

would trust the merchant for an in-person purchase. To establish this trust, however, you must

ensure that your Web browser is really talking to the merchant’s Web server and not to some

other program that’s just pretending to be their merchant.

For servers authentication is needed to enforce access control. For a server to control who has

access to the resources it manages (your files if it is a fileserver, your money if it is a banking

server), it must know who it is talking to. A Unix login is a crude example of an authentication

used to provide access control. It is a crude example because a remote login sends your username

and password in messages for which privacy is not guaranteed. It is thus possible, though usually

difficult, for someone to eavesdrop on those messages and thus figure out your username and

password.

For a distributed system, the only way to ensure privacy and authentication is by using

cryptography.

➢ Transparency:-

The final goal is transparency. We often use the term single system image to refer to this goal of

making the distributed system look to programs like it is a tightly coupled (i.e., single) system.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

This is really what a distributed system software is all about. We want the system software

(operating system, runtime library, language, compiler) to deal with all of the complexities of

distributed computing so that writing distributed applications is as easy as possible.

Achieving complete transparency is difficult. There are eight types, namely:

• Access Transparency: enables local and remote resources to be accessed using identical

operations

• Location Transparency: enables resources to be accessed without knowledge of their

(physical) location. Access transparency and location transparency are together referred to as

network transparency.

• Concurrency Transparency: enables several processes to operate concurrently using shared

resources without interference between them.

• Replication Transparency: enables multiple instances of resources to be used to increase

reliability and performance without knowledge of the replicas by users or application

programmers.

• Failure Transparency: enables the concealment of faults, allowing users and application

programs to complete their tasks despite the failure of hardware or software components.

• Mobility Transparency: allows the movement of resources and clients within a system without

affecting the operation of users or programs.

• Performance Transparency: allows the system to be reconfigured to improve performance as

loads change.

• Scaling Transparency: Transparency allows the system and applications to expand in scale

without change to the system structure or the application algorithms.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 4: System Architecture

Design issues involved in distributed systems

There are certain design issues to be considered for distributed systems. They are:

a) Naming

b) Communication

c) Software Structure

d) Workload Allocation

e) Consistency Maintenance

a) Naming

 A name is a string of characters used to identify and locate a distributed resource. An identifier

is a special kind of name that is used directly by the computer to access the resource. For

example the identifier for a Unix server would include at least (1) an IP address and (2) a port

number. The IP address is used to find the node that runs the server and the port number

identifies the server process on that node.

Resolution is the process of turning a name into an identifier. Resolution is performed by a Name

Server. It is also called “binding” (as in binding a name to a distributed service). For example,

an IP domain name (e.g., cs.ubc.ca) is turned into an IP address by the IP Domain Name Server

(DNS), a distributed hierarchical server running in the Internet.

b) Communication

 Getting different processes to talk to each other through Messages or Remote method

invocation.

c) Software Structure

• The main issues are to choose a software structure that supports our goals, particularly the goal

of openness.

 • We thus want structures that promote extensibility and otherwise make it easy to program the

system.

 • Alternatives are:

• A monolithic structure is basically a big pile of code; it is not so

desirable because it is hard to extend or reason about a system like

that.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

• A modular structure divides the system into models with well-

defined interfaces that define how the models interact. Modular

systems are more extensible and easier to reason about than

monolithic systems.

• A layered structure is a special type of modular structure in which

modules are organised into layers (one on top of the other). The

interaction between layers is restricted such that a layer can

communicate directly with only the layer immediately above and

the layer immediately below it. In this way, each layer defines an

abstraction that is used by the layer immediately above it. Clients

interact only with the top layer and only the bottom layer deals

with the hardware (e.g., network, disk, etc.) Network protocols

have traditionally been organised as layers (as we will see in the

next class) and for this reason we often refer to these protocols as

“protocol stacks”. o Operating systems can be either monolithic

(e.g., UNIX and Windows) or modular (e.g., Mach and Windows

NT). A modular operating system is called a micro kernel. A

micro-kernel OS has a small minimalist kernel that includes as

little functionality as possible. OS services such as VM, file

systems, and networking are added to the system as separate

servers and they reside in their own user-mode address spaces

outside the kernel.

d) Workload Allocation

• The key issue is load balancing: The allocation of the network workload such that network

resources (e.g., CPUs, memory, and disks) are used efficiently.

For CPUs, there are two key approaches. They are:
o Processor Pools
o Idle Workstations

e) Consistency Maintenance

The final issue is consistency. There are four key aspects of consistency: atomicity, coherence, failure

consistency, and clock consistency.

Advantages and disadvantages of distributed system over centralized system

Advantages:

• Incremental growth: Computing power can be added in small Increments.

• Reliability: If one machine crashes, the system as a whole can still survive.

• Speed: A distributed system may have more total computing power than a mainframe.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

• Open system: This is the most important point and themost characteristic point of a

distributed system. Since it is an open system it is always ready to communicate with

other systems. An open system that scales has an advantage over a perfectly closed and

self-contained system.

• Economic: Microprocessors offer a better price/performance than mainframes.

Disadvantages:

• Security problem due to sharing.

• Some messages can be lost in the network system.

• Bandwidth is another problem if there is large data then all network wires to be replaced

which tends to become expensive.

• Overloading is another problem in distributed operating systems.

• If there is a database connected on local system and many users accessing that database

through remote or distributed way then performance become slow.

• The databases in network operating is difficult to administrate then single user system.

Examples of distributed operating systems:-

• Windows server 2003

• Windows server 2008

• Windows server 2012

• Ubuntu

• Linux (Apache Server)

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture: 5: System Models

Distributed Computing System Models

Distributed Computing system models can be broadly classified into five categories. They are

✓ Minicomputer model

✓ Workstation model

✓ Workstation – server model

✓ Processor – pool model

✓ Hybrid model

Minicomputer Model

The minicomputer model is a simple extension of the centralized time-sharing system. A

distributed computing system based on this model consists of a few minicomputers (they may be

large supercomputers as well) interconnected by a communication network. Each minicomputer

usually has multiple users simultaneously logged on to it. For this, several interactive terminals

are connected to each minicomputer. Each user is logged on to one specific minicomputer, with

remote access to other minicomputers. The network allows a user to access remote resources that

are available on some machine other than the one on to which the user is currently logged. The

minicomputer model may be used when resource sharing (such as sharing of information

databases of different types, with each type of database located on a different machine) with

remote users is desired. The early ARPAnet is an example of a distributed computing system

based on the minicomputer model.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Workstation Model

A distributed computing system based on the workstation model consists of several workstations

interconnected by a communication network. An organization may have several workstations

located throughout a building or campus, each workstation equipped with its own disk and

serving as a single-user computer. It has been often found that in such an environment, at any

one time a significant proportion of the workstations are idle (not being used), resulting in the

waste of large amounts of CPU time. Therefore, the idea of the workstation model is to

interconnect all these workstations by a high-speed LAN so that idle workstations may be used

to process jobs of users who are logged onto other workstations and do not have sufficient

processing power at their own workstations to get their jobs processed efficiently.

Example:Sprite system & Xerox PARC.

Workstation – Server Model

 The workstation model is a network of personal workstations, each with its own disk and a local

file system. A workstation with its own local disk is usually called a diskful workstation and a

workstation without a local disk is called a diskless workstation. With the proliferation of high-

speed networks, diskless workstations have become more popular in network environments than

diskful workstations, making the workstation-server model more popular than the workstation

model for building distributed computing systems.

A distributed computing system based on the workstation-server model consists of a few

minicomputers and several workstations (most of which are diskless, but a few of which may be

diskful) interconnected by a communication network.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

 Note that when diskless workstations are used on a network, the file system to be used by these

workstations must be implemented either by a diskful workstation or by a minicomputer

equipped with a disk for file storage. One or more of the minicomputers are used for

implementing the file system. Other minicomputers may be used for providing other types of

services, such as database service and print service. Therefore, each minicomputer is used as a

server machine to provide one or more types of services. Therefore in the workstation-server

model, in addition to the workstations, there are specialized machines (may be specialized

workstations) for running server processes (called servers) for managing and providing access to

shared resources. For a number of reasons, such as higher reliability and better scalability,

multiple servers are often used for managing the resources of a particular type in a distributed

computing system. For example, there may be multiple file servers, each running on a separate

minicomputer and cooperating via the network, for managing the files of all the users in the

system. Due to this reason, a distinction is often made between the services that are provided to

clients and the servers that provide them. That is, a service is an abstract entity that is provided

by one or more servers. For example, one or more file servers may be used in a distributed

computing system to provide file service to the users.

In this model, a user logs onto a workstation called his or her home workstation. Normal

computation activities required by the user's processes are performed at the user's home

workstation, but requests for services provided by special servers (such as a file server or a

database server) are sent to a server providing that type of service that performs the user's

requested activity and returns the result of request processing to the user's workstation.

Therefore, in this model, the user's processes need not migrated to the server machines for

getting the work done by those machines.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Processor – Pool Model

The processor-pool model is based on the observation that most of the time a user does not need

any computing power but once in a while the user may need a very large amount of computing

power for a short time (e.g., when recompiling a program consisting of a large number of files

after changing a basic shared declaration). Therefore, unlike the workstation-server model in

which a processor is allocated to each user, in the processor-pool model the processors are

pooled together to be shared by the users as needed. The pool of processors consists of a large

number of microcomputers and minicomputers attached to the network. Each processor in the

pool has its own memory to load and run a system program or an application program of the

distributed computing system.

Hybrid Model

Out of the four models described above, the workstation-server model, is the most widely used

model for building distributed computing systems. This is because a large number of computer

users only perform simple interactive tasks such as editing jobs, sending electronic mails, and

executing small programs. The workstation-server model is ideal for such simple usage.

However, in a working environment that has groups of users who often perform jobs needing

massive computation, the processor-pool model is more attractive and suitable.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 6: Inter-process communication

A distributed system is basically a computer network whose nodes has their own local memory

and may also have other hardware and software resources. A distributed system, therefore, relies

entirely on the underlying computer network for the communication of data and control

information between the nodes of which they are composed. Furthermore, the performance and

reliability of a distributed system depend to a great extent on the performance and reliability of

the underlying computer network.

When we say that two computers of a distributed system are communicating with each other, we

mean that two processes, one running on each computer, are in communication with each other.

In a distributed system, processes executing on different computers often need to communicate

with each other to achieve some common goal.

Inter process communication basically requires information sharing among two or more

processes. The two basic methods for information sharing are as follows:

1. Original sharing, or shared-data approach: In the shared-data approach, the information to

be shared is placed in a common memory area that is accessible to all the processes involved in

an IPC.

2. Copy sharing, or message-passing approach: In the message-passing approach, the

information to be shared is physically copied from the sender process's address space to the

address spaces of all the receiver processes, and this is done by transmitting the data to be copied

in the form of messages (a message is a block of information).

Since computers in a network do not share memory, processes in a distributed system normally

communicate by exchanging messages rather than through shared data. Therefore, message

passing is the basic IPC mechanism in distributed systems.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Features of a good message passing system

• Simplicity: A message-passing system should be easy to use, easy to develop new

applications that communicate with the existing ones, able to hide the details of

underlying network protocols used.

• Efficiency :

1. It can be made efficient by reducing number of message exchange.

2. Avoiding cost of setting and terminating connections between the same pair.

3. Minimizing the cost of maintaining connections.

4. Piggybacking.

• Uniform Semantics: In a distributed system, a message-passing system may be used for the

following two types of inter process communication:

1. Local communication, in which the communicating processes are on the same

node

2. Remote communication, in which the communicating processes are on different

nodes

An important issue in the design of a message-passing system is that the semantics of remote

communications should be as close as possible to those of local communications. This is an

important requirement for ensuring that the message-passing system is easy to use.

• Reliability: Distributed systems are prone to different catastrophic events such as node crashes

or communication link failures. Such events may interrupt a communication that was in progress

between two processes, resulting in the loss of a message. A reliable IPC protocol can cope with

failure problems and guarantees the delivery of a message. Handling of lost messages usually

involves acknowledgments and retransmissions on the basis of timeouts. Another issue related to

reliability is that of duplicate messages. Duplicate messages may be sent in the event of failures

or because of timeouts. A reliable IPC protocol is also capable of detecting and handling

duplicates. Duplicate handling usually involves generating and assigning appropriate sequence

numbers to messages.

• Correctness: A message-passing system often has IPC protocols for group communication

that allow a sender to send a message to a group of receivers and a receiver to receive

messages from several senders. Correctness is a feature related to IPC protocols for group

communication. Although not always required, correctness may be useful for some

applications. Issues related to correctness are as follows:

i. Atomicity

ii. Ordered delivery

iii. Survivability

Atomicity ensures that every message sent to a group of receivers will be delivered to either all

of them or none of them. Ordered delivery ensures that messages arrive at all receivers in an

order acceptable to the application. Survivability guarantees that messages will be delivered

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

correctly despite partial failures of processes, machines, or communication links. Survivability is

a difficult property to achieve.

• Security: A good message-passing system must also be capable of providing a secure end-

to-end communication. That is, a message in transit on the network should not be accessible

to any user other than those to whom it is addressed and the sender. Steps necessary for

secure communication include the following:

i. Authentication of the receiver(s) of a message by the sender.

ii. Authentication of the sender of a message by its receiver(s).

iii. Encryption of a message before sending it over the network.

• Portability: There are two different aspects of portability in a message-passing system:

1. The message-passing system should itself be portable. That is, it should be

possible to easily construct a new IPC facility on another system by reusing the

basic design of the existing message-passing system.

2. The applications written by using the primitives of the IPC protocols of the

message-passing system should be portable. This requires that heterogeneity must

be considered while designing a message-passing system. This may require the

use of an external data representation format for the communications taking place

between two or more processes running on computers of different architectures.

The design of high-level primitives for the IPC protocols of a message-passing

system should be done so as to hide the heterogeneous nature of the network.

Issues in IPC by message passing

A message is a block of information formatted by a sending process in such a manner that it is

meaningful to the receiving process. It consists of a fixed-length header and a variable-size

collection of typed data objects. The header usually consists of the following elements:

• Address: It contains characters that uniquely identify the sending and receiving processes in

the network. Thus, this element has two parts-one part is the sending process address and the

other part is the receiving process address.

• Sequence number: This is the message identifier (ID), which is very useful for identifying

lost messages and duplicate messages in case of system failures.

• Structural information: This element also has two parts. The type part specifies whether the

data to be passed on to the receiver is included within the message or the message only

contains a pointer to the data, which is stored somewhere outside the contiguous portion of

the message. The second part of this element specifies the length of the variable-size message

data.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 7: Synchronization

The semantics used for synchronization may be broadly classified as blocking and non

blocking types. A primitive is said to have non blocking semantics if its invocation does

not block the execution of its invoker, otherwise a primitive is said to be of the blocking

type. The synchronization imposed on the communicating processes basically depends on

one of the two types of semantics used for the send and receive primitives.

In case of a blocking send primitive, after execution of the send statement, the sending

process is blocked until it receives an acknowledgment from the receiver that the

message has been received. In the case of a blocking receive primitive, after execution of

the receive statement; the receiving process is blocked until it receives a message.

On the other hand, for non blocking send primitive, after execution of the send statement,

the sending process is allowed to proceed with its execution as soon as the message has

been copied to a buffer. For a non-blocking receive primitive, the receiving process

proceeds with its execution after execution of the receive statement, which returns control

almost immediately just after telling the kernel where the message buffer is.

An important issue in a non-blocking receive primitive is how the receiving process

knows that the message has arrived in the message buffer. One of the following two

methods is commonly used for this purpose:

1. Polling: In this method, a test primitive is provided to allow the receiver to check the

buffer status. The receiver uses this primitive to periodically poll the kernel to check if

the message is already available in the buffer.

2. Interrupt: In this method, when the message has been filled in the buffer and is ready

for use by the receiver, a software interrupt is used to notify the receiving process. This

method permits the receiving process to continue with its execution without having to

issue unsuccessful test requests. Although this method is highly efficient and allows

maximum parallelism, its main drawback is that user-level interrupts make programming

difficult.

In a blocking send primitive, the sending process could get blocked forever in situations

where the potential receiving process has crashed or the sent message has been lost on the

network due to communication failure. To prevent this situation, blocking send primitives

often use a timeout value. A timeout value may also be associated with a blocking receive

primitive to prevent the receiving process from getting blocked indefinitely in situations

where the potential sending process has crashed or the expected message has been lost on

the network due to communication failure.

When both the send and receive primitives of a communication between two processes

use blocking semantics, the communication is said to be synchronous; otherwise it is

asynchronous.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

As compared to asynchronous communication, synchronous communication is simple

and easy to implement. It also contributes to reliability because it assures the sending

process that its message has been accepted before the sending process resumes execution.

However, the main drawback of synchronous communication is that it limits concurrency

and is subject to communication deadlocks.

Multidatagram Messages

Almost all networks have an upper bound on the size of data that can be transmitted at a

time. This size is known as the maximum transfer unit (MTU) of a network. A message

whose size is greater than the MTU has to be fragmented into multiples of the MTU, and

then each fragment has to be sent separately. Each fragment is sent in a packet that has

some control information in addition to the message data. Each packet is known as a

datagram. Messages smaller than the MTU of the network can be sent in a single packet

and are known as single-datagram messages. On the other hand, messages larger than the

MTU of the network have to be fragmented and sent in multiple packets. Such messages

are known as multidatagram messages. Obviously, different packets of a multidatagram

message bear a sequential relationship to one another. The disassembling of a

multidatagram message into multiple packets on the sender side and the reassembling of

the packets on the receiver side is usually the responsibility of the message-passing

system.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 8: Remote Procedure Call

Remote Procedure Call (RPC) provides a different paradigm for accessing network services.

Instead of accessing remote services by sending and receiving messages, a client invokes

services by making a local procedure call. The local procedure hides the details of the network

communication.

When making a remote procedure call:

1. The calling environment is suspended, procedure parameters are transferred across the

network to the environment where the procedure is to execute, and the procedure is

executed there.

2. When the procedure finishes and produces its results, its results are transferred back to

the calling environment, where execution resumes as if returning from a regular

procedure call.

The main goal of RPC is to hide the existence of the network from a program. As a result, RPC

doesn't quite fit into the OSI model:

1. The message-passing nature of network communication is hidden from the user. The user

doesn't first open a connection, read and write data, and then close the connection.

Indeed, a client often doesn’t even know they are using the network!

2. RPC often omits many of the protocol layers to improve performance. Even a small

performance improvement is important because a program may invoke RPCs often. For

example, on (diskless) Sun workstations, every file access is made via an RPC.

RPC is especially well suited for client-server (e.g., query-response) interaction in which the

flow of control alternates between the caller and callee. Conceptually, the client and server do

not both execute at the same time. Instead, the thread of execution jumps from the caller to the

callee and then back again.

The following steps take place during an RPC:

1. A client invokes a client stub procedure, passing parameters in the usual way. The client

stub resides within the client's own address space.

2. The client stub marshalls the parameters into a message. Marshalling includes converting

the representation of the parameters into a standard format, and copying each parameter

into the message.

3. The client stub passes the message to the transport layer, which sends it to the remote

server machine.

4. On the server, the transport layer passes the message to a server stub, which demarshalls

the parameters and calls the desired server routine using the regular procedure call

mechanism.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

5. When the server procedure completes, it returns to the server stub (e.g., via a normal

procedure call return), which marshalls the return values into a message. The server stub

then hands the message to the transport layer.

6. The transport layer sends the result message back to the client transport layer, which

hands the message back to the client stub.

7. The client stub demarshalls the return parameters and execution returns to the caller.

RPC Operations:

1) Conventional procedure call: For a call of a program, an empty stack is present to

make the call, the caller pushes the parameters onto the stack (last one first order). After

the read has finished running, it puts the return values in a register and removes the return

address and transfers controls back to the caller. Parameters can be called by value or

reference.

✓ Call by Value: Here the parameters are copied into the stack. The value

parameter is just an initialized local variable. The called procedure may

modify the variable, but such changes do not affect the original value at

the calling side.

✓ Call by reference: It is a pointer to the variable. In the call to Read, the

second parameter is a reference parameter. It does not modify the array in

the calling procedure.

✓ Call-by-copy: Another parameter passing mechanism exists along with

the above two, it’s called call-by-copy or Restore. Here the caller copies

the variable to the stack and then copies the variable to the stack and then

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

copies it back after the call, overwriting the caller’s original values. The

decision of which parameter passing mechanism to use is normally made

by the language designers and is a fixed property of the language.

Sometimes it depends on the data type being passed.

2) Client and Server Stubs: A stub in distributed computing is a piece of code used for

converting parameters passed during a Remote Procedure Call.

 The main idea of an RPC is to allow a local computer (client) to remotely call

procedures on a remote computer (server). The client and server use different address

spaces, so conversion of parameters used in a function call have to be performed;

otherwise the values of those parameters could not be used, because of pointers to the

computer's memory pointing to different data on each machine.

 The client and server may also use different data representations even for simple

parameters. Stubs are used to perform the conversion of the parameters, so a Remote

Function Call looks like a local function call for the remote computer.

For transparency of RPC, the calling procedure should not know that the called procedure

is executing on a different machine.

 Client Stub: Used when read is a remote procedure. Client stub is put into a library and

is called using a calling sequence. It calls for the local operating system. It does not ask

for the local operating system to give data, it asks the server and then blocks itself till the

reply comes.

 Server Stub: when a message arrives, it directly goes to the server stub. Server stub has

the same functions as the client stub. The stub here unpacks the parameters from the

message and then calls the server procedure in the usual way.

Summary of the process:

1) The client procedure calls the client stub in the normal way.
2) The client stub builds a message and calls the local operating system.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

3) The client's as sends the message to the remote as.
4) The remote as gives the message to the server stub.
5) The server stub unpacks the parameters and calls the server.
6) The server does the work and returns the result to the stub.
7) The server stub packs it in a message and calls its local as.
8) The server's as sends the message to the client's as.
9) The client's as gives the message to the client stub.
10) The stub unpacks the result and returns to the client.

RPC messages

Any remote procedure call involves a client process and a server process that are possibly

located on different computers. Based on this mode of interaction, the two types of

messages involved in the implementation of an RPC system are as follows:

1. Call messages that are sent by the client to the server for requesting execution

of a particular remote procedure.

2. Reply messages that are sent by the server to the client for returning the result

of remote procedure execution.

Call Messages

Since a call message is used to request execution of a particular remote procedure, the two basic

components necessary in a call message are as follows:

1. The identification information of the remote procedure to be executed

2. The arguments necessary for the execution of the procedure

In addition to these two fields, a call message normally has the following fields:
1. A message identification field that consists of a sequence number.

2. A message type field that is used to distinguish call messages from reply

messages.

3. A client identification field that may be used for two purposes-to allow the server

of the RPC to identify the client to whom the reply message has to be returned

and to allow the server to check the authentication of the client process for

executing the concerned procedure.

Reply Messages

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

The message identifier field of a reply message is the same as that of its corresponding call

message so that a reply message can be properly matched with its call message. The message

type field is properly set to indicate that it is a reply message. For a successful reply, the reply

status field is normally set to zero and is followed by the field containing the result of procedure

execution. For an unsuccessful reply, the reply status field is either set to 1or to a nonzero value

to indicate failure. In the latter case, the value of the reply status field indicates the type of error.

However, in either case, normally a short statement describing the reason for failure is placed in

a separate field following the reply status field.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 9: Marshaling arguments and results

• Marshalling is the packing of procedure parameters into a message packet.

• The RPC stubs call type-specific procedures to marshall (or unmarshall) all of the

parameters to the call.

• On the client side, the client stub marshalls the parameters into the call packet; on the

server side the server stub unmarshalls the parameters in order to call the server’s

procedure.

• On the return, the server stub marshalls return parameters into the return packet; the

client stub unmarshalls return parameters and returns to the client.

Actions involved in marshalling:

1. First, an application issues an invocation request by locally calling the associated method,

just like calling a procedure in an RPC.

2. The control sub object checks the user permissions with the information stored in the

local security object. In this case, the security object should have a valid user certificate.

3. The request is marshaled and passed on.

4. The replication sub object requests the middleware to set up a secure channel to a suitable

replica.

5. The security object first initiates a replica lookup. To achieve this goal, it could use any

naming service that can look up replicas that have been specified to be able to execute

certain methods. The Globe location service has been modified to handle such lookups.

6. Once a suitable replica has been found, the security sub object can set up a secure

channel with its peer, after which control is returned to the replication sub object. Note

that part of this establishment requires that the replica proves it is allowed to carry out the

requested invocation.

7. The request is now passed on to the communication sub object.

8. The sub object encrypts and signs the request so that it can pass through the channel.

9. After its receipt, the request is decrypted and authenticated.

10. The request is then simply passed on to the server-side replication sub object.

11. Authorization takes place: in this case the user certificate from the client-side stub has

been passed to the replica so that we can verify that the request can indeed be carried out.

12. The request is then un-marshaled.

13. Finally, the operation can be executed.

Server management
In RPC based applications, two important issues that need to be considered for every

management are server implementation and server creation.

Server Implementation:

Based on the style of implementation used, servers may be of two types: stateful and stateless.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

➢ Stateful Servers

• Client’s state information from one RPC to the other is maintained within a Stateful

server.

• When two subsequent calls are made by a client to the Stateful servers, some state

information of the service performed for the client is stored by server process, which

is used at while executing the next call.

In a server for byte stream files the following operations take place:

i. Open (filename, mode): This operation opens a file named filename in the

specified mode. An entry for this file in file table is created which maintains file

state information. When file is opened R/W pointer is set to zero and the client

receives the file Fid.

ii. Read (Fid, m, buffer): This operation gets m bytes of data from the Fid file

into the buffer. When this operation is executed the client receives m bytes of file

data starting from the byte addressed by R/W pointer and then the pointer is

incremented by m.

iii. Write (Fid, m, buffer): When this operation is executed, m bytes of data are

taken from the specified buffer and writes it into the Fid file at byte position

which is addressed by the W/R pointer and then increments the pointer by m.

iv. Seek (Fid, position): This operation changes the value of read-write pointer of

the file Fid to a new value specified as position.

v. Close (Fid): This operation is used to delete file state information of the file

Fid from its file-table.

Example of Stateful file server

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

• For the above diagram after opening a file if a client makes to subsequent

Read(Fid,10,buffer) calls, the first call will return first 10 bytes(0-9) and the second call

will return the next 10 bytes(10-19).

• Stateless Servers

 Stateless servers do not maintain any client information. Every request from a client is

accompanied with parameters that are needed for an operation.

For a byte stream file server the operations for a file to be stateless are:

i. Read (filename, position, m, buffer): For this operation the server returns to the client with m

bytes of data of the file identified as filename and saves it in the buffer. The value of the bytes is

returned to the client and the position for reading is specified as position parameter.

ii. Write (filename, position, m, buffer): This operation takes m bytes of data from the buffer

and writes it into the file named filename. The position to start writing in the file is specified by

position parameter.

Example of Stateless file server

• In the diagram the file server does not keep track of any file state information resulting

from a previous operation. If a client makes two subsequent Read calls then the operation

will be Read (filename, 0, 10, buffer), Read (filename, 10, 10, buffer).

In this the client has kept track of file state information.

Stateful servers provide an easier programming paradigm and are more efficient than stateless

servers. Stateless servers have a distinct advantage over stateful servers in the event of a failure.

• With stateful servers, if a crashes and restarts later, the state information that it was

holding may be lost and the client process might continue its task unaware of the crash.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Stateless servers can be constructed around repeatable operations that make crash

recovery easy.

Module 2: Synchronization, mutual exclusion, deadlock

Lecture 1: synchronization algorithms

Synchronization is coordination with respect to time, and refers to the ordering of events

and execution of instructions in time. Examples of synchronization include ordering

distributed events and ensuring that a process performs an action at a particular time.

Following synchronization-related issues are described in distributed systems:

• Clock synchronization

• Event ordering

• Mutual exclusion

• Deadlock

• Election algorithms

Clock synchronization

It is often important to know when events occurred and in what order they occurred. In a non-

distributed system dealing with time is trivial as there is a single shared clock, where all the

processes see the same time. On the other hand, in a distributed system, each computer has its

own clock. As no clock is perfect, each of these clocks has its own skew which causes clocks on

different computers to drift and eventually become out of sync.

➢ Physical Clocks

o The time difference between two computers is known as drift. Clock drift over time is

known as skew. Computer clock manufacturers specify a maximum skew rate in their

products.

o Computer clocks are among the least accurate modern timepieces. „

Inside every computer is a chip surrounding a quartz crystal oscillator to record

time. These crystals cost 25 seconds to produce. Average loss of accuracy: 0.86

seconds per day. „

o This skew is unacceptable for distributed systems. Several methods are now in use to

attempt the synchronization of physical clocks in distributed systems:

• We can say that a timer is within specification if there is some constant p such that:

1−p<=dC/dT<=1+p

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

• The constant p is the maximum drift rate of the timer.

• On any two given computers, the drift rate will likely differ.

• To solve this problem, clock synchronization algorithms are necessary.

Clock Synchronization Issues

An important issue in clock synchronization is that time must never run backward because this

could cause serious problems, such as the repetition of certain operations that may be hazardous

in certain cases. During synchronization a fast clock has to be slowed down. However, if the time

of a fast clock is readjusted to the actual time all at once, it may lead to running the time

backward for that clock. Therefore, clock synchronization algorithms are normally designed to

gradually introduce such a change in the fast running clock instead of readjusting it to the correct

time all at once. One way to do this is to make the interrupt routine more intelligent. When an

intelligent interrupt routine is instructed by the clock synchronization algorithm to slow down its

clock, it readjusts the amount of time to be added to the clock time for each interrupt. For

example, suppose that if 8msec is added to the clock time on each interrupt in the normal

situation, when slowing down, the interrupt routine only adds 7 msec on each interrupt until the

correction has been made. Although not necessary, for smooth readjustment, the intelligent

interrupt routine may also advance its clock forward, if it is found to be slow, by adding 9msec

on each interrupt, instead of readjusting it to the correct time all at once.

Clock Synchronization Algorithms

Clock synchronization algorithms may be broadly classified as centralized and distributed.

Centralized clock synchronization algorithms

These have one node with a real-time receiver and are called time server node. The clock time of

this node is regarded as correct and used as reference time.

The goal of this algorithm is to keep the clocks of all other nodes synchronized with time server

node.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

i. Cristian’s Algorithm

• In this method each node periodically sends a message to the server. When the time

server receives the message it responds with a message T, where T is the current time of

server node.

• Assume the clock time of client be To when it sends the message and T1 when it receives

the message from server. To and T1 are measured using same clock so best estimate of

time for propagation is (T1-To)/2.

• When the reply is received at clients node, its clock is readjusted to T+(T1-T0)/2. There

can be unpredictable variation in the message propagation time between the nodes hence

(T1-T0)/2 is not good to be added to T for calculating current time.

• For this several measurements of T1-To are made and if these measurements exceed

some threshold value then they are unreliable and discarded. The average of the

remaining measurements is calculated and the minimum value is considered accurate and

half of the calculated value is added to T.

• Advantage-It assumes that no additional information is available.

• Disadvantage- It restricts the number of measurements for estimating the value.

ii. The Berkley Algorithm

• This is an active time server approach where the time server periodically broadcasts its

clock time and the other nodes receive the message to correct their own clocks.

• In this algorithm the time server periodically sends a message to all the computers in the

group of computers. When this message is received each computer sends back its own

clock value to the time server. The time server has a prior knowledge of the approximate

time required for propagation of a message which is used to readjust the clock values. It

then takes a fault tolerant average of clock values of all the computers. The calculated

average is the current time to which all clocks should be readjusted.

• The time server readjusts its own clock to this value and instead of sending the current

time to other computers it sends the amount of time each computer needs for

readjustment. This can be positive or negative value and is calculated based on the

knowledge the time server has about the propagation of message.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Distributed clock synchronization algorithms

Distributed algorithms overcome the problems of centralized by internally synchronizing for

better accuracy. One of the two approaches can be used:

i. Global Averaging Distributed Algorithms

• In this approach the clock process at each node broadcasts its local clock time in the form

of a “resync” message at the beginning of every fixed-length resynchronization interval.

This is done when its local time equals To+iR for some integer i, where To is a fixed time

agreed by all nodes and R is a system parameter that depends on total nodes in a system.

• After broadcasting the clock value, the clock process of a node waits for time T which is

determined by the algorithm.

• During this waiting the clock process collects the resync messages and the clock process

records the time when the message is received which estimates the skew after the waiting

is done. It then computes a fault-tolerant average of the estimated skew and uses it to

correct the clocks.

ii. Localized Averaging Distributes Algorithms

• The global averaging algorithms do not scale as they need a network to support broadcast

facility and a lot of message traffic is generated.

• Localized averaging algorithms overcome these drawbacks as the nodes in distributed

systems are logically arranged in a pattern or ring.

• Each node exchanges its clock time with its neighbors and then sets its clock time to the

average of its own clock time and of its neighbors.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 2: Event Ordering

Keeping the clocks in a distributed system synchronized to within 5 or 10msec is an expensive

and nontrivial task. Lamport [1978] observed that for most applications it is not necessary to

keep the clocks in a distributed system synchronized. Rather, it is sufficient to ensure that all

events that occur in a distributed system be totally ordered in a manner that is consistent with an

observed behavior. For partial ordering of events, Lamport defined a new relation called

happened before and introduced the concept of logical clocks for ordering of events based on the

happened-before relation. He then gave a distributed algorithm extending his idea of partial

ordering to a consistent total ordering of all the events in a distributed system.

Definitions:

 Happened Before Relation (->):

This relation captures causal dependencies between events, that is, whether or not events have a

cause and effect relation.

 This relation (->) is defined as follows:

 • a -> b, if a and b are in the same process and a Occurred before b.

 • a -> b, if a is the event of sending a message and b is the receipt of that message by another

process. If a -> b and b -> c, then a -> c, that is, the relation has the property of transitivity.

Causally Related Events: If event a -> event b, then a casually affects b.

Concurrent Events: Two distinct events a and b are concurrent (a || b) if (not) a -> b and (not) b

-> a. That is, the events have no causal relationship. This is equivalent to b || a.

For any two events a and b in a system, only one of the following is true: a -> b, b -> a, or

a || b.

Lamport introduced a system of logical clocks in order to make the -> relation possible. It works

like this: Each process Pi in the system has its own clock Ci. Ci can be looked at as a function

that assigns a number, Ci(a) to an event a. This is the timestamp of the event a in process Pi.

These numbers are not in any way related to physical time -- that is why they are called logical

clocks. These are generally implemented using counters, which increase each time an event

occurs. Generally, an event’s timestamp is the value of the clock at the time it occurs.

Conditions Satisfied by the Logical Clock system:

For any events a and b, if a -> b, then C(a) < C(b). This is true if two conditions are met:

• If a occurs before b, then Ci(a) < Ci(b).

• If a is a message sent from Pi and b is the receipt of that same message in Pj, then Ci(a) <

Cj(b).

Implementation Rules Required:

Clock Ci is incremented for each event: Ci := Ci + d (d > 0) if a is the event of sending a

message from one process to another, then the receiver sets its clock to the max of its current

clock and the sender’s clock - that is,

 Cj := max(Cj, tm + d) (d > 0).

Global State

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

In a fault-tolerant distributed system, backward error recovery requires that the system regularly

saves its state onto stable storage. In particular, we need to record a consistent global state, also

called a distributed snapshot. In a distributed snapshot, if a process P has recorded the receipt of

a message, then there should also be a process Q that has recorded the sending of that message.

After all, it must have come from somewhere.

In backward error recovery schemes, each process saves its state from time to time to a locally-

available stable storage. To recover after a process or system failure requires that we construct a

consistent global state from these local states. In particular, it is best to recover to the most recent

distributed snapshot, also referred to as a recovery line. In other words, a recovery line

corresponds to the most recent consistent collection of checkpoints, as shown in Fig.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 3: Mutual Exclusion

There are several resources in a system that must not be used simultaneously by multiple

processes if program operation is to be correct. For example, a file must not be simultaneously

updated by multiple processes. Similarly, use of unit record peripherals such as tape drives or

printers must be restricted to a single process at a time. Therefore, exclusive access to such a

shared resource by a process must be ensured. This exclusiveness of access is called mutual

exclusion between processes. The sections of a program that need exclusive access to shared

resources are referred to as critical sections. For mutual exclusion, means are introduced to

prevent processes from executing concurrently within their associated critical sections.

Distributed mutual exclusion algorithms can be classified into two different categories. In token-

based solutions mutual exclusion is achieved by passing a special message between the

processes, known as a token. There is only one token available and whoever has that token is

allowed to access the shared resource. When finished, the token is passed on to a next process. If

a process having the token is not interested in accessing the resource, it simply passes it on.

Token-based solutions have a few important properties.

First, depending on the how the processes are organized; they can fairly easily ensure that every

process will get a chance at accessing the resource. In other words, they avoid starvation.

Second, deadlocks by which several processes are waiting for each other to proceed, can easily

be avoided, contributing to their simplicity. Unfortunately, the main drawback of token-based

solutions is a rather serious one: when the token is lost (e.g., because the process holding it

crashed), an intricate distributed procedure needs to be started to ensure that a new token is

created, but above all, that it is also the only token.

As an alternative, many distributed mutual exclusion algorithms follow a permission-based

approach. In this case, a process wanting to access the resource first requires the permission of

other processes. There are many different ways toward granting such permission and in the

sections that follow we will consider a few of them.

Centralized Algorithm

„The most simple and straightforward way to achieve mutual exclusion in a distributed system is

to simulate how it is done in a one-processor system: „

• One process is elected as the coordinator. „

• When any process wants to enter a critical section, it sends a request message to the

coordinator stating which critical section it wants to access. „

• If no other process is currently in that critical section, the coordinator sends back a reply

granting permission. When the reply arrives, the requesting process enters the critical

section.

• If another process requests access to the same critical section, it is ignored or blocked

until the first process exits the critical section and sends a message to the coordinator

stating that it has exited.

The Centralized Algorithm has the following disadvantages:

• The coordinator is a single point of failure.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

• If processes are normally ignored when requesting a critical section that is in use, they

cannot distinguish between a dead coordinator and “permission denied”.

• In a large system, a single coordinator can be a bottleneck.

Distributed Algorithms

It is often unacceptable to have a single point of failure. Therefore researchers continue to

look for distributed mutual exclusion algorithms. The most well-known is by Ricart and

Agrawala:

• There must be a total ordering of all events in the system. Lamport’s Algorithm can be

used for this purpose.

• When a process wants to enter a critical section, it builds a message containing the name

of the critical section, its process number, and the current time. It then sends the message

to all other processes, as well as to itself.

• When a process receives a request message, the action it takes depends on its state with

respect to the critical section named in the message.

There are three cases:

▪ If the receiver is not in the critical section and does not want to enter it, it

sends an OK message to the sender.

▪ If the receiver is in the critical section, it does not reply. It instead queues the

request. „

▪ If the receiver also wants to enter the same critical section, it compares the

time stamp in the incoming message with the time stamp in the message it has

sent out. The lowest time stamp wins. If its own message has a lower time

stamp, it does not reply and queues the request from the sending process.

• When a process has received OK messages from all other processes, it enters the

critical section. Upon exiting the critical section, it sends OK messages to all

processes in its queue and deletes them all from the queue.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

To illustrate how the algorithm works, let us consider the example of Figure a. There

are four processes PI, P2' P3' and P4' While process P4 is in a critical section, processes

PI and P2 want to enter the same critical section. To get permission from other

processes, processes PI and P2 send request messages with timestamps 6 and 4

respectively to other processes (fig. a). Now let us consider the situation in Figure b.

Since process P4 is already in the critical section, it defers sending a reply message to

PI and P2 and enters them in its queue. Process P3 is currently not interested in the

critical section, so it sends a reply message to both PI and P2. Process P2 defers

sending a reply message to PI and enters P1 in its queue because the timestamp (4) in

its own request message is less than the timestamp (6) in P1’s request message. On the

other hand, PI immediately replies to P2 because the timestamp (6) in its request

message is found to be greater than the timestamp (4) of P2's request message. Next

consider the situation in Figure c. When process P4 exits the critical section, it sends a

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

reply message to all processes in its queue (in this case to processes PI and P2) and

deletes them from its queue. Now since process P2 has received a reply message from

all other processes (PI' P3, and P4), it enters the critical section. However, process PI

continues to wait since it has not yet received a reply message from process P2.

Finally, when process P2 exits the critical section, it sends a reply message to PI (Fig.

d). Now since process PI has received a reply message from all other processes, it

enters the critical section.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 4: Token-Passing Approach

In this method, mutual exclusion is achieved by using a single token that is circulated among the

processes in the system. A token is a special typeof message that entitles its holder to enter a

critical section. For fairness, the processes in the system are logically organized in a ring

structure, and the token is circulated from one process to another around the ring always in the

same direction (clockwise or anticlockwise).

Suzuki-Kasami's broadcast algorithm

In Suzuki-kasami algorithm, if a site wants to enter the CS and in case if it do not possess the

token, it broadcasts a REQUEST message for the token to all other sites. A site which possesses

the token sends it to the requesting site upon the receipt of its REQUEST message. If a site

receives a REQUEST message when it is executing the CS, it sends the token only after it has

completed the execution of its CS.

Token Consist of:

– Q: Queue of the requesting processes, at most n.

– LN [1...n]: array of integers, LN[j] is the sequence number of the request that Pj executed most

recently.

Data Structures:

• REQUEST (j,n): REQUEST message from Pj for its nth request to enter the CS.

• RNi[1..N]: RNi[j] is the largest sequence number in a REQUEST message from Pj received by

Pi.

• On receipt of REQUEST (j,n), Pi sets RNi[j] to be max(RNi[j],n).

• If RNi[j] >n, the message is outdated.

This algorithm must efficiently address the following two design issues:

(1) How to distinguish an outdated REQUEST message from a current REQUEST

message: Due to variable message delays, a site may receive a token request message after the

corresponding request has been satisfied. If a site can not determined if the request

corresponding to a token request has been satisfied, it may dispatch the token to a site that does

not need it .this will not violate the correctness, however, this may seriously degrade the

performance.

(2) How to determine which site has an outstanding request for the CS: After a site has

finished the execution of the CS, it must determine how many sites have an outstanding request

for the CS so that the token can be dispatched to one of them.

The first issue is addressed in the following manner: A REQUEST message of site Pj has the

form REQUEST (j, n) where n (n=1, 2 ...) is a sequence number which indicates that site Pj is

requesting its nth CS execution. A site Pi keeps an array of integers RNi[1..N].where RNi[j]

denotes the largest sequence number received in a REQUEST message so far received from site

Pj .When site Pi receives a REQUEST(j, n) message, it sets RNi[j]:=max(RNi[j], n).When a site

Pi receives a REQUEST(j, n) message, the request is outdated if RNi[j]>n.

The second issue is addressed in the following manner: The token consists of a queue of

requesting sites Q, and an array of integers LN [1...N]; where LN[j] is the sequence number of

the request which site Pj executed most recently. After executing its CS, a site Pi updates

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

LN[i]:=RNi[i] to indicate that its request corresponding to sequence number RNi[i] has been

executed .At site Pi if RNi[j]=LN[j]+1, then site Pj is currently requesting token.

Algorithm:

Requesting the CS:

– If the requesting site Pi does not have the token, it increments its sequence number RNi[i], and

sends a REQUEST (i,sn) message to all other sites.

– When Pj receives the message, it sets RNj[i] to max (RNj[i], sn). If Pj has the idle token, it

sends the token to Pi if RNj[i] =LN[i] +1.

Executing the CS: Enter CS when gets token.

Releasing the CS: Having finished the execution of the CS, site Pi takes the following actions:

– Sets LN[i] to Rni[i].

– For every site Pj whose ID is not in the token queue, it appends its ID to the token queue if

RNi[j] = LN[j] +1.

– If token queue is nonempty after the above update, it deletes the top site ID from the queue and

sends the token to the site indicated by the ID.

Performance

• Message complexity: Requires 0 messages if the requesting site holds the idle token. N

messages otherwise (N-1 broadcast and 1 to send the token).

• Synchronization delay: 0 or T based on if the site holds the token at the time of request.

• No Starvation: Token request messages reach all other sites in finite time. Since one of these

sites posses the token, the request will be placed to the token Q in finite time. Since there are at

most N-1 other requests in front of this request, the request will be granted in finite time.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 5: Election algorithms

Many distributed algorithms require one process to act as coordinator, initiator, or otherwise

perform some special role. In general, it does not matter which process takes on this special

responsibility, but one of them has to do it. In this section we will look at algorithms for electing

a coordinator (using this as a generic name for the special process). If all processes are exactly

the same, with no distinguishing characteristics, there is no way to select one of them to be

special -.Consequently, we will assume that each process has a unique number, for example, its

network address (for simplicity, we will assume one process per machine). In general, election

algorithms attempt to locate the process with the highest process number and designate it as

coordinator. The algorithms differ in the way they do the location.

Bully algorithm

The process with the highest identity always becomes the coordinator.

When a process P sees that the coordinator is no longer responding to requests it initiates an

election by sending ELECTION messages to all processes whose id is higher than its own. If no

one responds to the messages then P is the new coordinator. If one of the higher-ups responds, it

takes over and P doesn't have to worry anymore.

When a process receives an ELECTION message it sends a response back saying OK. It then

holds it's own election (unless it is already holding one). Eventually there is only one process that

has not given up and that is the new coordinator. It is also the one with the highest number

currently running. When the election is done the new coordinator sends a COORDINATOR

message to everyone informing them of the change.

If a process which was down comes back up, it immediately holds an election. If this process had

previously been the coordinator it will take this role back from whoever is doing it currently

(hence the name of the algorithm).

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 6: Election algorithms

Ring Algorithm:

• It is based on the use of a ring as the name suggests. But this doesn’t use a toke.

Processes are physically ordered in such a way that every process knows its successor.

• When any process notices that the coordinator is no longer functioning, it builds up an

ELECTION message containing its own number and passes it along the to its successor.

If the successor is down, then sender skips that member along the ring to the next

working process.

• At each step, the sender adds its own process number to the list in the message effectively

making itself a candidate to be elected s the coordinator. At the end, the message gets

back to the process that started it.

• That process identifies this event when it receives an incoming message containing its

own process number. Then the same message is changed as coordinator and is circulated

once again.

• Example: two process, Number 2 and Number 5 discover together that the previous

coordinator; Number 7 has crashed. Number 2 and Number 5 will each build an election

message and start circulating it along the ring. Both the messages in the end will go to

Number 2 and Number 5 and they will convert the message into the coordinator with

exactly the same number of members and in the same order. When both such messages

have gone around the ring, they both will be discarded and the process of election will re-

start.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 7: Distributed Deadlock Detection

• Deadlocks are a fundamental problem in distributed systems.

• A process may request resources in any order, which may not be known a priori and a

process can request resource while holding others.

• If the sequence of the allocations of resources to the processes is not controlled,

deadlocks can occur.

• A deadlock is a state where a set of processes request resources that are held by other

processes in the set.

• A distributed program is composed of a set of n asynchronous processes p1, p2, . . ., pi, . .

. , pn that communicates by message passing over the communication network.

• Without loss of generality we assume that each process is running on a different

processor.

• The processors do not share a common global memory and communicate solely by

passing messages over the communication network.

Necessary Conditions for Deadlock

1. Mutual-exclusion condition. If a resource is held by a process, any other process

requesting for that resource must wait until the resource has been released.

2. Hold-and-wait condition. Processes are allowed to request for new resources without

releasing the resources that they are currently holding.

3. No-preemption condition. A resource that has been allocated to a process becomes

available for allocation to another process only after it has been voluntarily released by

the process holding it.

4. Circular-wait condition. Two or more processes must form a circular chain in which

each process is waiting for a resource that is held by the next member of the chain.

All four conditions must hold simultaneously in a system for a deadlock to occur. If anyone of

them is absent, no deadlock can occur. Notice that the four conditions are not completely

independent because the circular-wait condition implies the hold-and-wait condition. Although

these four conditions are somewhat interrelated, it is quite useful to consider them separately to

devise methods for deadlock prevention.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 8: Control Organization for Distributed Deadlock Detection

Algorithms
Algorithms for detecting distributed deadlock can be handled in three different ways:

✓ Centralized

✓ Distributed

✓ Hierarchical

Assume that the network supports reliable communication.

Centralized:

One central site sets up a global WFG and searches for cycles. All decisions are made by the

central control node.

▪ It must maintain the global WFG constantly or

▪ Periodically reconstruct it.

The main advantage is that this permits the use of relatively simple algorithms.

The disadvantages include the following:

▪ There is one, single point of failure.

▪ There can be a communication bottleneck around the site due to all the WFG information

messages.

▪ Furthermore, this traffic is independent of the formation of any deadlock.

Distributed:

In a distributed control organization,

▪ All sites have an equal amount of information.

▪ All sites make decisions based on local information.

▪ All sites bear equal responsibility for the final decision in detecting deadlock.

▪ All sites expend equal effort to the final decision.

▪ The global WFG is spread across the sites.

▪ Deadlock detection is initiated whenever a process thinks there might be a problem.

▪ Several sites can initiate the detection at the same time.

The advantages include the following:

There is no central point of failure.

A single node failure cannot cause a crash.

There is no one site with heavy traffic due to the detection algorithm.

The algorithm is only initiated when process(es) feel there might be a problem.

The algorithm is not run periodically, only when needed.

The main disadvantage is that resolution may be difficult, as not all sites may be aware of the

processes involved in the deadlock.

The proof of correctness for this type of algorithm may be difficult.

Hierarchical:

The sites (nodes) are logically connected in a hierarchical structure (such as a tree).

A site can detect deadlock in its descendants.

This type of algorithm has the best of both the centralized and the distributed deadlock detection

algorithms.

For efficiency purposes, it is best to keep clusters of interacting processes together in the

hierarchy.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 9: Deadlock Handling Strategies
• There are three strategies for handling deadlocks, viz., deadlock prevention, deadlock

avoidance, and deadlock detection.

• Handling of deadlock becomes highly complicated in distributed systems because no site

has accurate knowledge of the current state of the system and because every inter-site

communication involves a finite and unpredictable delay.

• Deadlock prevention is commonly achieved either by having a process acquire all the

needed resources simultaneously before it begins executing or by preempting

• a process which holds the needed resource.

• This approach is highly inefficient and impractical in distributed systems.

• In deadlock avoidance approach to distributed systems, a resource is granted to a process

if the resulting global system state is safe (note that a global state includes all the

processes and resources of the distributed system).

• However, due to several problems, deadlock avoidance is impractical in distributed

systems.

• Deadlock detection requires examination of the status of process-resource interactions for

presence of cyclic wait.

• Deadlock detection in distributed systems seems to be the best approach to handle

deadlocks in distributed systems.

• Deadlock handling using the approach of deadlock detection entails addressing two basic

issues: First, detection of existing deadlocks and second resolution of detected deadlocks.

• Detection of deadlocks involves addressing two issues: Maintenance of the WFG and

searching of the WFG for the presence of cycles (or knots).

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 10: Centralized and Distributed deadlock detection algorithms

Distributed deadlock detection algorithms can be divided into four classes:

✓ path-pushing

✓ edge-chasing

✓ diffusion computation

✓ global state detection.

Path-Pushing Algorithms

• In path-pushing algorithms, distributed deadlocks are detected by maintaining an explicit

global WFG.

• The basic idea is to build a global WFG for each site of the distributed system.

• In this class of algorithms, at each site whenever deadlock computation is performed, it

sends its local WFG to all the neighboring sites.

• After the local data structure of each site is updated, this updated WFG is then passed

along to other sites, and the procedure is repeated until some site has a sufficiently

complete picture of the global state to announce deadlock or to establish that no

deadlocks are present.

• This feature of sending around the paths of global WFG has led to the term path-pushing

algorithms.

Edge-Chasing Algorithms

• In an edge-chasing algorithm, the presence of a cycle in a distributed graph structure is be

verified by propagating special messages called probes, along the edges of the graph.

• These probe messages are different than the request and reply messages.

• The formation of cycle can be deleted by a site if it receives the matching probe sent by it

previously.

• Whenever a process that is executing receives a probe message, it discards this message

and continues.

• Only blocked processes propagate probe messages along their outgoing edges.

• Main advantage of edge-chasing algorithms is that probes are fixed size messages which

is normally very short.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Module 3: Distributed file systems

Lecture 1: Issues in the design of distributed file systems

In a computer system, a file is a named object that comes into existence by explicit creation, is

immune to temporary failure in the system and persists until explicitly destroyed. Two main

purposes of using files:

1. Permanent storage of information on a secondary storage media – this is achieved by

storing a file on a secondary storage media such as a magnetic disk.

2. Sharing of information between applications -

A file system is a subsystem of an operating system that performs file management activities

such as organization storing retrieval, naming, sharing, and protection of files.

 A distributed file system provides the following types of services:

1. Storage service

Allocation and management of space on a secondary storage device thus providing a logical view

of the storage system.

2. True file service

Includes file-sharing semantics, file-caching mechanism, file replication mechanism,

concurrency control, multiple copy update protocol etc.

3. Name service

Responsible for directory related activities such as creation and deletion of directories,

adding a new file to a directory, deleting a file from a directory, changing the name of a file,

moving a file from one directory to another etc.

Desirable features of a distributed file system:

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

1. Transparency

- Structure transparency

Clients should not know the number or locations of file servers and the storage

devices. Note: multiple file servers provided for performance, scalability, and

reliability.

- Access transparency

Both local and remote files should be accessible in the same way. The file system

should automatically locate an accessed file and transport it to the client’s site.

- Naming transparency

The name of the file should give no hint as to the location of the file. The name of

the file must not be changed when moving from one node to another.

- Replication transparency

If a file is replicated on multiple nodes, both the existence of multiple copies and

their locations should be hidden from the clients.

 - Failure transparency

The client and client programs should operate correctly after a server failure.

 - Location Transparency

A consistent name space exists encompassing local as well as remote files. The

name of a file does not give it location.

• Migration transparency

Files should be able to move around without the client's knowledge.

2. User mobility

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Automatically bring the user’s environment (e.g. user’s home directory) to the node where the

user logs in.

Furthermore,theperformancecharacteristicsthefilesystemshouldnotdiscourageusersfromaccessingt

heirfilesfromworkstationsotherthantheoneatwhichtheyusuallywork.

3. Performance

Performance is measured as the average amount of time needed to satisfy client requests. This

time includes CPU time + time for accessing secondary storage + network access time. It is

desirable that the performance of a distributed file system be comparable to that of a centralized

file system.

4. Simplicity and ease of use

User interface to the file system be simple and number of commands should be as small as

possible.

5. Scalability

The file system should work well in small environments (1 machine, a dozen machines) and also

scale gracefully to huge ones (hundreds through tens of thousands of systems).

6. High availability

A distributed file system should continue to function in the face of partial failures such as a link

failure, a node failure, or a storage device crash.

A highly reliable and scalable distributed file system should have multiple and independent file

servers controlling multiple and independent storage devices.

 7. High reliability

Probability of loss of stored data should be minimized. System should automatically generate

backup copies of critical files.

8. Data integrity

Concurrent access requests from multiple users who are competing to access the file must be

properly synchronized by the use of some form of concurrency control mechanism. Atomic

transactions can also be provided.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

9. Security

Users should be confident of the privacy of their data.

10.Heterogeneity

File service should be provided across different hardware and operating system platforms.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 2:File Models

Different file systems use different conceptual models of a file. The two most commonly used

criteria for file modeling are structure and modifiability. File models based on these criteria are

described below:

1. Unstructured and Structured Files

In the unstructured model, a file is an unstructured sequence of bytes. The interpretation

of the meaning and structure of the data stored in the files is up to the application (e.g.

UNIX and MS-DOS). Most modern operating systems use the unstructured file model.

In structured files (rarely used now) a file appears to the file server as an ordered

sequence of records. Records of different files of the same file system can be of different

sizes.

2. Mutable and Immutable Files

Based on the modifiability criteria, files are of two types, mutable and immutable. Most

existing operating systems use the mutable file model. An update performed on a file

overwrites its old contents to produce the new contents.

Immutable files cannot be altered after they have been closed. In order to change a file,

instead of overwriting the contents of the existing file a new file must be created. This

file may then replace the old one as a whole. This approach to modifying files does

require that directories (unlike files) be updatable. Problems with this approach include a

race condition when two clients try to replace the same file as well as the question of

what to do with processes that are reading a file at the same time as it is being replaced

by another process.

File accessing Models:

 The manner in which a client’s request to access a file is serviced depends on the file

accessing model used by the file system. The file accessing model of a distributed file system

mainly depends on two factors the method used for accessing remote files and the unit of data

access.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

To provide a remote system with file service, we will have to select one of two models of

operation. One of these is the upload/download model (Data caching model). In this model,

there are two fundamental operations: read file transfers an entire file from the server to the

requesting client, and write file copies the file back to the server. It is a simple model and

efficient in that it provides local access to the file when it is being used. Three problems are

evident. It can be wasteful if the client needs access to only a small amount of the file data. It can

be problematic if the client doesn't have enough space to cache the entire file

The second model is a remote access model. The file service provides remote operations such as

open, close, read bytes, write bytes, get attributes, etc. The file system itself runs on servers. The

drawback in this approach is the servers are accessed for the duration of file access rather than

once to download the file and again to upload it.

 Unit of data transfer

It refers to fraction of file data that is transferred to and from client as a result of single read write

operation. The Four data transfer models are:-

File level transfer model, Block level transfer model, Byte level transfer model, Record level

transfer model

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

File level transfer model:When the operation requires file data to be transferred across the

network in either direction between client and server, the whole file is moved.

The advantages are:

1. Efficient as network protocol overhead is required only once.

2. Better scalability becauseas it requires fewer access to file server and reduce server load

and network traffic.

3. Disk access routines on server can be better optimized.

4. Offers degree of resiliency to server and network failure.

The disadvantage is it requires sufficient storage space. Example are amoeba, CFS,

Andrew file system

Block level transfer model: File data transfer take place in units of data blocks. A file block is

contiguous portion of file and fixed in length.Advantage- it does not required large storage

space.It also eliminates the need to copy the entire file when only a small portion of the file data

is needed.

Disadvantage –it has more network traffic and more network protocol overhead. Therefore, this

model has poor performance as compared to the file level transfer model. Example are Sun

microsystem’s NFS, Apollo domain file system.

Byte level transfer model: In this model, file data transfer take place across the network in either

direction between client and server take place in units of bytes. It provides maximum flexibility

but difficulty in cache management.

Record level transfer model:The three file data model discussed above are commonly suitable

with unstructured file models. The record level transfer model is suitable with structured files.

Here, file data transfer take place in unit of records. Example RSS(research storage system).

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 3: File caching schemes

File caching has been implemented in several file systems for centralized time sharing systems to

improve file I/O performance (e.g.,UNIX). The idea in file caching in these systems is to retain

recently accessed file data in main memory, so that repeated accesses to the same information

can be handled without additional disk transfers. Because of locality in file access patterns, file

caching reduces disk transfers substantially, resulting in better overall performance of the file

system.

Inimplementingafile-

cachingschemeforacentralizedfilesystem,onehastomakeseveralkeydecisions,suchasthegranularity

ofcacheddata,cachesize,andthereplacement

policy.Inadditiontotheseissues,afilecachingschemeforadistributedfilesystemshouldalsoaddressthe

followingkeydecisions:

1. Cache location

Cachelocationreferstotheplacewherethecacheddataisstored.Assumingthattheoriginallocationo

fafileisonitsserver’sdisk,therearethreepossiblecachelocationsinadistributedfilesystem.

a. Server’s main memory

b. Client’s disk

c. Client’s main memory

Cachelocation Access cost on

cache hit

Advantages

Server’s main

memory

One network

access

• Easy to implement

Totally transparent to the clients

• Easy to keep the original file and cached

• EasytosupportUNIX-likefile-

sharingsemantics

Server’s main

memory

One disk access • Reliabilityagainstcrashes

• largestoragecapacity

• Suitable

forsupportingdisconnectedoperation

• Contributestoscalabilityandreliability

Client’s main

memory

- • Maximum

Performancegain

• Permits workstations to be diskless

• Contributestoscalabilityandreliability

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

2. Modificationpropagation

Adistributedfilesystemmayuseoneofthemodificationpropagationschemesdescribedbelow.The

filesharingsemanticssupportedbythedistributedfilesystemdependsgreatlyonthemodificationpr

opagationschemeused.Furthermore

themodificationpropagationschemeusedhasacriticaleffectonthesystemsperformanceandreliabi

lity.

Write-through Scheme:

 Inthisscheme,whenacacheentryismodified,thenewvalueisimmediatelysenttotheserverforupda

tingthemastercopyofthefile.Thisschemehastwomain advantages – high degree

ofreliabilityandsuitabilityforUNIX-likesemantics.Sinceeverymodificationis

immediatelypropagatedtotheserverhavingthemastercopyofthefile,theriskofupdateddatagetting

lost

whenaclientcrashes)isverylow.Amajordrawbackofthisschemeisitspoorwriteperformance.This

isbecauseeachwriteaccesshastowaituntiltheinformationiswrittentothemastercopyof

theserver.Noticethatwiththewrite-

throughschemetheadvantagesofdatacachingareonlyforreadaccessesbecausetheremoteservice

methodisbasicallyusedforallwriteaccesses.Therefore,thisschemeissuitableforuseonlyinthosec

asesinwhichtheratioofread-to-writeaccessesisfairlylarge.

Delayed-WriteScheme:

Althoughthewrite-

throughschemehelpsonreads,itdoesnothelpinreducingthenetworktrafficforwrites.Therefore,to

reducenetworktrafficforwritesaswell,somesystemsusethedelayed-

writescheme.Inthisscheme,whenacacheentryismodified,thenewvalueiswrittenonlytothecache

andtheclientjustmakesanotethatthecacheentryhasbeenupdated.Sometimelater,allupdatedcach

eentriescorrespondingtoafilearegatheredtogetherandsenttotheserveratatime.Dependingonwhe

nthemodificationsaresenttothefileserver,delayed-

writepoliciesareofdifferenttypes.Threecommonlyusedapproachesareasfollows:

a. Writeonejectionfromcache

Inthismethod,modifieddatainacacheentryissenttotheserverwhenthecachereplacement

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

policyhasdecidedtoejectitfromthe

clientscache.Thismethodcanresultingoodperformance,butsomedatacanresideintheclient

scacheforalongtimebeforetheyaresenttotheserver.Suchdataaresubjecttoreliabilityproblem.

b. Periodicwrite

Inthismethod,thecacheisscannedperiodically,atregularintervals,andanycacheddatathathavebe

enmodifiedsincethelastscanaresenttotheserver.

c. Writeonclose

Inthismethod,themodificationsmadetoacacheddatabyaclientaresenttotheserverwhenthecorres

pondingfileisclosedbytheclient.Noticethatthewrite-on-

closepolicyisaperfectmatchforthesessionsemantics.However,itdoesnothelpmuchinreducingne

tworktrafficforthosefilesthatareopenforveryshortperiodsorarerarelymodified.Furthermore,the

closeoperationtakesalongtimebecauseallmodifieddatamustbewrittentotheserverbeforetheoper

ationcompletes.Therefore,thispolicyshouldbeusedonlyincasesinwhichfilesareopenforlongperi

odsandarefrequentlymodified.

3. Cachevalidation

A file data may simultaneously reside in the cache of multiple nodes. The modification

propagation policy only specifies when the master copy of a file at a server node is updated upon

modification of a cache entry.

It does not tell anything about when the file data residing in the cache of other nodes was

updated. As soon as other nodes get updated, the client’s data become outdated or stale. Thus the

consistency of the clients’ cache has to be checked and must be consistent with the master copy of

the data. Validation is done in two ways:

a. Client initiated approach:

Here client checks for new updates before it accesses its data or it goes with the periodic checking

mechanism i.e. client checks for updates after regular intervals of time. Here the pull mechanism is

implemented where the client pulls for updates.

b. Server initiated approach:

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Here the server is responsible for sending periodic updates to all its clients. The Push protocol is user

where she server pushes the new updates to all its clients.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 4: Fault Tolerance

Fault tolerance is an important issue in the design of a distributed file system. Various types of

faults could harm the integrity of the data stored by such a system. For instance, aprocessor loses

the comments of its main memory in the event of a crash. Such a failure could result in logically

complete but physically incomplete file operations, making the data that are stored by the file

system inconsistent. Similarly, during a request processing, the server or client machine may

crash, resulting in the loss of state information of the file being accessed. This may have an

uncertain effect on the integrity of file data. Also, other adverse environmental phenomena such

as transient faults (caused by electromagnetic fluctuations) or decay of disk storage devices may

result in the loss or corruption of data stored by a file system. A portion of a disk storage device

is said to be ‘decay’. The data on that portion of the device are irretrievable. The primary file

properties that directly influence ability of a distributed file system to tolerate faults are as

follows.

1. Availability: Availability of a file refers to the fraction of time for which the file is

available for use. Note that the availability property depends on the location of the file

and the locations of its clients (users). For example, if a network is partitioned due to a

communication link failure, a file may be available to the clients of some nodes, but at

the same time, it may not be available to the clients of other nodes. Replication is a

primary mechanism for improving the availability of a file.

2. Robustness: Robustness of a file refers to its power to survive crashes of the storage

device and decays of the storage medium on which it is stored. Storage devices that are

implemented by using redundancy techniques, such as stable storage device, are often

used to store robust files. Note that a robust file may not be available until the faulty

component has been recovered. Furthermore, unlike availability, robustness is

independent of either the location of the file or the location of its clients.

On the other hand, if a failure occurs that causes a sub transaction to abort before its completion,

all of its tentative updates are undone, and its parent is notified. The parent maythen choose to

continue processing and try to complete its task using an alternative method or it may abort

itself. Therefore, the abort of a sub transaction may not necessarily cause its ancestors to abort.

However, if a failure causes an ancestor transaction to abort, the updates of all its descendant

transactions (That have already committed) have to be undone. Thus no updates performed

within an entire transaction family are made permanent until the top level transaction commits.

Only after the top level transaction commits is success reported to the client.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Stable Storage

In context of crash resistance capability, storage may be broadly classified into three types:

a. Volatile storage, such as RAM, which can not withstand power failures or machine

crashes. That is, the data stored in a volatile storage is lost in the event of a power failure

or a machine crash.

b. Nonvolatile storage such as a disk, which can withstand CPU failures but cannot

withstand transient I/O faults and decay of the storage media. Although fairly reliable,

non volatile storage media such as a disk have complicated failure modes and may prove

to be insufficiently reliable for storing critical data.

c. Stable Storage, which can even withstand transient faults and decay of the storage media.

It is a storage approach introduced by Lampson[1981].

The basic idea of stable storage is to use duplicate storage devices to implement a stable

device and to try to ensure that any period when only one of the two component devices

is operational is significantly less than the mean time between failures MTBF of a stable

device.

Effect of Service Paradigm on fault tolerance

Aservermaybeimplementedbyusinganyoneofthefollowingtwoserviceparadigms-

statefulorstateless.Thetwoparadigmsaredistinguishedbyoneaspectoftheclientserver relationship –

whetherornotthehistoryoftheservicedrequestsbetweenaclientandaserveraffectstheexecutionofthen

extservicerequest.Thestatefulapproachdependsonthehistoryoftheservicedrequests

butthestatelessapproachdoesnotdependonit.

StatefulFileServers

Astatefulfileservermaintainsclient’s stateinformationfromoneaccessrequesttothenext.Thatis

fortwosubsequentrequestsmadebyaclienttoastatefulserverforaccessingafile

somestateinformationpertainingtotheserviceperformedfortheclientasaresultofthefirstrequestexecut

ionisstoredbytheserverprocess.Thisstateinformationissubsequentlyusedwhenexecutingthesecondr

equest.

To illustrate how astateful file server works letusconsiderafileserverforbyte-

streamfilesthatallowsthefollowingoperationsonfiles:

Open (filename, mode): This operation is used to open a

fileidentifiedbyfilenameinthespecifiedmode.Whenafileisopened itsread-

writepointerissettozeroandtheserverreturnstotheclientafileidentifierfid

thatisusedbytheclientforsubsequentaccessestothatfile.

Read(fid, n, buffer):Thisoperationisusedtogetnbytesofdatafromthefileidentifiedbyfid

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

intothespecifiedbuffer.Whentheserverexecutesthisoperation,itreturnstotheclientnbytesoffiledatast

artingfromthebytecurrentlyaddressedbytheread-writepointerandthenincrementstheread-

writepointerbyn.

Write

(fid,n,buffer):Onexecutionofthisoperation,theservertakesnbytesofdatafromthespecifiedbuffer,wri

tesitintothefileidentifiedbyfidatthebytepositioncurrentlyaddressedbytheread-

writepointer,andthenincrementstheread-writepointerbyn.

Seek (fid,

position):Thisoperationcausestheservertochangethevalueofthereadwritepointerofthefileidentified

by fidtothenewvaluespecifiedasposition.

Close (fid):Thisstatementcausestheservertodeletefrom its file-

tablethefilestateinformationofthefileidentifiedby fid.

Thefileservermentionedaboveisstatefulbecauseitmaintainsthecurrentstateinformationforafilethath

asbeenopenedforusebyaclient.Therefore,asshowninFigure,afteropeningafile,ifaclientmakestwosu

bsequentRead (fid,100,buf) requests,forthefirstrequestthefirst100bytes (bytes0to99)

willbereadandforthesecondrequestthenext100bytes (bytes100to199) willberead.

An example of stateful file server

Stateless File Servers

Astatelessfileserverdoesnotmaintainanyclientstateinformation.Thereforeeveryrequestfromaclient

mustbeaccompaniedwithallthenecessaryparameterstosuccessfullycarryoutthedesiredoperation.

Forexample,aserverforbyte-streamfilesthatallowsthefollowingoperationsonfilesisstateless:

 Read (filename,position,n,buffer):Onexecutionofthisoperation

theserverreturnstotheclientnbytesofdataofthefileidentifiedbyfilename.

Open (filename, mode)

Return (fid)

Read (fid,100, buf)

Return (bytes 0 to 99)

Read (fid,100, buf)

Return (bytes 100 to 199)

Client Process Server Process

fid Mode R/W ptr

File Table

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Thereturneddataisplacedinthespecifiedbuffer.

Thevalueoftheactualnumberofbyteswrittenisalsoreturnedtotheclient.Thepositionwithinthefilefrom

wheretobeginreadingisspecifiedasthepositionparameter.

Write (filename,position, n,buffer):Whentheserverexecutesthisoperation

ittakesnbytesofdatafromthespecifiedbufferandwritesitintothefileidentifiedbyfilename. Thepositio

nparameterspecifiesthebytepositionwithinthefilefromwheretostartwriting.Theserverreturnstothecl

ienttheactualnumberofbyteswritten.

An example of stateless file server

Read (filename, 0,100, buf)

Return (bytes 0 to 99)

Read (filename, 100,100, buf)

Return (bytes 100 to 199)

Client Process Server Process

File Mode R/W

name ptr

File state information

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 5: Examples of Sun NFS,Andrew filestore

Network File System (NFS)

NFS is a remote access DFS that was introduced by Sun in 1985. The currently used version

isversion 3, however a new version (4) has also been defined. NFS integrates well into Unix’s

modelof mount points, but does not implement Unix semantics. NFS servers are stateless (i.e.,

NFSdoes not provide open & close operations). It supports caching, but no replication.NFS has

been ported to many platforms and, because the NFS protocol is independent of theunderlying

file system, supports many different underlying file systems. On Unix, an NFS serverruns as a

daemon and reads the file /etc/export to determine what directories are exported towhom under

which policy (for example, who is allowed to mount them, who is allowed to accessthem, etc.).

Server-side caching makes use of file caching as provided by the underlying operatingsystem

and is, therefore, transparent.On the client side, exported file systems can be explicitly mounted

or mounted on demand(called automounting). NFS can be used on diskless workstations so does

not require local diskspace for caching files. It does, however, support client-side caching, and

allows both file contentsas well as file attributes to be cached. Although NFS allows caching, it

leaves the specifics up tothe implementation. As such, file caching details are implementation

specific. Cache entries aregenerally discarded after a fixed period of time and a form of delayed

write-through is employed.Traditionally, NFS trusts clients and servers and thus has only

minimal security mechanismsin place. Typically, the clients simply pass Unixuser ID and group

ID of the process performinga request to the server. This implies that NFS users must not have

root access on the clients,

otherwise they could simply switch their identity to that of another user and then access

thatuser’s files. New security mechanisms have been put in place, but they also have their

drawbacks:Secure NFS using Diffie-Hellman public key cryptography is more complex to

implement and tomanage the keys, and the key lengths used are too short to provide security in

practice. UsingKerberos would turn NFS more secure, but it has high entry costs.

Andrew File System (AFS)

The Andrew File System (AFS) is a DFS that came out of the Andrew research project at

CarnegieMellon University (CMU). Its goal was to develop a DFS that would scale to all

computerson the university’s campus. It was further developed into a commercial product and an

open-source branch was later released under the name “OpenAFS”. AFS offers the same API as

Unix,implements Unix semantics for processes on the same machine, but implements write-on-

closesemantics globally. All data in AFS is mounted in the /afs directory and organised in cells

(e.g./afs/cs.cmu.edu). Cells are administrative units that manage users and servers.Files and

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

directories are stored on a collection of trusted servers called Vice. Client processesaccessing

AFS are redirected by the file system layer to a local user-level process called Venus (theAFS

daemon), which then connects to the servers. The servers serve whole files, which are cachedas a

whole on the clients’ local disks. For cached files a callback is installed on the

correspondingserver. After a process finishes modifying a file by closing it, the changes are

written back to theserver. The server then uses the callbacks to invalidate the file in other clients’

caches. As a result,clients do not have to validate cached files on access (except after a reboot)

and hence there isonly very little cache validation traffic. Data is stored on flexible volumes,

which can be resizedand moved between the servers of a cell. Volumes can be marked as read

only, e.g. for softwareinstallations.AFS does not trust Unix user IDs and instead uses its own IDs

which are managed at acell level. Users have to authenticate with Kerberos by using the klog

command. On successfulauthentication, a token will be installed in the client’s cache managers.

When a process tries toaccess a file, the cache manager checks if there is a valid token and

enforces the access rights.Tokens have a time stamp and expire, so users have to renew their

token from time to time. Authorization is implemented by directory-based ACLs, which allow

finer grained access rightsthan Unix.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 6: CODA file system, OSF DCE

Coda

Coda is an experimental DFS developed at CMU by M. Satyanarayanan’s group, it is the

successor

of the Andrew File System (AFS) but supports disconnected, mobile operation of clients. Its

design

is much more ambitious than that of NFS.Coda has quite a number of similarities with AFS. On

the client side, there is only a singlemount point /coda. This means that the name space appears

the same to all clients (and filestherefore have the same name at all clients). File names are

location transparent (servers cannotbe distinguished). Coda provides client-side caching of whole

files. The caching is implementedin a user-level cache process called Venus. Coda provides Unix

semantics for files shared byprocesses on one machine, but applies write-on-close (session)

semantics globally. Because highavailability is one of Coda’s goals access to a cached copy of a

file is only denied if it is known tobe inconsistent.In contrast to AFS, Coda supports

disconnected operation, which works as follows. Whiledisconnected (a client is disconnected

with regards to a file if it cannot contact any servers thatserve copies of that file) all updates are

logged in a client modification log (CML). Upon reconnection, the operations registered in the

CML are replayed on the server. In order to allow clients towork in disconnected mode, Coda

tries to make sure that a client always has up-to-date cachedcopies of files that they might

require. This process is called file hoarding. The system builds auser hoard database which it

uses to update frequently used files using a process called a hoardwalk. Conflicts upon

reconnection are resolved automatically where possible, otherwise, manualintervention becomes

necessary.

Files in Coda are organised in organisational units called volumes. A volume is a small

logicalunit of files (e.g., the home directory of a user or the source tree of a program). Volumes

can bemounted anywhere below the /coda mount point (in particular, within other

volumes).Coda allows files to be replicated on read/write servers. Replication is organised on a

pervolume basis, that is, the unit of replication is the volume. Updates are sent to all

replicassimultaneously using multicast RPCs (Coda defines its own RPC protocol that includes a

multicastRPC protocol). read operations can be performed at any replica.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 7:Architecture and motivations.

Distributed shared memory (DSM) system is a resource management component of a distributed

operating system that implements the shared memory in distributed systems, which have no

physically shared memory. The shared memory model provides a virtual address space that is

shared among allnodes in a distributed system.

• In systems that support DSM, data moves between secondary memory and mainmemory

as well as between main memories of different nodes.

• Each node can own data stored in the shared address space, the ownership can

changewhen data moves from one node to another.

Distributed shared memory (DSM)

Mem

ory

Memory mapping

manager

CPU1

CPUn

Mem

ory

Memory mapping

manager

CPU1

CPUn

Mem

ory

Memory mapping

manager

CPU1

CPUn

Communication Network

Distributed shared memory

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

• When a process accesses data in the shared address space, a mapping manager mapsthe

shared memory address to the physical memory.

• To reduce delays due to communication latency, DSM may move data at the shared

memory address from a remote node to the node that is accessing data.

• The OS gets the page from another processor over the network.

• DSM systems hide this explicit data movement and provide a simpler abstraction for

sharing data that programmers are already well versed with.

• DSM systems allow complex structures to be passed by reference, thus simplifying the

development of algorithms for distributed applications.

• DSM takes advantage of the locality of reference exhibited by programs and thereby cuts

down on the overhead of communicating over the network.

• DSM systems are cheaper to build than tightly coupled multiprocessor systems.

• Large memory can be used to efficiently run programs that require large memory without

incurring disk latency due to swapping in traditional distributed systems.

• DSM systems do not suffer from this drawback and can easily be scaled upwards.

• Programs written for shared memory multiprocessors can in principle be run on DSM

systems without any changes.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 8: Algorithms for implementing DSM.

Important issues for designing the algorithms are

• Granularity

• Structure of shared-memory space

• Memory coherence and access synchronization

• Data location and access

• Replacement strategy

• Thrashing

• Heterogeneity

Central issues in the implementation of DSM:

• How to keep track of the location of remote data.

• How to overcome the communication delays and high overhead associated with the

execution of communication protocols in distributed systems when accessing remote

data.

• How to make shared data concurrency accessible at several nodes in order to improve

system performance.

Algorithms for implementing DSM

1. The Central-Server Algorithm

Central Server

Data Access

Request

Clients

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Client Central Server

Send data request

 Receive Request

Perform data

access

Send response

Receive response

- Central server maintains all shared data

• Read request: returns data item

• Write request: updates data and returns acknowledgement message

- Implementation

• A timeout is used to resend a request if acknowledgment fails

• Associated sequence numbers can be used to detect duplicate write

requests

• If an application’s request to access shared data fails repeatedly, a failure

condition is sent to the application

- Issues: performance and reliability

- Possible solutions

• Partition shared data between several servers

• Use a mapping function to distribute/locate data

2. The Migration Algorithm

- Operation

• Ship (migrate) entire data object (page, block) containing data item to

requesting location

• Allow only one node to access a shared data at a time

- Advantages

• Takes advantage of the locality of reference

• DSM can be integrated with VM at each node

- Make DSM page multiple of VM page size

- A locally held shared memory can be mapped into the VM page

address space

- If page not local, fault-handler migrates page and removes it from

address space at remote node

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Data block migrated

- To locate a remote data object:

• Use a location server

• Maintain hints at each node

• Broadcast query

- Issues

• Only one node can access a data object at a time

• Thrashing can occur: to minimize it, set minimum time data object resides

at a node

3. The Read-Replication Algorithm

– Replicates data objects to multiple nodes

– DSM keeps track of location of data objects

– Multiple nodes can have read access or one node write access (multiple readers-

one writer protocol)

– After a write, all copies are invalidated or updated

– DSM has to keep track of locations of all copies of data objects. Examples of

implementations:

• IVY: owner node of data object knows all nodes that have copies

• PLUS: distributed linked-list tracks all nodes that have copies

Data Access Request

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Invalidate

– Advantage

• The read-replication can lead to substantial performance improvements if

the ratio of reads to writes is large

4. The Full–Replication Algorithm

- Extension of read-replication algorithm: multiple nodes can read and

multiple nodes can write (multiple-readers, multiple-writers protocol)

- Issue: consistency of data for multiple writers

- Solution: use of gap-free sequencer

• All writes sent to sequencer

• Sequencer assigns sequence number and sends write request to all

sites that have copies

• Each node performs writes according to sequence numbers

• A gap in sequence numbers indicates a missing write request: node

asks for retransmission of missing write requests

Block Request

Block

Sequencer

Write
Update

Clients

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Module 4: Case Study

Lecture 1: AMOEBA: Introduction, Process management

Twenty years ago computers were large and expensive, so many users had to share a single

computer. This was the age of the mainframes and minicomputers. Ten years ago it became

economically feasible to give each user his own computer, which led to the concept of personal

computing. Prices have continued to drop, so it is now feasible to have many CPUs per user. The

question is: how should such a system be organized? In particular, what should the software be

like.

One possible structure is to give each user a personal multiprocessor, with 10, 20, or more CPUs.

However, in such a system, most of the CPUs will be idle most of the time, leading to inefficient

use of resources, especially when some users may need large bursts of computing power at

random intervals. Instead, we envision a different model, one consisting of a large rack of single-

board computers (the processor pool) located in the machine room, plus user terminals for

accessing the system. All these machines are to be connected by a high-speed network.Pool

processors are inherently cheaper than workstations because they consist of just a single board

with a network connection. There is no keyboard, monitor, or mouse, and the power supply can

be shared by many boards. Since the pool processors are allocated only when needed, an idle

user only ties up an inexpensive X terminal instead of an expensive workstation.

Amoeba was designed as the operating system for such a system. The Amoeba user can loginto

the system as a whole, and use it without having to think about which process is running

where.To the user, Amoeba is a single integrated system, not as a loose collection of machines

connected bya network. In particular, Amoeba has no concept of a ‘‘home machine’’ on which

the user normallyworks, with occasional requests made to other machines. Instead, when a user

logs in, a shell isstarted somewhere, on a machine started by the system. Subsequent commands

are run on one ormore machines chosen by the system. The user’s workstation simply functions

as an X-terminal toallow access to the Amoeba resources. This model is fundamentally different

from client-servercomputing used at many installations, in which the user’s machine is a client

that makes requests ofvarious servers from time to time.In terms of software, an Amoeba system

consists of processes and objects. Processes performwork, and communicate with each other by a

structured form of message passing. Services and information in Amoeba are organized and

protected as objects. Typical objects include processes,memory segments, files, and directories.

Each object has a capability that controls it. A processholding the capability for an object can

invoke its methods. Capabilities are protected cryptographically, to prevent processes from

forging capabilities.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

The amoeba system architecture

The hardware of an Amoeba system has three principal components all connected by a LAN:

- An X-terminal or workstation running X-Windows for each user

- The processor pool (a rack of single-board computers)

- A certain number of dedicated servers (file server, etc.)

Each user has an X-terminal (or workstation running X-Windows) for talking to the

system.Although it is technically possible to run user jobs on this machine, that is not normally

done, as it isthe intention to have Amoeba programs use multiple processors in parallel to

improve performance.

The processor pool idea is based on the assumption that the ratio of processors to users is

large.Currently at the VU we typically have 10 users and a pool with 80 processors. As time goes

on, theratio of machines to people will increase. The current personal computer model does not

address thistrend well, which is why we have devised an alternative model for the future.

In addition to the rack of identical pool processors, a small number of dedicated servers

providecertain important services. Aserviceis an abstract definition of what the server is prepared

to do forits clients. This definition defines what the client can ask for and what the results will

be, but it doesnot specify how many servers are working together to provide the service. In this

way, the systemhas a mechanism for providing fault-tolerant services by having multiple servers

doing the work.

An example is the directory server. There is nothing inherent about the directory server or

thesystem design that would prevent a user from starting up a new directory server on a pool

processorevery time he wanted to look up a file name. However, doing so would be horrendously

inefficient,so one or more directory servers are kept running all the time, generally on dedicated

machines toenhance their performance. The decision to have some servers always running and

others to bestarted explicitly when needed is up to the system administrator.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 2: AMOEBA-Communication

Communication in amoeba

Amoeba supports two forms of communication: remote procedure call (RPC) using point-to-

point message passing, and group communication. At the lowest level, an RPC consists of a

request message followed by a reply message. Group communication uses hardware

broadcasting or multicasting if it is available; otherwise, the kernel transparently simulates it

with individual messages. Inthis section we will describe both Amoeba RPC and Amoeba group

communication.

Normal point-to-point communication in Amoeba consists of a client sending a message to

aserver followed by the server sending a reply back to the client. The RPC primitive that sends

therequest automatically blocks the caller until the reply comes back, thus forcing a certain

amount ofstructure on programs. Separatesendandreceiveprimitives can be thought of as the

distributedsystem’s answer to thegotostatement: parallel spaghetti programming. They should be

avoided byuser programs and used only by language runtime systems that have unusual

communication requirements.

Each standard server defines a procedural interface that clients can call. These library routinesare

stubs that pack the parameters into messages and invoke the kernel primitives to send the

message. During message transmission, the stub, and hence the calling thread, are blocked.

When thereply comes back, the stub returns the status and results to the client.

In order for a client thread to do an RPC with a server thread, the client must know the

server’saddress. Addressing is done by allowing any thread to choose a random 48-bit number,

called aport,to be used as the address for messages sent to it. Different threads in a process may

use differentports if they so desire. All messages are addressed from a sender to a destination

port. A port isnothing more than a kind of logical thread address. There is no data structure and

no storage associated with a port. It is similar to an IP address or an Ethernet address in that

respect, except that it isnot tied to any particular physical location.

RPC is not the only form of communication supported by Amoeba. It also supports group

communication. A group in Amoeba consists of one or more processes that are cooperating to

carry outsome task or provide some service. Amoeba works best on LANs that support either

multicasting orbroadcasting (or like Ethernet, both). For simplicity, we will just refer to

broadcasting, although infact the implementation uses multicasting when it can to avoid

disturbing machines that are notinterested in the message being sent. It is assumed that the

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

hardware broadcast is good, but not perfect. In practice, lost packets are rare, but receiver

overruns do happen occasionally. Since theseerrors can occur they cannot simply be ignored, so

the protocol has been designed to deal with them.

The key idea that forms the basis of the implementation of group communication

isreliablebroadcasting. By this we mean that when a user process broadcasts a message the user-

suppliedmessage is delivered correctly to all members of the group, even though the hardware

may lose packets. Central to the algorithm is a process called thesequencer, which numbers

broadcasts in order.When an application process executes a broadcasting primitive, a trap to its

kernel occurs. The kernel sends the message to the sequencer using a normal point-to-point

message.

Now consider what happens at the sequencer when aRequest for Broadcastpacket arrivesthere. If

the message is new (normal case), the next sequence number is assigned to it, and thesequencer

counter incremented by 1 for next time. The message and its identifier are then stored in ahistory

buffer, and the message is then broadcast. If the packet is a retransmission, it is ignored.Finally,

let us consider what happens when a kernel receives a broadcast. First, the sequencenumber is

compared to the sequence number of the broadcast received most recently. If the new oneis 1

higher (normal case), no broadcasts have been missed, so the message is passed up to the

application program, assuming that it is waiting. If it is not waiting, it is buffered until the

program callsReceiveFromGroup.

Suppose that the newly received broadcast has sequence number 25, while the previous one

hadnumber 23. The kernel is immediately alerted to the fact that it has missed number 24, so it

sends apoint-to-point message to the sequencer asking for a private retransmission of the missing

message.The sequencer fetches the missing message from its history buffer and sends it. When it

arrives, thereceiving kernel processes 24 and 25, passing them to the application program in

numerical order.Thus the only effect of a lost message is a (normally) minor time delay. All

application programs seeall broadcasts in the same order, even if some messages are lost.Several

variations of this algorithm also exist. In one, the process wanting to send a broadcastjust does

so, and the sequencer just broadcasts an OK message giving its sequence number. Inanother

variant, processes first ask the sequencer for a number, then use this number in their

ownbroadcasts. These variants make different tradeoffs between bandwidth and interrupts.

Process management in amoeba

A process in Amoeba is basically an address space and a collection of threads that run in it.

Aprocess with one thread is roughly analogous to a UNIX process in terms of how it behaves

and whatit can do. A process is an object in Amoeba. When a process is created, the parent

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

process is given acapability for the child process, just as with any other newly created object.

Using this capability, thechild can be suspended, restarted, signaled, or destroyed.

Process management is handled at three different levels in Amoeba. At the lowest level are the

process servers, which are kernel threads running on every machine. To create a process on a

given

machine, another process does an RPC with that machine’s process server, providing it with

thenecessary information. At the next level up we have a set of library procedures that provide a

moreconvenient interface for user programs. Several flavors are provided. They do their job by

callingthe low-level interface procedures. Finally, the simplest way to create a process is to use

the runserver, which does most of the work of determining where to run the new process.

Some of the process management calls use a data structure called aprocess descriptor to provide

information about the process to be run. One field in the process descriptor tells which

CPUarchitecture the process can run on. In heterogeneous systems, this field is essential to make

sure thatPentium binaries are not run on SPARCs, and so on. Another field contains the process’

owner’scapability. When the process terminates or is stunned (see below), RPCs will be done

using thiscapability to report the event. It also contains descriptors for all the process’ segments,

which collectively define its address space, as well as descriptors for all its threads. Finally, the

process descriptoralso contains a descriptor for each thread in the process. The content of a

thread descriptor is architecture dependent, but as a bare minimum, it contains the thread’s

program counter and stack pointer.

Amoeba supports a simple threads model. When a process starts up, it has one thread.

Duringexecution, the process can create additional threads, and existing threads can terminate.

The numberof threads is therefore completely dynamic. When a new thread is created, the

parameters to the callspecify the procedure to run and the size of the initial stack. Although all

threads in a process sharethe same program text and global data, each thread has its own stack,

its own stack pointer, and itsown copy of the machine registers.

Three methods are provided for threads to synchronize: signals, mutexes, and semaphores.

Signals are asynchronous interrupts sent from one thread to another thread in the same process.

A mutexis like a binary semaphore. General semaphores are also provided.

All threads are managed by the kernel. The advantage of this design is that when a thread doesan

RPC, the kernel can block that thread and schedule another one in the same process if one is

ready.Thread scheduling is done using priorities, with kernel threads getting higher priority than

userthreads. Thread scheduling can be set up to be either pre-emptive or run-to-completion (i.e.,

threadscontinue to run until they block), as the process wishes.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 3: MACH - Introduction

Introduction

The Mach project [Acetta et al. 1986, Loepere 1991, Boykin et al. 1993] was based at Carnegie

Mellon University in the USA until 1994. Its development into a real-time kernel continued

there[Lee et al. 1996], and groups at the University of Utah and the Open Software

Foundationcontinued its development. The Mach project was successor to two other projects,

RIG [Rashid1986] and Accent [Rashid and Robertson 1981, Rashid 1985, Fitzgerald and Rashid

1986]. RIGwas developed at the University of Rochester in the 1970s, and Accent was

developed at Carnegie Mellon during the first half of the 1980s. In contrast to its RIG and Accent

predecessors, the Machproject never set out to develop a complete distributed operating system.

Instead, the Mach kernelwas developed to provide direct compatibility with BSD UNIX. It was

designed to provideadvanced kernel facilities that would complement those of UNIX and allow a

UNIXimplementation to be spread across a network of multiprocessor and single-processor

computers.From the beginning, the designers’ intention was for much of UNIX to be

implemented as user-level processes.

Despite these intentions, Mach version 2.5, the first of the two major releases, included allthe

UNIX compatibility code inside the kernel itself. It ran on SUN-3s, the IBM RT

PC,multiprocessor and uniprocessor VAX systems, and the Encore Multimax and

Sequentmultiprocessors, among other computers. From 1989, Mach 2.5 was incorporated as the

basetechnology for OSF/1, the Open Software Foundation’s rival to System V Release 4 as

theindustry-standard version of UNIX. An older version of Mach was used as a basis for the

operatingsystem for the NeXT workstation.The UNIX code was removed from the version 3.0

Mach kernel, however, and it is thisversion that we describe. Most recently, Mach 3.0 is the basis

of the implementation of MkLinux,a variant of the Linux operating system running on Power

Macintosh computers [Morin 1997]. Theversion 3.0 Mach kernel also runs on Intel x86-based

PCs. It ran on the DECstation 3100 and 5000series computers, some Motorola 88000-based

computers and SUN SPARCStations; ports wereundertaken for IBM’s RS6000, Hewlett-

Packard’s Precision Architecture and Digital EquipmentCorporation’s Alpha.

Version 3.0 Mach is a basis for building user-level emulations of operating systems,

databasesystems, language run-time systems and other items of system software that we call

subsystems.The emulation of conventional operating systems makes it possible to run existing

binariesdeveloped for them. In addition, new applications for these conventional operating

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

systems can bedeveloped. At the same time, middleware and applications that take advantage of

the benefits ofdistribution can be developed; and the implementations of the conventional

operating systems canalso be distributed. Two important issues arise for operating system

emulations. First, distributedemulations cannot be entirely accurate, because of the new failure

modes that arise withdistribution. Second, the question is still open of whether acceptable

performance levels can beachieved for widespread use.

System Components

To achieve the design goals of Mach, the developers reduced the operating system functionality

to small set of basic abstractions, out of which all otherfunctionality can be derived. The Mach

approach is to place as little as possiblewithin the kernel but to make what is there powerful

enough that all otherfeatures can be implemented at the user level.

Mach’s design philosophy is to have a simple, extensible kernel, concentrating on

communication facilities. For instance, all requests to the kernel,and all data movement among

processes, are handled through one communication mechanism. Mach is therefore able to

provide system-wide protectionto its users by protecting the communications mechanism.

Optimizing thisone communications path can result in significant performance gains, and it

issimpler than trying to optimize several paths. Mach is extensible, because manytraditionally

kernel-based functions can be implemented as user-level servers.For instance, all pagers

(including the default pager) can be implementedexternally and called by the kernel for the user.

Mach is an example of an object-oriented system where the data andthe operations that

manipulate that data are encapsulated into an abstractobject. Only the operations of the object are

able to act on the entities definedin it. The details of how these operations are implemented are

hidden, asare the internal data structures. Thus, a programmer can use an object onlyby invoking

its defined, exported operations. A programmer can change theinternal operations without

changing the interface definition, so changes andoptimizations do not affect other aspects of

system operation. The object oriented approach supported by Mach allows objects to reside

anywhere ina network of Mach systems, transparent to the user. Theportmechanism,discussed

later in this section, makes all of this possible.

Mach’s primitive abstractions are the heart of the system and are as follows:

• Ataskis an execution environment that provides the basic unit of resourceallocation. It

consists of a virtual address space and protected access tosystem resources via ports, and

it may contain one or more threads.

• Athreadis the basic unit of execution and must run in the context of atask (which provides

the address space). All threads within a task sharethe tasks’ resources (ports, memory,

and so on). There is no notion of aprocessin Mach. Rather, a traditional process would be

implemented as ataskwithasinglethreadofcontrol.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

• Aportis the basic object-reference mechanism in Mach and is implemented as a kernel-

protected communication channel. Communication isaccomplished by sending messages

to ports; messages are queued at thedestination port if no thread is immediately ready to

receive them. Portsare protected by kernel-managed capabilities, orport

rights;ataskmusthave a port right to send a message to a port. The programmer invokes

anoperationonanobjectbysendinga message to a port associated with thatobject. The

object being represented by a portreceivesthe messages.

• Aport setis a group of ports sharing a common message queue. A threadcan receive

messages for a port set and thus service multiple ports. Eachreceived message identifies

the individual port (within the set) from whichit was received; the receiver can use this to

identify the object referred toby the message.

• Amessageis the basic method of communication between threads inMach. It is a typed

collection of data objects; for each object, it may containthe actual data or a pointer to

out-of-line data. Port rights are passed inmessages; this is the only way to move them

among tasks. (Passing a portright in shared memory does not work, because the Mach

kernel will notpermit the new task to use a right obtained in this manner.)

• Amemory objectis a source of memory; tasks can access it by mappingportions of an

object (or the entire object) into their address spaces. Theobject can be managed by a

user-mode external memory manager. Oneexample is a file managed by a file server;

however, a memory object canbe any object for which memory-mapped access makes

sense. A mappedbuffer implementation of aUNIXpipe is one example.

Process Management

A task can be thought of as a traditional process that does not have aninstruction pointer or a

register set. A task contains a virtual-address space, aset of port rights, and accounting

information. A task is a passive entity thatdoes nothing unless it has one or more threads

executing in it.

Basic Structure

A task containing one thread is similar to aUNIXprocess. Just as aforksystemcall produces a

newUNIXprocess, Mach creates a new task to emulate thisbehavior. The new task’s memory is a

duplicate of the parent’s address space,as dictated by theinheritance attributesof the parent’s

memory. The new taskcontains one thread, which is started at the same point as the

creatingforkcallin the parent. Threads and tasks can also be suspended and resumed.Threads are

especially useful in server applications, which are commoninUNIX, since one task can have

multiple threads to service multiple requeststo the task. Threads also allow efficient use of

parallel computing resources.Rather than having one process on each processor, with the

correspondingperformance penalty and operating-system overhead, a task can have itsthreads

spread among parallel processors. Threads add efficiency to user-levelprograms as well. For

instance, inUNIX, an entire process must wait when apage fault occurs or when a system call is

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

executed. In a task with multiplethreads, only the thread that causes the page fault or executes a

system callis delayed; all other threads continue executing. Because Mach has kernel-supported

threads (Chapter 4), the threads have some cost associated withthem. They must have supporting

data structures in the kernel, and morecomplex kernel-scheduling algorithms must be provided.

These algorithmsand thread states are discussed in Chapter 4.

At the user level, threads may be in one of two states:

• Running: The thread is either executing or waiting to be allocated a processor. A thread is

considered to be running even if it is blocked within the kernel (waiting for a page fault

to be satisfied, for instance).

• Suspended: The thread is neither executing on a processor nor waiting to be allocated a

processor. A thread can resume its execution only if it is returned to the running state.

These two states are also associated with a task. An operation on a task affects all threads

in a task, so suspending a task involves suspending all the threads in it. Task and thread

suspensions are separate, independent mechanisms, however, so resuming a thread in a

suspended task does not resume the task.

Mach provides primitives from which thread-synchronization tools can bebuilt. Thispractice

isconsistent withMach’sphilosophyofprovidingminimumyet sufficient functionality in the kernel.

The MachIPCfacility can be used forsynchronization, with processes exchanging messages at

rendezvous points.Thread-level synchronization is provided by calls to start and stop threads

atappropriate times. Asuspend countis kept for each thread. This count

allowsmultiplesuspendcalls to be executed on a thread, and only when an equalnumber

ofresumecalls occur is the thread resumed. Unfortunately, this featurehas its own limitation.

Because it is an error for astartcall to be executedbefore astopcall (thesuspend countwould

become negative), these routinescannot be used to synchronize shared data access.

However,waitandsignaloperations associated with semaphores, and used for synchronization, can

beimplemented via theIPCcalls.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 4: MACH - Communication

Communication model

Mach provides a single system call for message passing: mach_msg. Before describing this,

weshall say more about messages and ports in Mach.

Messages: A message consists of a fixed-size header followed by a variable-length list of data

items The fixed-size header contains:

The destination port: For simplicity, this is part of the message rather than being specified asa

separate parameter to the mach_msgsystem call. It is specified by the local identifier of

theappropriate send rights.

A reply port: If a reply is required, then send rights to a local port (that is, one for which

thesending thread has receive rights) are enclosed in the message for this purpose.

An operation identifier: This identifies an operation (procedure) in the service interface andis

meaningful only to applications.

Extra data size: Following the header (that is, contiguous with it) there is, in general, a variable

sized list of typed items. There is no length limit to this, except the number of bitsin this field

and the total address space size.Each item in the list after the message header is one of the

following (which can occur in any orderin the message):

Typed message data: individual, in-line type-tagged data items;

Port rights: referred to by their local identifiers;

Pointers to out-of-line data: data held in a separate non-contiguous block of memory.

Ports

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

A Mach port has a message queue whose size can be set dynamically by the task with

receiverights. This facility enables receivers to implement a form of flow control. When a normal

send

right is used, a thread attempting to send a message to a port whose message queue is full will be

blocked until room becomes available. When a thread uses a send-once right, the recipient

always

queues the message, even if the message queue is full. Since a send-once right is used, it is

known

that no further messages can be sent from that source. Server threads can avoid blocking by

using

send-once rights when replying to clients.

Sending port rights - When port send rights are enclosed in a message, the receiver acquires

send

rights to the same port. When receive rights are transmitted, they are automatically de-allocated

in

the sending task. This is because receive rights cannot be possessed by more than one task at a

time.

All messages queued at the port and all subsequently transmitted messages can be received by

the

new owner of receive rights, in a manner that is transparent to tasks sending to the port.

Thetransparent transfer of receive rights is relatively straightforward to achieve when the rights

aretransferred within a single computer. The acquired capability is simply a pointer to the

localmessage queue.

Monitoring connectivity - The kernel is designed to inform senders and receivers when

conditionsarise under which sending or receiving messages would be futile. For this purpose, it

keepsinformation about the number of send and receive rights referring to a given port. If no task

holdsreceive rights for a particular port (for example, because the task holding these rights

failed), thenall send rights in local tasks’ port name spaces become dead names. When a sender

attempts to se

a name referring to a port for which receive rights no longer exist, the kernel turns the name into

adead name and returns an error indication. Similarly, tasks can request the kernel to notify

themasynchronously of the condition that no send rights exist for a specified port. The kernel

performsthis notification by sending the requesting thread a message, using send rights given to

it by thethread for this purpose. The condition of no send rights can be ascertained by keeping a

referencecount that is incremented whenever a send right is created and decremented when one is

destroyed.It should be stressed that the conditions of no senders/no receiver are tackled within

thedomain of a single kernel at relatively little cost. Checking for these conditions in a

distributedsystem is, by contrast, a complex and expensive operation. Given that rights can be

sent inmessages, the send or receive rights for a given port could be held by any task, or even be

in amessage, queued at a port or in transit between computers.

Port sets - Port sets are locally managed collections of ports that are created within a single task.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

When a thread issues a receive from a port set, the kernel returns a message that was delivered

tosome member of the set. It also returns the identifier of this port’s receive rights so that the

threadcan process the message accordingly.Ports sets are useful because typically a server is

required to service client messages at all ofits ports at all times. Receiving a message from a port

whose message queue is empty blocks athread, even if a message that it could process arrives on

another port first. Assigning a thread toeach port overcomes this problem but is not feasible for

servers with large numbers of portsbecause a thread is a more expensive resource than a port. By

collecting ports into a port set, asingle thread can be used to service incoming messages without

fear of missing any. Furthermore,this thread will block if no messages are available on any port

in the set, so avoiding a busy-waitingsolution in which the thread polls until a message arrives on

one of the ports.

Mach_msg

The Mach_msg system call provides for both asynchronous message passing and request-reply-

styleinteractions, which makes it extremely complicated. The complete call is as follows:

mach_msg(msg_header, option, snd_siz, rcv_siz, rcv_name, timeout, notify)msg_header points to

a common message header for the sent and received messages, optionspecifies send, receive or

both, snd_siz and rcv_siz give the sizes of the sent and receivedmessage buffers, rcv_name

specifies the port or port set receive rights (if a message is received),timeout sets a limit to the

total time to send and/or receive a message, notify supplies port rightswhich the kernel is to use

to send notification messages under exceptional conditions.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 5: DCE - Introduction, Process management

DCE (Distributed Computing Environment) is an architecture defined by the Open Software

Foundation (OSF) to provide an Open Systems platform to address the challenges of distributed

computing. It is being ported to all major IBM(R) and many non-IBM environments. Note that

all current DCE implementations use TCP/IP rather than SNA as their communication protocol.

The Distributed Computing Environment (DCE) is a software system developed in the early

1990s by a consortium that included Apollo Computer (later part of Hewlett-Packard), IBM,

Digital Equipment Corporation, and others. The DCE supplies a framework and toolkit for

developing client/server applications. The framework includes a remote procedure call (RPC)

mechanism known as DCE/RPC, a naming (directory) service, a time service, an authentication

service, an authorization service and a distributed file system (DFS) known as DCE/DFS.

Architecture

The largest unit of management in DCE is a cell. The highest privileges within a cell are

assigned to a role called cell administrator, normally assigned to the “user” cell_admin. Note

that this need not be a real OS-level user. The cell_admin has all privileges over all DCE

resources within the cell. Privileges can be awarded to or removed from the following categories

: user_obj, group_obj, other_obj, any_other for any given DCE resource. The first three

correspond to the owner, group member, and any other DCE principal respectively. The last

group contains any non-DCE principal. Multiple cells can be configured to communicate and

share resources with each other. All principals from external cells are treated as “foreign” users

and privileges can be awarded or removed accordingly. In addition to this, specific users or

groups can be assigned privileges on any DCE resource, something which is not possible with

the traditional UNIX filesystem, which lacks ACLs.

Major components of DCE within every cell are:

1. the security server that is responsible for authentication

2. The Cell Directory Server (CDS) that is the respository of resources and ACLs and

3. The Distributed Time Server that provides an accurate clock for proper functioning of

the entire cell. Modern DCE implementations such as IBM’s are fully capable of

interoperating with Kerberos as the security server, LDAP for the CDS and the Network

Time Protocol implementations for the time server.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Lecture 6: DCE-Communication.

DCE is based on three distributed computing models:

Client/server

A way of organizing a distributed application

Remote procedure call

A way of communicating between parts of a distributed application

Shared files

A way of handling data in a distributed system, based on a personal computer file access model.

Remote procedure call (RPC)

One way of implementing communications between a client and a server of a distributed

application is to use the procedure call model. In this model, the client makes what looks like a

procedure call, and waits for a reply from the server. The procedure call is translated into

network communications by the underlying RPC mechanism. The server receives a request and

executes the procedure, returning the results to the client.

In DCE RPC, you define one or more DCE RPC interfaces, using the DCE interface definition

language (IDL). Each interface comprises a set of associated RPC calls (called operations), each

with their input and output parameters. You compile the IDL, which generates data structure

definitions and executable stubs for both the client and the server. The matching parameter data

structures ensure a common view of the parameters by both client and server. The matching

client and server executable stubs handle the necessary data transformations to and from the

network transmission format, and between different machine formats (EBCDIC and ASCII).

You use the DCE Directory Service to advertise that your server now supports the new interface

you defined using the IDL. Your client code can likewise use the Directory Service to discover

which servers provide the required interface.

You can also use the DCE Security Service to ensure that only authorized client end users can

access your newly defined server function.

Online Courseware for B.Tech. Computer Science and Engineering Program(Autonomy)

Paper Name: Distributed Operating System

Paper Code: IT(CS)605B

Reference

1. https://cds.cern.ch/record/400320/files/p109.pdf

2. Pradeep K. Sinha-Distributed Operating Systems_ Concepts and Design-P K Sinha

3. Distributed operating systems - Tanenbaum Andrew

4. https://middlewares.wordpress.com/2007/12/28/introduction-to-the-distributed-computing-

environment/

https://cds.cern.ch/record/400320/files/p109.pdf

