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LECTURE 1: INTRODUCTION TO PROBABILITY. 

1.1.  INTRODUCTION 

In our daily life, we often used phrases such as 'It may rain today', or 'India may win the 

match' or ' I may be selected for this post.' These phrases involve an element of uncertainty. 

How can we measure this uncertainty? A measure of this uncertainty is provided by a 

branch of Mathematics, called the theory of probability. Probability Theory is designed to 

measure the degree of uncertainty regarding the happening of a given event. The dictionary 

meaning of probability is likely though not certain to occur. Thus, when a coin is tossed, a 

head is likely to occur but may not occur. Similarly, when a die is thrown, it may or may 

not show the number 6. 

1.2. BRIEF HISTORY 

Concepts of probability have been around for thousands of years, but probability theory did 

not arise as a branch of mathematics until the mid-seventeenth century. In 1654 the famous 

mathematician Blaise Pascal had a friend, Chevalier de Mere, a member of the French 

nobility and a gambler, who wanted to adjust gambling stakes so that he would be assured 

of winning if he played long enough. This gambler raised questions with Pascal such as the 

following:  

“In eight throws of a die a player attempts to throw a one, but after three unsuccessful 

trials the game is interrupted. How should he be compensated?” 

Pascal wrote to a leading mathematician of that day, Pierre de Fermat (1601–1665), 

about these problems, and their resulting correspondence represents the beginnings of the 

modern theory of mathematical probability. 

The topic of probability is seen in many facets of the modern world. The theory of 

probability is not just taught in mathematics courses, but can be seen in practical fields, 

such as insurance, industrial quality control, study of genetics, quantum mechanics, and 

the kinetic theory of gases. 

 

1.3. PREREQUISITE: BASIC TERMS AND NOTAIONS IN SET THEORY 

 A countably infinite (or countable) set is a set with infinitely many elements which 

can be enumerated in a list, e.g., the set of all integers {0, −1,1, −2,2, … }. An 

example of an uncountable set is the set of all real numbers between 0 and 1, 

denoted [0, 1]. 
 𝜙 denotes the empty set, i.e., the set that has no element. 

 𝑆 ⊆ 𝑇 means that “𝑆 is a subset of 𝑇”, i.e., every element of 𝑆 is also an elements of 

𝑇. 

 𝑆 ⊂ 𝑇 means that “𝑆 is a proper subset of 𝑇”, i.e., every element of 𝑆 is also an 

elements of 𝑇 and 𝑇 has at least one element which is not in 𝑆. 

 𝑆 = 𝑇 means that “𝑆 and 𝑇 are two equal sets”, i.e., 𝑆 ⊆ 𝑇 as well as 𝑇 ⊆ 𝑆. 

 The set of all 𝑥 that have a certain property 𝑃 is denoted by {𝑥 ∶ 𝑥 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑃}, 

e.g., the interval [0, 1] can alternatively be written as {𝑥 ∶ 0 ≤  𝑥 ≤ 1} 

 

 



 

 The complement of a set 𝐴 defined in the universal set 𝑈 is the set {𝑥: 𝑥 ∈
𝑈 𝑏𝑢𝑡 𝑥 ∉ 𝐴} and is denoted by 𝐴𝑐 or �̅�  or 𝐴′. It is to be noted here that 𝑈𝑐 = 𝜙 

and 𝜙𝑐 = 𝑈. 

 

 

 

 

 

 

 

 

 

 

 

1.4. TERMINOLOGY 

Before we learn how find probability of an event associated with some random experiment, 

we will learn about some of terminologies which are frequently used in theory of 

probability. 

Definition 1.1. (Random Experiments) 

The basic notion in probability is that of a random experiment: an experiment whose 

outcome cannot be determined in advance, but is nevertheless still subject to analysis. 

Examples of random experiments are: 

 tossing a die, 

 measuring the amount of rainfall in Brisbane in January, 

 counting the number of calls arriving at a telephone exchange during a fixed time 

period, 

 selecting a random sample of fifty people and observing the number of left-handers, 

 choosing at random ten people and measuring their height. 

Definition 1.2. (Sample Space) 

The set of all possible outcomes of a random experiment is known as sample space that 

random experiment and is denoted by Ω or 𝑆. It is to be worthy to mention here that sample 

space, in the context of probability, play exactly the same role as that of universal set in the 

context of set theory.   

Definition 1.3. (Event) 

Any subset of the sample space is known as event of the random experiment. 

Note:  

 Since, every set is subset of itself, sample space of a random experiment is 

considered as an event of that random experiment. Moreover, since the sample 

space contains all possible outcomes of the random experiment; every time the 

random experiment will be performed, sample space will occur as an event and 

hence it is known as certain event. 

 

 

 Since, empty set, i.e., 𝜙 is a subset of every set, 𝜙 is considered as an event of that 

random experiment. Moreover, since 𝜙 contains no element, none of the results of 

the random experiment will favour the event 𝜙 to occur and hence it is known as 

impossible event. 

 

𝐴 

𝑈 

𝐴𝑐  



 

Example 1.2. Using the setup in Example 2 we would describe the event that you get 

exactly two heads in words by E = ‘exactly 2 heads’. Written as a subset this becomes E = 

{HHT, HT H, T HH}. You should get comfortable moving between describing events in 

words and as subsets of the sample space. 

Definition 1.4. (Complementary Event) 

In random experiment, non-occurrence of any event is also an event of that random 

experiment which is known as complementary event of the first event. 

If 𝐴 be any event of some random experiment, then the complementary event of the 

event 𝐴 is denoted by 𝐴𝐶  or �̅� or 𝐴′. 

 

 

Note:  

 Since, complement of an event 𝐴 is non-occurrence of the event 𝐴; the outcomes 

which are favourable for the event 𝐴, are not favourable for the complement of 

event 𝐴, i.e., 𝐴𝐶 . Thus, 𝐴𝐶 = 𝑆 − 𝐴 ⟹ 𝑛(𝐴𝐶) = 𝑛(𝑆) − 𝑛(𝐴). 

 Complement of impossible event 𝜙 is the certain event 𝑆, i.e., 𝜙𝑐 = 𝑆. 

 Complement of certain event 𝑆 is the impossible event 𝜙, i.e., 𝑆𝑐 = 𝜙. 

 Complement of complement of any event 𝐴 in a random experiment is the event 

itself, i.e., (𝐴𝑐)𝑐 = 𝐴 [since, (𝐴𝑐)𝑐 = 𝑆 − 𝐴𝑐 = 𝑆 − (𝑆 − 𝐴) = 𝐴]. 

Definition 1.4. (Mutually Exclusive Events) 

In random experiment, two events are said to be mutually exclusive events if occurrence of 

one prevents the occurrence of the other event. 

If 𝐴 and 𝐵 are any two events of some random experiment, then 𝐴 and 𝐵 are said to be 

mutually exclusive events if occurrence of the event 𝐴 prevents the occurrence of the event 

𝐵 and vice versa. Thus, 𝐴 and 𝐵 can not occur simultaneously, i.e., 𝐴 ∩ 𝐵 = 𝜙. 

Definition 1.5. (Mutually Exhaustive Events) 

In random experiment, two events are said to be mutually exhaustive events if at least one 

of them always occur whenever the random experiment is performed. 

If 𝐴 and 𝐵 are any two events of some random experiment, then 𝐴 and 𝐵 are said to be 

mutually exhaustive events if at least one of the events 𝐴 and 𝐵 occur whenever the 

random experiment is performed. This is possible only when all the possible outcomes of 

that random experiment are favourable for at least one of the events 𝐴 and 𝐵, i.e., 𝐴 ∪ 𝐵 =
𝑆. 

Definition 1.6. (Equally Likely Events) 

In random experiment, two events are said to be equally likely events if all of them have 

equal chance to occure, i.e., no one will get any preference. 

 

1.5. DEFINITIONS OF PROBABILITY 

The probability of an event has been defined in several ways. Two of the most popular 

definitions are: the relative frequency definition, and the classical definition. 

Definition 1.7. (Relative Frequency Definition) 

Suppose that a random experiment is repeated 𝑛 times. If the event A occurs 𝑛𝐴 times, then 

the probability of A, denoted by 𝑃(𝐴), is defined as 

𝑃(𝐴) = lim
𝑛→∞

(
𝑛𝐴

𝑛
) 

 



 

where 
nA

n
 represents the fraction of occurrence of 𝐴 in n trials. 

For small values of 𝑛 , it is likely that 
𝑛𝐴

𝑛
 will fluctuate quite badly. But as 𝑛 becomes 

larger and larger, we expect, 
𝑛𝐴

𝑛
 to tend to a definite limiting value. For example, let the 

experiment be that of tossing a coin and 𝐴 the event 'outcome of a toss is Head'. If 𝑛 is the 

order of 100, 
𝑛𝐴

𝑛
 may not deviate from 

1

2
 by more than, say ten percent and as n becomes 

larger and larger, we expect 
𝑛𝐴

𝑛
 to converge to 

1

2
. 

The relative frequency definition given above has empirical flavor. In the classical 

approach, the probability of the event A is found without experimentation.  

Definition 1.8. (Classical Definition) 

If a random experiment has 𝑛 number of mutually exclusive, mutually exhaustive and 

equally likely possible outcomes out of which 𝑚 number of outcomes are favorable to the 

occurrence of some event 𝐴 of that experiment, then probability of the event 𝐴, denoted by 

𝑃(𝐴), is defined as 

𝑃(𝐴) =
𝑚

𝑛
 

1.6. SOME IMPORTANT RESULTS 

Result 1: 𝑃(𝜙) = 0 and 𝑃(𝑆) = 1. 

Result 2: 0 ≤ 𝑃(𝐴) ≤ 1, for  any event 𝐴 of a random experiment. 

Result 3: 𝑃(𝐴𝑐) = 1 − 𝑃(𝐴), for  any event 𝐴 of a random experiment. 

 

 

 

 

 

 

1.7. AXIOMS OF PROBABILITY 

In random experiment, a probability space is the triple (𝑆, ℱ, 𝑃), wehere: 

 the first object 𝑆 is an arbitrary set of outcomes, sometimes called a sample space; 

 the second object ℱ is the collection of all events, that is a set of subsets of 𝑆; 

 the third object 𝑃 is defined a function from ℱ to [0,1] , i.e., 𝑃: ℱ → [0,1] and 

known as probability function, s the collection of all events, that is a set 

Finally, the probability 𝑃 is a number attached to every event A and satisfies the following 

three axioms: 

Axiom 1. For every event A, 𝑃(𝐴) ≥  0. 

Axiom 2. 𝑃(𝑆)  =  1. 

Axiom 3. If 𝐴1, 𝐴2, ⋯ is a sequence of pair-wise disjoint events, then 

𝑃 (⋃ 𝐴𝑖

∞

𝑖=1
) = ∑ 𝑃(𝐴𝑖)

∞

𝑖=1

 



 

Worked out Problems: 

Problem 1.1. A die is rolled once. Find the probability of getting a ‘5’. 

Solution: There are six possible ways in which a die can fall, viz., 1, 2, 3, 4, 5, 6 which are 

mutually exclusive, exhaustive and equally likely. Now, among these ‘5’ is the only one 

result which is favourable to the event. Thus, probability of getting a 5 = 𝑃(5) =
1

6
. 

Problem 1.2. A coin is tossed once. What is the probability of the coin coming up with 

head? 

Solution: The coin can come up either 'head' (H) or a tail (T). Thus, the total number of 

possible outcomes 

is two and one is favourable to the event. So, the probability of the coin coming up with 

head = 𝑃(𝐻) =
1

2
. 

 

Problem 1.3. A die is rolled once. What is the probability of getting a prime number? 

Solution: There are six possible outcomes in a single throw of a die, viz., 1, 2, 3, 4, 5, 6 

which are mutually exclusive, exhaustive and equally likely. Out of these, 2, 3 and 5 are 

prime numbers. So, the number of favourable cases for the event is 3. Thus, probability of 

getting a prime number = 𝑃(𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟) = 3/6 = 1/2. 

Problem 1.4. A die is rolled once. What is the probability of the number '7' coming up? 

What is the probability of a number 'less than 7' coming up? 

Solution: There are six possible outcomes in a single throw of a die, viz., 1, 2, 3, 4, 5, 6 

which are mutually exclusive, exhaustive and equally likely. But, there is no face of the die 

with mark 7 and hence no favourable case. Thus, probability of getting a 7 = 𝑃(7) =
0

6
=

0.  

[Note: That the probability of impossible event is zero]. 

Again, every face of a die is marked with a number less than 7 and hence the number of 

favourable cases for the event is 6. Thus, probability of getting a number 'less than 7' = 
6

6
=

1.  

[Note: That the probability of an event that is certain to happen is 1] 

Problem 1.5. In a simultaneous toss of two coins, find the probability of (i) getting 2 heads 

(ii) exactly 1 head. 

Solution: Here, the possible outcomes are HH, HT, TH, TT, i.e., the total number of 

possible outcomes = 4. 

(i) Number of outcomes favourable to the event ‘getting 2 heads’ = 1 (i.e., HH).  Thus, 

𝑃 (𝑔𝑒𝑡𝑡𝑖𝑛𝑔 2 ℎ𝑒𝑎𝑑𝑠)  =  
1

4
. 

(ii) Now, the event consisting of exactly one head has two favourable cases, viz., HT 

and TH. Thus, 𝑃 (𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 1)  =  
2

4
=

1

2
. 

 

Problem 1.6. In a single throw of two dice, what is the probability that the sum is 9? 

Solution: Here, the number of possible outcomes is 62 = 36. We write them as given 

below: 



 

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6) 
(2,1), (2,2), (2,3), (1,4), (2,5), (2,6) 
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6) 
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6) 
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6) 
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6) 

 

Now, how do we get a total of 9. We have: 

3 +  6 =  9 
4 +  5 =  9 
5 +  4 =  9 
6 +  3 =  9 

In other words, the outcomes (3, 6), (4, 5), (5, 4) and (6, 3) are favourable to the said event, 

i.e., the number of favourable outcomes is 4. Thus, 𝑃 (𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑎 𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 9 )  =   
4

36
=

1

9
. 

Problem 1.7. From a bag containing 10 red, 4 blue and 6 black balls, a ball is drawn at 

random. Find the probability of drawing (i) a red ball, (ii) a blue ball, (iii) not a black ball. 

Solution: There are 20 balls in total. So, the total number of ways by which one ball can be 

drawn out of 20 balls is 𝐶1
20 = 20. Thus, the total number of possible outcomes is 20 

(Random drawing of balls ensure equally likely outcomes). 

(i) Now, for the occurrence of the event ‘drawing a red ball’, the selected ball must be 

from the 10 red balls of bag which can happen in 𝐶1
10  ways, i.e., 10 ways. So, the 

number of outcomes favourable to the said event is 10.   Thus, 

𝑃(𝑑𝑟𝑎𝑤𝑖𝑛𝑔 𝑎 𝑟𝑒𝑑 𝑏𝑎𝑙𝑙) =
10

20
=

1

2
. 

(ii) Again, for the occurrence of the event ‘drawing a blue ball’, the ball is to be selected 

from the 4 blue balls of bag which can be done in 𝐶1
4  ways, i.e., 4 ways. So, the 

number of outcomes favourable to the said event is 4.   Thus, 

𝑃(𝑑𝑟𝑎𝑤𝑖𝑛𝑔 𝑎 𝑏𝑙𝑢𝑒 𝑏𝑎𝑙𝑙) =
4

20
=

1

5
. 

(iii) Now, the number of balls which are not black is (10 + 4), i.e., 14. So, for the 

occurrence of the event ‘drawing a ball which is not black’, the ball is to be selected 

from the 14 balls which are not black of bag which can be done in 𝐶1
14  ways, i.e., 

14 ways. So, the number of outcomes favourable to the said event is 14.   Thus, 

𝑃(𝑑𝑟𝑎𝑤𝑖𝑛𝑔 𝑎 𝑏𝑎𝑙𝑙 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑏𝑙𝑎𝑐𝑘) =
14

20
=

7

10
. 

Problem 1.8. A card is drawn at random from a well shuffled deck of 52 cards. If A is the 

event of getting a queen and B is the event of getting a card bearing a number greater than 

4 but less than 10, find 𝑃(𝐴) and 𝑃 (𝐵). 

Solution: A card can be drawn from a well shuffled deck of 52 cards in 𝐶1
52  ways, i.e., 52 

ways. Since, well shuffled pack of cards ensures equally likely outcomes, the total number 

of possible outcomes is 52. 

(i) There are 4 queens in a pack of cards. Thus, 𝑃(𝐴) =
4

52
=

1

13
. 

(ii) The cards bearing a number greater than 4 but less than 10 are 5, 6, 7, 8 and 9. Each 

card bearing any of the above number is of 4 suits diamond, spade, club or heart. 

Thus, the number of favourable outcomes is (5 ×  4)  =  20. Thus, 𝑃(𝐵) =
20

52
=

5

13
. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 2: ADDITION THEOREM OF PROBABILITY 

2.1. INTRODUCTION 

In the last lesson we have studied different terminologies related to the theory of 

probability as well as the definitions (classical, frequency and axiomatic) of probability. 

Moreover, the classical definition of probability is extensively exercised to find the 

probability of an event in a random experiment. 

However, in practical problems, writing down the elements of sample space and 

counting the number of cases favourable to a given event often become very tedious. In 

such situations, the computation of probabilities can be facilitated to a great extent by 

fundamental theorem of addition. In this lesson we will learn Addition Theorem of 

Probability to find probability of occurrence for simultaneous trials under two conditions 

when events are mutually exclusive and when they are not mutually exclusive. But, before 

that we need to know about the following notations as we will use them frequently. 

List of Symbols 

𝑨 ∪ 𝑩: An event which represents the happening of at least one of the events A and 

B i.e. either A occurs or B occurs or both A and B occur. This is also 

denoted as A or B (The region shaded by the patterns      ,       and       in the 

figure)    

𝑨 ∩ 𝑩: An event which represents the simultaneous happening of both A and B i.e. 

A and B (The region shaded by the patterns       in the figure). 

�̅� ∩ �̅�: Neither A nor B happens, i.e., none of A and B happens (The region shaded 

by the patterns        in the figure). 

𝑨 ∩ �̅�: A happens but B does not happen (The region shaded by the patterns      in 

the figure).    

�̅� ∩ 𝑩: A does not happen but B happens (The region shaded by the patterns       in 

the figure). 

(�̅� ∩ 𝑩) ∪ (𝑨 ∩ �̅�): Exactly one of the two events A and B happens (The region 

shaded by the patterns       and       in the figure).    

 

Figure 2.1. Venn diagram representation of two events 𝐴 and 𝐵 of a random 

experiment. 

2.2. ADDITION THEOREM OF PROBABILITY (For Mutually Exclusive Events) 

Statement: If 𝐴 and 𝐵 are any two mutually exclusive events of a random experiment, 

then 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵). 

𝑆 

𝐴 𝐵 



 

Proof: Let, 𝐴 and 𝐵 are any two events of a random experiment and 𝑆 is the sample space 

of that random experiment. Thus, according to the definition of event, 𝐴, 𝐵 ⊆ 𝑆. 

Let, the total number of possible outcomes of that random experiment is 𝑛(𝑆) and the 

numbers of favourable cases for the events 𝐴 and 𝐵 are respectively 𝑛(𝐴) and 𝑛(𝐵). 

Since, 𝐴 and 𝐵 are two mutually exclusive events, 𝐴 and 𝐵 never occurs simultaneously, 

i.e., 𝐴 ∩ 𝐵 = 𝜙. Thus, 𝐴 and 𝐵 have no common favourable cases, i.e., 𝑛(𝐴 ∩ 𝐵) = 0. 

 

 
Figure 2.2. Venn diagram representation of two mutually exclusive events 𝐴 and 𝐵 of a 

random experiment. 

Now, if the number of cases favourable to the event ‘either 𝐴 or 𝐵 occur’ (i.e., at least one 

occur) is 𝑛(𝐴 ∪ 𝐵), then 

∴ 𝑛(𝐴 ∪ 𝐵) = 𝑛(𝐴) + 𝑛(𝐵) 

⟹
𝑛(𝐴 ∪ 𝐵)

𝑛(𝑆)
=

𝑛(𝐴)

𝑛(𝑆)
+

𝑛(𝐵)

𝑛(𝑆)
 

⟹ 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) 

Generalization:  This theorem can be extended to three or more mutually exclusive events 

of a random experiment. The probability of occurrence of any one of the several mutually 

exclusive events A, B and C is equal to the sum of their individual probabilities given by 

𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) 
In general, if 𝐴1, 𝐴2 ⋯ , 𝐴𝑛 are mutually exclusive events of a random experiment, then 

𝑃(𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛) = 𝑃(𝐴1) + 𝑃(𝐴2) + ⋯ + 𝑃(𝐴𝑛) 

i.e., the probability of occurrence of any one of the 𝑛 mutually disjoint events 

𝐴1, 𝐴2 ⋯ , 𝐴𝑛 is equal to the sum of their individual probabilities. 

Note:  

If 𝑛 mutually exclusive events 𝐴1, 𝐴2 ⋯ , 𝐴𝑛 are exhaustive also, so that probability of at 

least one of the 𝑛 events to materialize is a certainty then the probability of the constituent 

events. 

∴ 𝑃(𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛) = 1 
⟹  𝑃(𝐴1) + 𝑃(𝐴2) + ⋯ + 𝑃(𝐴𝑛) = 1 

Worked out Problems: 

Problem 2.1. A card is drawn at random from a pack of 52 cards. Find the probability that 

the drawn card is either a club or an ace of diamond. 

Solution:  Let 𝐴 : Event of drawing a card of club  and B:  Event of drawing an ace of 

diamond 

A card can be drawn from a well shuffled deck of 52 cards in C1
52  ways, i.e., in 52 

ways. Since, well shuffled pack of cards ensures equally likely outcomes; the total number 

of possible outcomes is 52. 

Now, a well shuffled pack of 52 cards contains 13 cards of club. So, to ensure the 

occurrence of event A, the card must be selected from those 13 cards of club which can be 

𝐴 𝐵 



 

done in C1
13  ways, i.e., in 13 ways. Thus, the number of outcomes favourable to the event 

A is 13.    

∴ The probability of drawing a card of club = 𝑃(𝐴) =
13

52
=

1

4
. 

Again, a well shuffled pack of 52 cards contains 13 cards of diamond out of which only 

one card is ace. So, to ensure the occurrence of event B, that ace of diamond must be 

selected which can be done in C1
1  ways, i.e.,  in 1 ways. Thus, the number of outcomes 

favourable to the event B is 1. 

∴ The probability of drawing a card of diamond = 𝑃(𝐵) =
1

52
. 

Since, the selected card can not be simultaneously a card of club and an ace of diamond; 

the two events 𝐴 and 𝐵 are mutually exclusive. 

∴ The probability of the drawn card being a club or an ace of diamond = 𝑃(𝐴 ∪ 𝐵) 

= 𝑃(𝐴) + 𝑃(𝐵) 
[By addition 

theorem of 

probability for 

mutually exclusive 

events] 

=
1

4
+

1

52
 

=
13 + 1

52
 

=
14

52
 

=
7

26
 

Problem 2.2. A herd contains 30 cows numbered from 1 to 30. One cow is selected at 

random. Find the probability that number of the selected cow is a multiple of 5 or 8. 

Solution:  Let 𝐴 be the event of number being a multiple of 5 within 30 and 𝐵 be the event 

of number being a multiple of 8 within 30. 

A cow can be selected from the 30 cows numbered from 1 to 30 in C1
30  ways, i.e., in 

30 ways. Thus, the total number of possible outcomes is 30. 

Now, there are exactly 6 numbers within 30 which are multiple of 5 (since, 6 is the 

quotient when 30 is divided by 5). So, to ensure the occurrence of event A, the cow must be 

selected only from those 6 cows numbered by multiple of 5 which can be done in C1
6  

ways, i.e., in 6 ways. Thus, the number of outcomes favourable to the event A is 6. 

∴ The probability of drawing a cow numbered by a multiple of 5 = 𝑃(𝐴) =
6

30
=

1

5
. 

Again, there are exactly 3 numbers within 30 which are multiple of 8 (since, 3 is the 

quotient when 30 is divided by 8). So, to ensure the occurrence of event 𝐵, the cow must 

be selected only from those 3 cows numbered by multiple of 8 which can be done in C1
3  

ways, i.e., in 3 ways. Thus, the number of outcomes favourable to the event B is 3. 

∴ The probability of drawing a cow numbered by a multiple of 8 = 𝑃(𝐵) =
3

30
=

1

10
. 

Since, the least common multiple of 5 and 8, i.e., 𝑙. 𝑐. 𝑚. (5,8) is 40; there is no number 

within 30 which multiple of both 5 and 8. Thus, the number of the selected cow can not be 

simultaneously a multiple of 5 and multiple of 8, i.e., the two events 𝐴 and 𝐵 are mutually 

exclusive. 

Thus, by addition theorem of probability, 

∴ The probability of drawing a cow numbered by a multiple of 5 or 8 = 𝑃(𝐴 ∪ 𝐵) 



 

= 𝑃(𝐴) + 𝑃(𝐵) [By 

addition theorem of 

probability for 

mutually exclusive 

events] 

=
1

5
+

1

10
 

=
2 + 1

10
 

=
3

10
 

2.3. ADDITION THEOREM OF PROBABILITY (For Non Mutually Exclusive 

Events) 

Statement: If 𝐴 and 𝐵 are any two mutually exclusive events of a random experiment, 

then 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵). 

Proof: Let, 𝐴 and 𝐵 are any two events of a random experiment and 𝑆 is the sample space 

of that random experiment. 

According to the definition of event, 𝐴, 𝐵 ⊆ 𝑆. 

Let, the total number of possible outcomes of that random experiment is 𝑛(𝑆) and the 

numbers of favourable cases for the events 𝐴 and 𝐵 are respectively 𝑛(𝐴) and 𝑛(𝐵). 

Since, 𝐴 and 𝐵 are two non-mutually exclusive events, 𝐴 and 𝐵 may occur simultaneously, 

i.e., 𝐴 ∩ 𝐵 ≠ 𝜙. Thus, 𝐴 and 𝐵 have some common favourable cases, i.e., 𝑛(𝐴 ∩ 𝐵) ≠ 0. 

 
Figure 2.3. Venn diagram representation of two non-mutually exclusive events 𝐴 and 𝐵 of 

a random experiment. 

Now, if the number of cases favourable to the event ‘either 𝐴 or 𝐵 occur’ (i.e., at least one 

occur) is 𝑛(𝐴 ∪ 𝐵), then 

∴ 𝑛(𝐴 ∪ 𝐵) = 𝑛(𝐴) + 𝑛(𝐵) − 𝑛(𝐴 ∩ 𝐵) 

⟹
𝑛(𝐴 ∪ 𝐵)

𝑛(𝑆)
=

𝑛(𝐴)

𝑛(𝑆)
+

𝑛(𝐵)

𝑛(𝑆)
−

𝑛(𝐴 ∩ 𝐵)

𝑛(𝑆)
 

⟹ 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 

Generalization: The above theorem can be extended to three or more events. If 𝐴, 𝐵 and 𝐶 

are not mutually exclusive events then the probability of the occurrence of at least one of 

them is given by 

𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − 𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐵 ∩ 𝐶) − 𝑃(𝐴 ∩ 𝐶) +
𝑃(𝐴 ∩ 𝐵 ∩ 𝐶). 

 

𝑆 

𝐴 𝐵 



 

In general, if 𝐴1, 𝐴2 ⋯ , 𝐴𝑛 are 𝑛 non-mutually exclusive events of a random experiment, 

then 

𝑃(𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛)

= ∑ 𝑃(𝐴𝑖)

𝑛

𝑖=1

− ∑ 𝑃(𝐴𝑖 ∩ 𝐴𝑗)
0≤ 𝑖,𝑗 ≤ 𝑛

0<𝑖<𝑗 

+ ∑ 𝑃(𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘)
0≤ 𝑖,𝑗,𝑘 ≤ 𝑛
0<𝑖<𝑗<𝑘 

− ⋯

+ (−1)𝑛−1𝑃(𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ ⋯ ∩ 𝐴𝑛) 

i.e., the probability of occurrence of any one of the 𝑛 mutually disjoint events 

𝐴1, 𝐴2 ⋯ , 𝐴𝑛 is equal to the sum of their individual probabilities. 

The following worked out problems illustrate the application of this theorem: 

Worked out Problems: 

Problem 2.3. A card is drawn at random from a pack of 52 cards. Find the probability that 

the drawn card is either a spade or a king. 

Solution:  Let A: Event of drawing a card of spade and B:  Event of drawing a king card. 

∴ The probability of drawing a card of spade  

∴ The probability of drawing a king card  

 

Because one of the kings is a spade card also therefore, these events are not mutually 

of spade is  exclusive. ∴ The probability of drawing a king 

So, the probability of the drawing a spade or king card = 

  

Problem 2.4. A herd contains 30 cows numbered from 1 to 30. One cow is selected at 

random. Find the probability that the number of the selected cow is a multiple of 5 or 6. 

Solution: Let A be the event of number being a multiple of 5 within 30 and B be the event 

of number being a multiple of 6 within 30. 

Favourable cases for event A are {5, 10, 15, 20, 25, 30} 

Similarly favourable cases for event B are {6, 12, 18, 24, 30} 

The probability of the number being a multiple of 5 within 30 is 𝑃(𝐴) =
6

30
 

The probability of the number being a multiple of 6 within 30 is 𝑃(𝐵) =
5

30
 

Since 30 is a multiple of 5 as well as 6, therefore the events are not mutually exclusive  

 
The probability that the number of the selected cow is a multiple of 5 or 6 is : 

 

Problem 2.5. A number was drawn at random from the number 1 to 50. What is the 

probability that it will be a multiple of 2 or 3 or 10? 



 

Solution: Probability of getting a multiple of 2: 𝑃(𝐴) =
25

50
  

          Probability of getting a multiple of 3: 𝑃(𝐵) =
16

50
 

           Probability of getting a multiple of 10: 𝑃(𝐶) =
5

50
  

           Common Probability of getting a multiple of 2 and 3: 𝑃(𝐴 ∩ 𝐵) =
8

50
  

           Common Probability of getting a multiple of 3 and 10: 𝑃(𝐵 ∩ 𝐶) =
1

50
  

           Common Probability of getting a multiple of 2 and 10: 𝑃(𝐴 ∩ 𝐶) =
5

50
  

           Common Probability of getting a multiple of 2, 3 and 10: 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) =
1

50
 

           Probability that it is a multiple of 2 or 3 or 10:  

∴ 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)
= 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − 𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐵 ∩ 𝐶) − 𝑃(𝐴 ∩ 𝐶)
+ 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) 

=
25

50
+

16

50
+

5

50
−

8

50
−

1

50
−

5

50
+

1

50
 

=
33

50
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 3: CONDITIONAL PROBABILITY 

3.1. INTRODUCTION 

In the previous lessons, we learned how to find probability by classical definition as well as 

by addition theorem of probability. Conditional probability answers the question ‘how does 

the probability of an event change if we have extra information’. We’ll illustrate with an 

example.  

Example 3.1. Toss a fair coin 3 times.  

(a) What is the probability of 3 heads?  

answer: Sample space 𝛺 =  {𝐻𝐻𝐻, 𝐻𝐻𝑇, 𝐻𝑇𝐻, 𝐻𝑇𝑇, 𝑇𝐻𝐻, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇}. All 

outcomes are equally likely, so 𝑃(3 ℎ𝑒𝑎𝑑𝑠) = 1/8.  

(b) Suppose we are told that the first toss was heads. Given this information how should we 

compute the probability of 3 heads?  

answer: We have a new (reduced) sample space: 𝛺′ =  {𝐻𝐻𝐻, 𝐻𝐻𝑇, 𝐻𝑇𝐻, 𝐻𝑇𝑇}.  

All outcomes are equally likely, so 

𝑃(3 ℎ𝑒𝑎𝑑𝑠 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑜𝑠𝑠 𝑖𝑠 ℎ𝑒𝑎𝑑𝑠)  =  1/4. 

This is called conditional probability, since it takes into account additional conditions. To 

develop the notation, we rephrase (b) in terms of events.  

Rephrased (b) Let 𝐴 be the event ‘𝑎𝑙𝑙 𝑡ℎ𝑟𝑒𝑒 𝑡𝑜𝑠𝑠𝑒𝑠 𝑎𝑟𝑒 ℎ𝑒𝑎𝑑𝑠’ = {𝐻𝐻𝐻}.  

Let B be the event ‘𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑜𝑠𝑠 𝑖𝑠 ℎ𝑒𝑎𝑑𝑠’ =  {𝐻𝐻𝐻, 𝐻𝐻𝑇, 𝐻𝑇𝐻, 𝐻𝑇𝑇}.  

The conditional probability of 𝐴 knowing that 𝐵 occurred is written as 𝑃(𝐴|𝐵). 

This is read as  

‘the conditional probability of 𝐴 given 𝐵’ 

or 

‘the probability of 𝐴 conditioned on 𝐵’ 

or simply 

‘the probability of 𝐴 given 𝐵’. 

We can visualize conditional probability as follows. Think of 𝑃(𝐴) as the proportion of the 

area of the whole sample space taken up by 𝐴. For 𝑃(𝐴|𝐵) we restrict our attention to 𝐵. 

That is, 𝑃(𝐴|𝐵) is the proportion of area of 𝐵 taken up by 𝐴, i.e. 𝑃(𝐴 ∩  𝐵)/𝑃(𝐵).  

  
 

 

Note, 𝐴 ⊂ 𝐵 in the right-hand figure, so there are only two colors shown. The formal 

definition of conditional probability catches the gist of the above example and 

visualization.  

 

3.2. FORMAL DEFINITION OF CONDITIONAL PROBABILITY  

Definition 3.1. 



 

Let A and B be events. We define the conditional probability of 𝐴 given 𝐵 as 

𝑃(𝐴|𝐵) =
 𝑃(𝐴 ∩ 𝐵)

 𝑃( 𝐵)
 , provided 𝑃(𝐵) ≠ 0.    (1) 

Let’s redo the coin tossing example using the definition in Equation (1). Recall 𝐴 =
‘3 ℎ𝑒𝑎𝑑𝑠’ and 𝐵 = ‘𝑓𝑖𝑟𝑠𝑡 𝑡𝑜𝑠𝑠 𝑖𝑠 ℎ𝑒𝑎𝑑𝑠’. We have 𝑃(𝐴) = 1/8 and 𝑃(𝐵) = 1/2. Since 

𝐴 ∩ 𝐵 =  𝐴, we  also have 𝑃(𝐴 ∩ 𝐵) = 1/8. Now according to (1), 𝑃(𝐴|𝐵) =
1

8⁄

1
2⁄

= 1/4, 

which agrees with our answer in Example 1b. 

 

Worked out Problems: 

Problem 3.1. Toss two fair coins, blindfolded. Somebody tells you that you tossed at least 

one Heads. What is the probability that both your tosses are Heads? 

Solution: Let, A = {both H}, B = {at least one H} 

𝑃(𝐴|𝐵) =
 𝑃(𝐴 ∩  𝐵)

 𝑃( 𝐵)
=

𝑃(𝑏𝑜𝑡ℎ 𝐻)

𝑃( 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝐻)
=

1
4
3
4

=
1

3
 

 

3.3. MULTIPLICATION RULE OF PROBABILITY 

The probability that two events A and B both occur is given by the multiplication rule of 

probability as: 

𝑃(𝐴 ∩  𝐵) =  𝑃(𝐴 | 𝐵) ×  𝑃(𝐵) 
or by: 

𝑃(𝐴 ∩  𝐵) =  𝑃(𝐵 | 𝐴) ×  𝑃(𝐴) 

Extension of Multiplication Rule of Probability  

The multiplication rule can be extended to three or more events. In the case of three events, 

the rule looks like this: 

𝑃(𝐴 ∩  𝐵 ∩  𝐶) = 𝑃((𝐴 ∩  𝐵) ∩  𝐶) = 𝑃(𝐶 | 𝐴 ∩  𝐵) ×  𝑃(𝐴 ∩  𝐵) 

But, since 𝑃(𝐴 ∩  𝐵) =  𝑃(𝐵 | 𝐴) ×  𝑃(𝐴), we have 

 
𝑃(𝐴 ∩  𝐵 ∩  𝐶)  = 𝑃(𝐶 | 𝐴 ∩  𝐵)  ×  𝑃(𝐵 | 𝐴) ×  𝑃(𝐴) 

 

 

Worked out Problem: 

Problem 3.1. A bag contains 3 pink candies and 7 green candies. Two candies are taken 

out from the bag with replacement. Find the probability that both candies are pink. 

Solution: 

 

Let A = event that first candy is pink and B = event that second candy is pink. 

∴ 𝑃 (𝐴)  =  
3

10
   …(i) 

 



 

Since, after the occurrence of the event 𝐴, the selected candy is replaced in the bag; the 

number of candies in the bag will remains unchanged. 

 

 ∴ 𝑃 (B|A) = 𝑃 (𝐵)  =  
3

10
 …(ii) 

 

Hence by the multiplication law we get, 
𝑃(𝐴 ∩  𝐵) =  𝑃(𝐵 | 𝐴) ×  𝑃(𝐴) 

⟹ 𝑃(𝐴 ∩  𝐵) =  
3

10
 ×

3

10
=

9

100
= 0.09 

Problem 3.2. A bag has 4 white cards and 5 blue cards. We draw two cards from the bag 

one by one without replacement. Find the probability of getting both cards white. 

 

Solution: Let 𝐴 = event that first card is white and 𝐵= event that second card is white. 

∴ 𝑃 (𝐴)  =  
4

9
   …(i) 

Now, since the events given are dependent on each other, we have 

𝑃 (𝐵) ≠ 𝑃 (𝐵|𝐴) 

Once the event 𝐴 has occurred, the bag contains 3 white cards and 5 blue cards. 

∴ 𝑃 (𝐵|𝐴) =
3

8
 

Hence by the multiplication law we get, 

𝑃(𝐴 ∩  𝐵) =  𝑃(𝐵 | 𝐴) ×  𝑃(𝐴) =
3

8
×

4

9
=

1

6
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 4: INDEPENDENT EVENTS & TOTAL PROBABILITY 

THEOREM 

Definition 4.1a. (Independent Events) 
Events A and B are independent events if the occurrence of one of them does not affect the 

probability of the occurrence of the other. That is, two events are independent if either: 

 

 

𝑃(𝐵|𝐴)  =  𝑃(𝐵), (provided that 𝑃(𝐴)  >  0) 

 or: 

𝑃(𝐴|𝐵)  =  𝑃(𝐴), (provided that 𝑃(𝐵)  >  0). 

This substitution leads us to an alternative definition of independence. 

Definition 4.1b. (Independent Events) 
Events A and B are independent events if and only if: 

𝑃(𝐴 ∩  𝐵)  =  𝑃(𝐴) ×  𝑃(𝐵) 
Otherwise, A and B are called dependent events. 

Recall that the "if and only if" (often written as "iff") in that definition means that the if-

then statement works in both directions. That is, the definition tells us two things: 

(i) If events A and B are independent, then 𝑃(𝐴 ∩  𝐵)  =  𝑃(𝐴) ×  𝑃(𝐵). 

(ii) If 𝑃(𝐴 ∩  𝐵)  =  𝑃(𝐴)  ×  𝑃(𝐵), then events 𝐴 and 𝐵 are independent. 

The next example illustrates the first of these two directions, while the second example 

illustrates the second direction. 

Worked out Problem: 

Problem 4.1. A recent survey of students suggested that 10% of Penn State students commute 

by bike, while 40% of them have a significant other. Based on this survey, what percentage of 

Penn State students commute by bike and have a significant other? 

Solution: Let's let B be the event that a randomly selected Penn State student commutes by 

bike, and S be the event that a randomly selected Penn State student has a significant other. 

If B and S are independent events (okay??), then the definition tells us that: 

𝑃(𝐵 ∩  𝑆)  =  𝑃(𝐵)  ×  𝑃(𝑆)  =  0.10 ×  0.40 =  0.04 

That is, 4% of Penn State students commute by bike and have a significant other.  

Theorem 4.1. 

Statement: If 𝐴 and 𝐵 are two independent events, then the following pairs of events are 

independent: 

(i) �̅� and �̅� 

(ii) 𝐴 and �̅� 

(iii) �̅� and 𝐵 

Proof:  Since 𝐴 and 𝐵 are independent, so 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵) ............... (1) 

(i) Now, 𝑃(�̅� ∩ �̅�) = 𝑃(𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅) [by D’Morgan’s law] 

= 1 − 𝑃(𝐴 ∪ 𝐵) = 1 − [𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)] 
= 1 − 𝑃(𝐴) − 𝑃(𝐵) + 𝑃(𝐴 ∩ 𝐵) 

 

 



 

= 1 − 𝑃(𝐴) − 𝑃(𝐵) + 𝑃(𝐴)𝑃(𝐵)   [by (i)] 

= (1 − 𝑃(𝐴))(1 − 𝑃(𝐵)) 

= 𝑃(�̅�)𝑃(�̅�). 

∴ �̅� and �̅� are independent. 

 

 

(ii) Again, 𝐴 ∩ 𝐵 and 𝐴 ∩ �̅� are mutually exclusive and 𝐴 can be expressed as follows: 

 𝐴 = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ �̅�) 

 ∴ 𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ �̅�) 

 ⟹ 𝑃(𝐴 ∩ �̅�) = 𝑃(𝐴) − 𝑃(𝐴 ∩ 𝐵) 

=  𝑃(𝐴) −  𝑃(𝐴)𝑃(𝐵)   [by (1)] 

 =  𝑃(𝐴)(1 − 𝑃(𝐵)) 

=  𝑃(𝐴)𝑃(�̅�). 

∴ 𝐴 and �̅� are independent. 

(iii) Taking, 𝐵 = (𝐴 ∩ 𝐵) ∪ (�̅� ∩ 𝐵), we can prove the result as (ii). 

Worked out Problem: 

Problem 4.2. A problem in statistics is given to three students A, B, and C whose chances of 

solving it are ½, ¾, and ¼ respectively. What is the probability that the problem will be solved 

if all of them try independently? 

Solution: Let A, B, C denote the events that the problem is solved by the students A, B, C 

respectively. Then, 

P(A) =
1

2
 , P(B) =

3

4
 , P(C) =

1

4
 

 The problem will be solved if at least one of them solves the problem. Thus we have to 

calculate the probability of occurrence of at least one of the three events A, B, C, i. e. P(A ∪ B ∪
C). 

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C) 

 = P(A) + P(B) + P(C) − P(A)P(B) − P(A)P(C) − P(B)P(C) + P(A)P(B)P(C) 

                                                                                       (∴ A, B, C are mutually independent 

events.) 

 =
1

2
+

3

4
+

1

4
−

1

2
.

3

4
−

1

2
.

1

4
−

3

4
.

1

4
+

1

2
.

3

4
.

1

4
=

29

32
. 

Theorem 4.2. (Total Probability Theorem) 

Statement: If 𝐴1, 𝐴1, ⋯ , 𝐴𝑛 are mutually exclusive and mutually exhaustive events of some 

random experiment and 𝐵(≠ 𝜙) be any other event of the same random experiment, then 

the probability of the events 𝐵, denoted by 𝑃(𝐵), is as follows 

𝑃(𝐵) = ∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

𝑛

𝑖=1

 

Worked out Problem: 

Problem 4.3. Three bags contain 100 marbles each: 

 

 



 

 Bag 1 has 75 red and 25 blue marbles; 

 Bag 2 has 60 red and 40 blue marbles; 

 Bag 3 has 45 red and 55 blue marbles 

One of the bags chosen at random and then pick a marble from the chosen bag, also at 

random. What is the probability that the chosen marble is red? 

 

Solution 

Let 𝑅 be the event that the chosen marble is red. Let 𝐵𝑖 be the event that 𝑖𝑡ℎ 

Bag is chosen.  

∴ 𝑃(𝐵𝑖) =
1

3
, 𝑖 = 1,2,3.  

We already know that 

𝑃(𝑅|𝐵1) = 0.75, 

𝑃(𝑅|𝐵2) = 0.60, 

𝑃(𝑅|𝐵3) = 0.45 
Using the law of total probability, we can write 

𝑃(𝑅) = 𝑃(𝑅|𝐵1)𝑃(𝐵1) + 𝑃(𝑅|𝐵2)𝑃(𝐵2) + 𝑃(𝑅|𝐵3)𝑃(𝐵3) 

= 0.75 ×
1

3
+ 0.60 ×

1

3
+ 0.45 ×

1

3
 

= 0.60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 5 BAYES' THEOREM. 

5.1. INTRODUCTION 

In this lesson we extend the discussion of conditional probability to include 

applications of Bayes' theorem (or Bayes' rule), which we use for revising a probability 

value based on additional information that is later obtained. One key to understanding 

the essence of Bayes' theorem is to recognize that we are dealing with sequential 

events, whereby new additional information is obtained for a subsequent event, and that 

new information is used to revise the probability of the initial event. In this context, the 

terms prior probability and posterior probability are commonly used. 

Definitions 5.1. (Prior Probability) 

A prior probability is an initial probability value originally obtained before any 

additional information is obtained. 

Definition 5.2. (Posterior Probability) 

A posterior probability is a probability value that has been revised by using additional 

information that is later obtained. 

5.2. BAYES' THEOREM 
 

Statement: If 𝐴1, 𝐴1, ⋯ , 𝐴𝑛 are mutually exclusive and mutually exhaustive events of some 

random experiment and 𝐵(≠ 𝜙) be any other event of the same random experiment, then 

the probability of any one of the events 𝐴𝑖, for some 𝑖, given that the event 𝐵 has already 

occurred, denoted by 𝑃(𝐴𝑖|𝐵), is as follows 

𝑃(𝐴𝑖|𝐵) =
𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

𝑃(𝐵)
 

where 𝑃(𝐵) = ∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)
𝑛
𝑖=1  

That's a formidable expression, but we will simplify its calculation. See the following 

example, which illustrates use of the above expression, but also see the alternative 

method based on a more intuitive application of Bayes' theorem. 

 

Worked out Problems: 

Problem 10.1. In Orange County, 51% of the adults are males. (It doesn't take too 

much advanced mathematics to deduce that the other 49% are females.) One adult is 

randomly selected for a survey involving credit card usage. 

 

a. Find the prior probability that the selected person is a male. 

 

 



 

b. It is later learned that the selected survey subject was smoking a cigar. Also, 

9.5% of males smoke cigars, whereas 1.7% of females smoke cigars (based 

on data from the Substance Abuse and Mental Health Services 

Administration). Use this additional information to find the probability that 

the selected subject is a male. 
 

Solution: Let's use the following notation: 

𝑀: the event that the adult is male 

�̅�: the event that the adult is female 

𝐶: the event that the adult is cigar smoker 

𝐶̅: the event that the adult is not cigar smoker  

a. Before using the information given in part b, we know only that 51% of the 

adults in Orange County are males, so the probability of randomly selecting 

an adult and getting a male is given by P(M) = 0.51. 
 

b. Based on the additional given information, we have the following: 

𝑃(𝑀)  =  0.51 [Since, 51% of the adults are males] 

𝑃(�̅�)  =  0.49 [Since, 49% of the adults are females (not males)] 

𝑃(C|M) = 0.095 [Since, 9.5% of the males smoke cigars (That is, the 

probability of getting someone who smokes] 

𝑃(C|M) = 0.017 [Since, 1.7% of the females smoke cigars (That is, the 
probability of getting someone who smokes cigars, given that the person 
is a female, is 0.017.))] 

Let's now apply Bayes' theorem by using the preceding formula with M in 

place of A, and C in place of B. We get the following result: 

𝑃(𝑀 | 𝐶) =
𝑃(𝐶| 𝑀)𝑃( 𝑀) )

𝑃( 𝐶)
 

=
𝑃(𝐶| 𝑀)𝑃( 𝑀) 

𝑃(𝐶| 𝑀)𝑃( 𝑀) + 𝑃(𝐶| �̅�)𝑃( �̅�)
 

=
0.095 × 0.541 

0.095 × 0.541 + 0.017 × 0.49
 

= 0.853 

 

 

Before we knew that the survey subject smoked a cigar, there is a 0.51 probability that 

the survey subject is male (because 51% of the adults in Orange County are males). 

However, after learning that the subject smoked a cigar, we revised the probability to 

0.853. There is a 0.853 probability that the cigar−smoking respondent is a male. This 

makes sense, because the likelihood of a male increases dramatically with the 



 

additional information that the subject smokes cigars (because so many more males 

smoke cigars than females). 

Problem 10.2. An aircraft emergency locator transmitter (ELT) is a device designed to 

transmit a signal in the case of a crash. The Altigauge Manufacturing Company makes 

80% of the ELTs, the Bryant Company makes 15% of them, and the Chartair Company 

makes the other 5%. The ELTs made by Altigauge have a 4% rate of defects, the Bryant 

ELTs have a 6% rate of defects, and the Chartair ELTs have a 9% rate of defects (which 

helps to explain why Chartair has the lowest market share). 

 

a. If an ELT is randomly selected from the general population of all ELTs, 

find the probability that it was made by the Altigauge Manufacturing 

Company. 
 

b. If a randomly selected ELT is then tested and is found to be defective, find 

the probability that it was made by the Altigauge Manufacturing Company. 
 

Solution:  

 

We use the following notation: 

 

A = ELT manufactured by Altigauge 
 

B = ELT manufactured by Bryant 

C = ELT manufactured by Chartair 

 

D = ELT is defective 
 

D = ELT is not defective (or it is good) 
 

 

a. If an ELT is randomly selected from the general population of all ELTs, the 

probability that it was made by Altigauge is 0.8 (because Altigauge 

manufactures 80% of them). 
 

b. If we now have the additional information that the ELT was tested and was 

found to be defective, we want to revise the probability from part (a) so that 

the new information can be used. We want to find the value of P(A|D), 

which is the probability that the ELT was made by the Altigauge company 

given that it is defective. Based on the given information, we know these 

probabilities: 

 

𝑃(𝐴)  =  0.80 [Since, Altigauge makes 80% of the ELTs] 

𝑃(𝐵)  =  0.15 [Since, Bryant makes 15% of the ELTs] 

𝑃(𝐶)  =  0.05 [Since, Chartair makes 5% of the ELTs] 

 

 

 



 

𝑃(D|𝐴)  =  0.04 [Since, 4% of the Altigauge ELTs are defective] 

𝑃(D|𝐵)  =  0.06 [Since, 6% of the Bryant ELTs are defective] 

𝑃(D|𝐶)  =  0.09 [Since, 9% of the Chartair ELTs are defective] 

  

Here is Bayes' theorem extended to include three events corresponding to 

the selection of ELTs from the three manufacturers (A, B, C): 

𝑃(𝐴|𝐷)   =
 𝑃(𝐷| 𝐴) × 𝑃( 𝐴)

𝑃( 𝐷)
 

=
 𝑃(𝐷| 𝐴) × 𝑃( 𝐴)

𝑃(𝐷| 𝐴) × 𝑃( 𝐴) + 𝑃(𝐷| 𝐵) × 𝑃( 𝐵) + 𝑃(𝐷| 𝐶) × 𝑃( 𝐶)
 

=
 0.04 × 0.80

0.04 × 0.80 + 0.06 × 0.15 + 0.09 × 0.05
 

= 0.703 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 6: DISCRETE RANDOM VARIABLE AND IT’S 

PROBABILITY DISTRIBUTION. 
 

 

6.1. RANDOM VARIABLE 

We are often interested not in the exact outcome of a random experiment but only some 

consequence of it (for example I toss 3 coins but I only care about how many heads occur 

not the exact outcome). In informal way of thinking, a random variable is an assignment of 

a value (number) – real or complex - to every outcome in the sample space. This number is 

called the numerical value or the experimental outcome of the random variable. But, we 

will restrict our discussion only on real valued random variable, i.e., the random variable 

which is a function from the sample space to the set of real numbers. 

 

Definition 6.1. (Random Variable) 

 A random variable is a real-valued function defined on the sample space of a random 

experiment, i.e., a function from 𝑆 to ℝ.  

Notation: Generally, the R.V.s are denoted by uppercase letters of English alphabets, viz., 

X, Y, Z, etc. and their corresponding values are denoted by x, y, z, etc., respectively. Thus, 

if  X  is a R.V., then 𝑋: 𝑆 → ℝ. So,  ∀𝑠 ∈ 𝑆, 𝑋(𝑠) = 𝑥 ∈ ℝ. 

 
 

 

 

 

Example 6.1: Let, a coin is tossed three times and X is the number of T’s in the outcome.  

 
Remarks: 

 An (informal) way of thinking is to regard a random variable as a measure about 

the outcome which takes a real number (e.g. how many heads occur in a coin  

 tossing experiment) or a measurement made on the outcome. 

𝑆 ℝ 



 

 For a given a random variable 𝑋 on 𝑆, statements like “𝑋 = 3” or “𝑋 ≤ 3” are 

events. Specifically, “𝑋 =  3” is the event {𝑠 ∈  𝑆 ∶ 𝑋(𝑠) = 3}, i.e. the set of all 

outcomes in 𝑆 for which  𝑋 takes the value 3. Similarly, “𝑋 ≤  3” is the event {𝑠 ∈
 𝑆: 𝑋(𝑠) ≤ 3} i.e. that is the set of all outcomes in 𝑆 for which 𝑋 takes a value at 

most 3. 

 For a random variable 𝑋, the range of 𝑋 is the set of all values taken by 𝑋. We 

denote it by Range (𝑋) and is commonly known as spectrum of the random 

variable. 

 Functions of random variables: Any function you are likely to run across of a 

random variable or random variables is a random variable. So if 𝑋 and 𝑌 are 

random variables, then 𝑋 ± 𝑌 , 𝑋𝑌 , and 𝑙𝑜𝑔𝑋 are all random variables. 

 

6.2. TYPES OF RANDOM VARIABLES 

Depending on the nature of possible values of the random variable, random variables are 

categorized into following two type: 

 Discrete random variables – random variables that take on either finite or countably 

infinite number of values. For example, Number of phone messages awaiting me. 

 Continuous random variables – random variables that take on a continuously 

infinite number of values. For example: Weight of a people selected randomly 

6.3. DISTRIBUTION OF A RANDOM VARIABLE 

The distribution of a random variable describes the probability that it takes on various 

values. In informal way of speaking, the probability distribution of a random variable is a 

representation which tells us which are the possible values and how the total probability is 

distributed over the several possible values. 

Based on type of random variable, probability distribution of random variables are 

categorized as discrete probability distribution & continuous probability distribution. 

 

6.4. DISCRETE PROBABILITY DISTRIBUTION 

A discrete probability distribution is characterized by it’s probability mass function (p.m.f). 

Definition 6.2. (Probability Mass Function) 

The probability mass function of a discrete random variable 𝑋 is a function 𝑓: ℝ → [0,1], 

defined as follows: 

𝑓(𝑥) = {
𝑃(𝑋 = 𝑥), ∀𝑥 ∈ 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚

0, ∀𝑥 ∈ ℝ − 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚
 

  

Properties of p.m.f. 

If 𝑓 is the p.m.f. of a discrete random variable 𝑋, then 𝑓 satisfies the following properties: 

  

 

(i) 𝑓(𝑥) ≥ 0, ∀𝑥 ∈ ℝ 



 

(ii) ∑ 𝑓(𝑥)∀𝑥∈ℝ = 1 
 

Definition 6.3. (Cumulative Distribution Function) 

The cumulative distribution function (c.d.f.) or simply Distribution Function (d.f) of a 

discrete random variable 𝑋 is a function 𝐹: ℝ → [0,1], defined as follows: 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥), ∀𝑥 ∈ ℝ = ∑ 𝑓(𝑡)

∀𝑡𝜖ℝ:𝑡≤𝑥

, ∀𝑥 ∈ ℝ 

where 𝑓 is the p.m.f. of the distribution. 

Properties of c.d.f. 

𝐹 satisfies the following properties: 

(i) 𝐹(𝑥) ≥ 0, −∞ < 𝑥 < ∞ 

(ii) 𝐹(−∞) = 0 and 𝐹(∞) = 1 

(iii)  𝐹(𝑥1) ≤ 𝐹(𝑥1), 𝑖𝑓 𝑥1 < 𝑥2, ∀𝑥1, 𝑥2 ∈ ℝ 

6.5. EXPECTATION, VARIANCE & S.D. OF DISCRETE RANDOM VARIABLES 

Definition 6.4 (Expectation) 

Let 𝑋 be a discrete random variable and 𝑓(𝑥) be the probability mass function. Then 

expected value of 𝑋, denoted by 𝐸(𝑋), is defined by 

𝐸(𝑋)  = ∑ 𝑥𝑓(𝑥)

𝑥𝜖ℝ

 

provided this sum converges absolutely. We often refer to the expected value as the mean, 

and denote 𝐸(𝑋) by 𝜇 for short. If the above sum does not converge absolutely, then we 

say that 𝑋 does not have an expected value.  

 

Worked out Problem: 

Problem 6.1. Let an experiment consist of tossing a fair coin three times. Find the 

expected number of heads. 

 

 

 

Solution: Let 𝑋 denote the number of heads which appear. Then the possible values of 𝑋 

are 0, 1, 2 and 3. The corresponding probabilities are 1/8, 3/8, 3/8, and 1/8. Thus, the 

expected value of 𝑋 is as follows: 

𝐸(𝑋) = 0.
1

8
+ 1.

3

8
+ 2.

3

8
+ 6.

1

8
=

3

2
 

Definition 6.5 (Variance) 

Let 𝑋 be a discrete random variable and 𝑓(𝑥) be the probability mass function. Then 

variance of 𝑋, denoted by 𝑉(𝑋), is defined by 

𝑉(𝑋) = 𝐸(𝑋2) − {𝐸(𝑋)}2 = ∑ 𝑥2𝑓(𝑥)

𝑥𝜖ℝ

− {∑ 𝑥𝑓(𝑥)

𝑥𝜖ℝ

}

2

 

provided this sum converges absolutely. 



 

Worked out Problem: 

Problem 6.3. Let an experiment consist of tossing a fair coin three times. Find the variance 

of the  number of heads appears. 

Solution: Let 𝑋 denote the number of heads which appear. Then the possible values of 𝑋 

are 0, 1, 2 and 3. The corresponding probabilities are 1/8, 3/8, 3/8, and 1/8. Thus, the 

expected value of 𝑋 is as follows: 

∴ 𝐸(𝑋) = 0.
1

8
+ 1.

3

8
+ 2.

3

8
+ 6.

1

8
=

3

2
 

𝐸(𝑋2) = 02.
1

8
+ 12.

3

8
+ 22.

3

8
+ 62.

1

8
=

51

8
 

 

∴ 𝑉(𝑋) = 𝐸(𝑋2) − {𝐸(𝑋)}2 =
51

8
− {

3

2
}

2

=
51

8
−

9

4
=

51 − 18

8
=

33

8
 

Definition 6.6 (Standard Deviation) 

Standard deviation of a discrete random variable 𝑋 is the positive square root of variance, 

i.e., 𝑠. 𝑑. 𝑜𝑓 𝑋 = √𝑉(𝑋) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 7: CONTINUOUS RANDOM VARIABLE AND IT’S 

PROBABILITY DISTRIBUTION. 

A continuous probability distribution is characterized by it’s probability density function 

(p.d.f.). 

Definition 7.1. (Probability Density Function) 

The probability density function of a continuous random variable 𝑋 is a function 𝑓: ℝ →

[0,1], defined as follows: 

𝑓(𝑥)𝜀 ≅ 𝑃 [𝑥 −
𝜀

2
< 𝑋 < 𝑥 +

𝜀

2
] , 𝑤ℎ𝑒𝑟𝑒 𝜀 > 0 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙. 

Note: 

 𝑓(𝑥) does not give the probability that the continuous random variable 𝑋 takes on 

the value 𝑥. 

 𝑓(𝑥)𝜀 is approximately equal to the probability that 𝑋 takes on a value in an 

interval of length 𝜀 about 𝑥. 

 For a continuous random variable 𝑋, 𝑃(𝑋 = 𝑥) = 0, ∀𝑥 ∈ ℝ 

Properties of p.d.f. 

If 𝑓 is the p.d.f. of a continuous random variable 𝑋, then 𝑓 satisfies the following 

properties: 

(i) 𝑓(𝑥) ≥ 0, ∀𝑥 ∈ ℝ 

(ii) ∫ 𝑓(𝑥)𝑑𝑥
∀𝑥∈ℝ

= 1 

 

Definition 7.2. (Cumulative Distribution Function) 

The cumulative distribution function (c.d.f.) or simply Distribution Function (d.f) of a 

continuous random variable 𝑋 is a function 𝐹: ℝ → [0,1], defined as follows: 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥), ∀𝑥 ∈ ℝ = ∫ 𝑓(𝑡)𝑑𝑡
∀𝑡𝜖ℝ:𝑡≤𝑥

, ∀𝑡 ≤ 𝑥 ∈ ℝ 

where 𝑓 is the p.d.f. of the distribution. 

Properties of c.d.f. 

𝐹 satisfies the following properties: 

(i) 𝐹(𝑥) ≥ 0, −∞ < 𝑥 < ∞ 

(ii) 𝐹(−∞) = 0 and 𝐹(∞) = 1 

(iii)  𝐹(𝑥1) ≤ 𝐹(𝑥1), 𝑖𝑓 𝑥1 < 𝑥2, ∀𝑥1, 𝑥2 ∈ ℝ 

 

 

 

 



 

EXPECTATION, VARIANCE & S.D. OF CONTINUOUS RANDOM VARIABLES 

Definition 7.4 (Expectation) 

Let 𝑋 be a continuous random variable and 𝑓(𝑥) be the probability density function. Then 

expected value of 𝑋, denoted by 𝐸(𝑋), is defined by 

𝐸(𝑋)  = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∀𝑥∈ℝ

 

 

 

Definition 7.5 (Variance) 

Let 𝑋 be a continuous random variable and 𝑓(𝑥) be the probability density function. Then 

variance of 𝑋, denoted by 𝑉(𝑋), is defined by 

𝑉(𝑋) = 𝐸(𝑋2) − {𝐸(𝑋)}2 = ∑ 𝑥2𝑓(𝑥)

𝑥𝜖ℝ

− {∑ 𝑥𝑓(𝑥)

𝑥𝜖ℝ

}

2

 

provided this sum converges absolutely. 

Definition 7.6 (Standard Deviation) 

Standard deviation of a continuous random variable 𝑋 is the positive square root of 

variance, i.e., 𝑠. 𝑑. 𝑜𝑓 𝑋 = √𝑉(𝑋) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 8: BINOMIAL DISTRIBUTION 

Definition: A random variable 𝑋 is said to follow binomial distribution, if it can assume 

only finite number of non-negative integral values and it’s probability mass function 

(p.m.f.) is given by 

𝑓(𝑥) = 𝑃(𝑋 = 𝑥) = {
𝐶𝑛

𝑥𝑝𝑥(1 − 𝑝)𝑛−𝑥  ,   𝑥 = 0, 1, 2, … . , 𝑛;  0 ≤ 𝑝 ≤ 1

0           ,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where the two independent constants 𝑛 and 𝑝 in the distribution are known as the 

parameters of the distribution. 

Illustration: Let a random experiment be performed repeatedly, each repetition being 

called a trail and let the occurrence of an event in a trail be called a ‘success’ and it’s non-

occurrence be ‘failure’. Now, in a series of ′𝑛′ independent trails, if the probability of 

‘success’ in each trail is a constant ′𝑝′ and the probability of ‘failure’ in each trail is ′𝑞′ 

(where, 𝑞 = 1 − 𝑝), then the probability of ′𝑥′ successes (and obviously (𝑛 − 𝑥) failures) 

is given by the binomial distribution. So, it is clear that i)     

Physical Condition for Binomial Distribution: We get the binomial distribution under 

the following experimental conditions: 

i. Each trail results in two exhaustive and mutually disjoint outcomes, 

termed as success and failure. 

ii. The number of trails ′𝑛′ is finite. 

iii. The trails are independent of each other. Thus, the probability of success 

′𝑝′ is same in each trail.    

NOTE:  

1. Binomial distribution is a discrete distribution as 𝑋 can assume only finite number 

of isolated values. 

2. Any random variable 𝑋 which follows binomial distribution is known as binomial 

variate and is denoted by 𝑋~𝐵(𝑛, 𝑝), where 𝑛 and 𝑝 are the parameters of the 

distribution. 𝒏𝒑 is the mean, 𝒏𝒑𝒒 is the variance and √𝒏𝒑𝒒 is the standard 

deviation (s.d.) of the normal distribution. 

3. Let a random experiment be performed repeatedly, each repetition being called a 

trail and let the occurrence of an event in a trail be called a ‘success’ and it’s non-

occurrence be ‘failure’. Now, in a series of ′𝑛′ independent trails, if the probability 

of ‘success’ in each trail is a constant ′𝑝′ and the probability of ‘failure’ in each trail 

is ′𝑞′ (where, 𝑞 = 1 − 𝑝), then the probability of ′𝑥′ successes (and obviously 
(𝑛 − 𝑥) failures) is given by the binomial distribution. So, it is clear that i)  

    

4. Physical Condition For Binomial Distribution: We get the binomial distribution 

under the following experimental conditions: 

i. Each trail results in two exhaustive and mutually disjoint outcomes, 

termed as success and failure. 

ii. The number of trails ′𝑛′ is finite. 

iii. The trails are independent of each other. Thus, the probability of success 

′𝑝′ is same in each trail.    



 

Worked out Problem: 

Problem 8.1. A biased coin is tossed 6 times. The probability of heads on any toss is 0.3. 

Let X denote the number of heads that come up. Calculate: (i) P(X = 2) (ii) P(X = 3) (iii) 

P(1 < X ≤ 5). 

Solution: If we call heads a success then this X has a binomial distribution with parameters 

n = 6 and p = 0.3.  

(i) 𝑃(𝑋 =  2)  = 𝐶6
2 (0.3)2 (0.7)4  =  0.324135. 

(ii) 𝑃(𝑋 =  3)  = 𝐶6
3 (0.3)3 (0.7)3  =  0.18522. 

(iii)𝑃(1 < 𝑋 ≤ 5) = 𝑃(𝑋 =  2)  +  𝑃(𝑋 =  3)  +  𝑃(𝑋 =  4)  +  𝑃(𝑋 =  5) 
=  0.324 +  0.185 +  0.059 +  0.01 
=  0.578 

 

 

Problem 8.2. A quality control engineer is in charge of testing whether or not 90% of the 

DVD players produced by his company conform to specifications. To do this, the engineer 

randomly selects a batch of 12 DVD players from each day's production. The day's 

production is acceptable provided no more than 1 DVD player fails to meet specifications. 

Otherwise, the entire day's production has to be tested. 

(i) What is the probability that the engineer incorrectly passes a day's production as 

acceptable if only 80% of the day's DVD players actually conform to 

specifications? 

(ii) What is the probability that the engineer unnecessarily requires the entire day's 

production to be tested if in fact 90% of the DVD players conform to 

specifications? 

 

Solution: Let X denote the number of DVD players in the sample that fail to meet 

specifications. 

X has a binomial distribution with parameters 𝑛 =  6 and 𝑝 =  0.3.  

(i) X has a binomial distribution with parameters 𝑛 =  6 and 𝑝 =  0.3. 

𝑃(𝑋 ≤ 1) =  𝑃(𝑋 =  0)  +  𝑃(𝑋 =  1)  

= 𝐶12
0 (0.2)0 (0.8)12 + 𝐶12

1 (0.2)1 (0.8)11 

= 0.069 + 0.206 

= 0.275 

(ii) X has a binomial distribution with parameters 𝑛 =  12 and 𝑝 =  0.1. 

𝑃(𝑋 > 1) = 1 − 𝑃(𝑋 ≤ 1) 

= 1 − [ 𝑃(𝑋 =  0)  +  𝑃(𝑋 =  1)]  

= 1 − [ 𝐶12
0 (0.1)0 (0.9)12 + 𝐶12

1 (0.1)1 (0.9)11] 

= 1 − 0.659 

= 0.341 
 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 9: POISSON DISTRIBUTION 

Definition: A random variable 𝑋 is said to follow Poisson distribution, if it can assume 

only infinite number of non-negative integral values and it’s probability mass function 

(p.m.f.) is given by 

𝑓(𝑥) = 𝑃(𝑋 = 𝑥) = {
𝑒−𝜆𝜆𝑥

𝑥!
 ,   𝑥 = 0, 1, 2, … . ;  𝜆 > 0

0           ,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where the independent constant 𝜆 in the distribution are known as the parameters of the 

distribution. 

NOTE:  

1. Poisson distribution is a discrete distribution as 𝑋 can assume infinite number of 

isolated values. 

2. Any random variable 𝑋 which follows Poisson distribution is known as Poisson 

variate and is denoted by 𝑋~𝑃(𝜆), where 𝜆 is the parameters of the distribution. 

3. Poisson distribution is such a discrete distribution where 𝑚𝑒𝑎𝑛 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜆 

4. Physical Condition for Poisson Distribution: Poisson distribution occurs when 

there are events which are do not occur as outcomes of definite number of trails 

(unlike that binomial distribution) of an experiment but which occur at random 

points of time and space. For examples, 

(i) the number of hits to a web site in a day; 

(ii) the number of calls that arrive in any one day on your mobile phone; 

(iii)the number of jobs arriving in any one minute in a busy computer centre; 

(iv) the number of messages arriving to a computer server in any one hour. 

Worked out Problem: 

Problem 9.1. The number of calls coming per minute into a hotels reservation center is 

Poisson random variable with mean 3. Find the probability that no calls come in a given 1 

minute period. 

Solution: 

(a) Let X denote the number of calls coming in that given 1 minute period.  

∴ 𝑋 ∼  𝑃(3) 

Thus,  𝑃(𝑋 =  0) =  
𝑒−330

0!
= 𝑒−3 

Problem 9.2. Consider a computer system with Poisson job-arrival stream at an average of 

2 per minute. Determine the probability that in any one-minute interval there will be 

(i) 0 jobs; 

(ii) exactly 2 jobs; 

(iii)at most 3 arrivals. 

 

 

 

 

Solution: 

Let X denote the number of jobs -arrival in any one-minute. 

∴ 𝑋 ∼  𝑃(2) 

(i) No job arrivals: 



 

𝑃(𝑋 =  0)  =  𝑒−2  =  .135 
(ii)  Exactly 3 job arrivals: 

𝑃(𝑋 = 3) =  
𝑒−223

3!
= 0.18 

 

(iii)At most 3 arrivals: 

𝑃(𝑋 =  3)  =  𝑃(0) +  𝑃(1)  +  𝑃(2)  +  𝑃(3) 

=  𝑒−2  +  
𝑒−221

1!
 +  

𝑒−222

2!
+  

𝑒−223

3!
 

=  0.1353 +  0.2707 +  0.2707 +  0.1805
=  0.8571 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE 10: NORMAL DISTRIBUTION 

Definition: A random variable 𝑋 is said to follow normal distribution, if it can assume 

any real real number and it’s probability density function (p.d.f.) is given by 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝜇

𝜎
)

2

, −∞ < 𝑥 < ∞; −∞ < 𝜇 < ∞, 𝜎 > 0 

where the two independent constants 𝜇 and 𝜎 in the distribution are known as the 

parameters of the distribution. 

NOTE:  

1. Normal distribution is a continuous distribution as 𝑋 can assume any value within 

the interval(−∞, ∞). 

2. Any random variable 𝑋 which follows normal distribution is known as normal 

variate and is denoted by 𝑋~𝑁(𝜇, 𝜎), where 𝜇 and 𝜎 are the parameters of the 

distribution. 𝝁 is the mean and 𝝈 is the standard deviation (s.d.) of the normal 

distribution. 

3. Normal Curve: The graph corresponding to the p.d.f. of a normal distribution with 

parameters 𝜇 and 𝜎 is known as normal curve. The normal curve is a bell-shaped 

curve which is symmetric about the ordinate 𝑋 = 𝜇. The top of the bell is directly 

above 𝑋 = 𝜇. For large values of 𝜎, the curve tends to flatten out and for small 

values of 𝜎, it has a sharp peak. 

4. Distribution Function: The cumulative distribution function (c.d.f.) or distribution 

function (d.f.) of a normal distribution with parameters 𝜇 and 𝜎, is denoted by 𝐹, is 

defined as follows: 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞

=
1

𝜎√2𝜋
∫ 𝑒−

1
2

(
𝑡−𝜇

𝜎
)

2

𝑑𝑡
𝑥

−∞

 

STANDARD NORMAL DISTRIBUTION 

Definition: A normal distribution with parameters 0 and 1 is called standard normal 

distribution. 

NOTE:  

1. If 𝑋 be a continuous random variable which follows standard normal distribution, 

then 𝑋 is known as standard normal variate and is denoted by 𝑋~𝑁(0,1). Thus, the 

mean and standard deviation of a standard normal distribution are respectively 0 

and 1. 

2. Generally, the p.d.f. of any continuous probability distribution is denoted by 𝑓, but 

the p.d.f. of a standard normal distribution is always denoted by 𝜙 and is defined as 

follows (because here 𝜇 = 0 and 𝜎 = 1) 

𝜙(𝑥) =
1

√2𝜋
𝑒−

1
2

𝑥2

, −∞ < 𝑥 < ∞ 

 

 



 

3. Standard Normal Curve: The graph corresponding to the p.d.f. of a standard 

normal distribution known as standard normal curve. The standard normal curve is 

a bell-shaped curve which is symmetric about the ordinate 𝑋 = 0 (because here 

𝜇 = 0). The top of the bell is directly above 𝑋 = 0.  

4. 𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 = ∫ 𝜙(𝑡)𝑑𝑡
∞

−∞
=

1

√2𝜋
∫ 𝑒−

1

2
𝑡2

𝑑𝑡
∞

−∞
= 1 𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡.  

Since, standard normal curve is symmetric about the ordinate 𝑋 = 0,  

∫ 𝜙(𝑡)𝑑𝑡
0

−∞

=
1

√2𝜋
∫ 𝑒−

1
2

𝑡2

𝑑𝑡
0

−∞

= 0.5 𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡 

∫ 𝜙(𝑡)𝑑𝑡
∞

0

=
1

√2𝜋
∫ 𝑒−

1
2

𝑡2

𝑑𝑡
∞

0

= 0.5 𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡 

 

5. Generally, the c.d.f. of any continuous probability distribution is denoted by 𝐹, but 

the c.d.f. of a standard normal distribution is always denoted by Φ and is defined as 

follows (because here 𝜇 = 0 and 𝜎 = 1) 

Φ(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝜙(𝑡)𝑑𝑡
𝑥

−∞

=
1

√2𝜋
∫ 𝑒−

1
2

𝑡2

𝑑𝑡
𝑥

−∞

, −∞ < 𝑥 < ∞ 

Thus, for 𝑎 > 0, 

Φ(𝑎) = 𝑃(𝑋 ≤ 𝑎) 

= ∫ 𝜙(𝑥)𝑑𝑥
𝑎

−∞

 

=
1

√2𝜋
∫ 𝑒−

1
2

𝑥2

𝑑𝑥
𝑎

−∞

 

= 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑥

= 𝑎  

 

Φ(−𝑎) = 𝑃(𝑋 ≤ −𝑎) 

= ∫ 𝜙(𝑥)𝑑𝑥
−𝑎

−∞

 

=
1

√2𝜋
∫ 𝑒−

1
2

𝑥2

𝑑𝑥
−𝑎

−∞

 

= 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑥

= −𝑎  

= 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑥

= 𝑎  

= 1 − 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑥

= 𝑎  

= 1 − Φ(𝑎)  

 

 

Transformation of a Normal Distribution into Standard Normal Distribution 

 If 𝑋~𝑁(𝜇, 𝜎) and 𝑍 =
𝑋−𝜇

𝜎
, then 𝑍~𝑁(0,1). Thus, the p.d.f. corresponding to 𝑍 is as 

follows 



 

𝜙(𝑧) =
1

√2𝜋
𝑒−

1
2

𝑧2

, −∞ < 𝑧 < ∞ 

and the c.d.f. corresponding to 𝑍 is as follows 

Φ(𝑧) = 𝑃(𝑍 ≤ 𝑧) = ∫ 𝜙(𝑡)𝑑𝑡
𝑧

−∞

=
1

√2𝜋
∫ 𝑒−

1
2

𝑡2

𝑑𝑡
𝑧

−∞

, −∞ < 𝑧 < ∞ 

Technique to solve problems related to normal distribution 

Problem related to normal distribution is solved by transforming the problem into a 

problem of standard normal distribution as follows: 

Suppose 𝑿~𝑵(𝝁, 𝝈) and we have to find the following probabilities 

I 𝑷(𝑿 ≤ 𝒂) 

II 𝑷(𝑿 ≥ 𝒂) 

III 𝑷(𝒂 ≤ 𝑿 ≤ 𝒃) 

Let, 𝑍 =
𝑋−𝜇

𝜎
. Then 𝑍~𝑁(0,1). 

Therefore, the p.d.f. corresponding to 𝑍 is as follows  

𝜙(𝑧) =
1

√2𝜋
𝑒−

1
2

𝑧2

, −∞ < 𝑧 < ∞ 

I 𝑃(𝑋 ≤ 𝑎) = 𝑃 (
𝑋−𝜇

𝜎
≤

𝑎−𝜇

𝜎
) 

= 𝑃 (𝑍 ≤
𝑎 − 𝜇

𝜎
) 

= ∫ 𝜙(𝑧)𝑑𝑧

𝑎−𝜇
𝜎

−∞

 

=
1

√2𝜋
∫ 𝑒−

1
2

𝑡2

𝑑𝑡

𝑎−𝜇
𝜎

−∞

 

= Φ (
𝑎 − 𝜇

𝜎
) 

= 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑧

=
𝑎 − 𝜇

𝜎
  

II 𝑃(𝑋 ≥ 𝑎) = 𝑃 (
𝑋−𝜇

𝜎
≥

𝑎−𝜇

𝜎
) 

= 𝑃 (𝑍 ≥
𝑎 − 𝜇

𝜎
) 

= 1 − 𝑃 (𝑍 ≤
𝑎 − 𝜇

𝜎
) 

= 1 − ∫ 𝜙(𝑧)𝑑𝑧

𝑎−𝜇
𝜎

−∞

 

= 1 −
1

√2𝜋
∫ 𝑒−

1
2

𝑡2

𝑑𝑡

𝑎−𝜇
𝜎

−∞

 

= 1 − Φ (
𝑎 − 𝜇

𝜎
) 

= 1 − 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑧

=
𝑎 − 𝜇

𝜎
  



 

III 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃 (
𝑎−𝜇

𝜎
≤

𝑋−𝜇

𝜎
≤

𝑏−𝜇

𝜎
) 

= 𝑃 (
𝑎 − 𝜇

𝜎
≤ 𝑍 ≤

𝑏 − 𝜇

𝜎
) 

= 𝑃 (𝑍 ≤
𝑏 − 𝜇

𝜎
) − 𝑃 (𝑍 ≤

𝑎 − 𝜇

𝜎
) 

= ∫ 𝜙(𝑧)𝑑𝑧

𝑏−𝜇
𝜎

−∞

− ∫ 𝜙(𝑧)𝑑𝑧

𝑎−𝜇
𝜎

−∞

 

=
1

√2𝜋
∫ 𝑒−

1
2

𝑡2

𝑑𝑡

𝑏−𝜇
𝜎

𝑎−𝜇
𝜎

 

= Φ (
𝑏 − 𝜇

𝜎
) − Φ (

𝑎 − 𝜇

𝜎
) 

= 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑧

=
𝑎 − 𝜇

𝜎
 𝑎𝑛𝑑 𝑧 =

𝑏 − 𝜇

𝜎
 

IV 𝑃(𝑋 ≥ 𝑎) = 𝑃 (
𝑋−𝜇

𝜎
≥

𝑎−𝜇

𝜎
) 

= 𝑃 (𝑍 ≥
𝑎 − 𝜇

𝜎
) 

= 1 − 𝑃 (𝑍 ≤
𝑎 − 𝜇

𝜎
) 

= 1 − ∫ 𝜙(𝑧)𝑑𝑧

𝑎−𝜇
𝜎

−∞

 

=
1

√2𝜋
∫ 𝑒−

1
2

𝑡2

𝑑𝑡

𝑎−𝜇
𝜎

−∞

 

= Φ (
𝑎 − 𝜇

𝜎
) 

= 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑧

=
𝑎 − 𝜇

𝜎
  

 

 

Worked out Problem: 

Problem 10.1. Suppose the diameter of a certain car component follows the normal 

distribution with 𝑋 ∼  𝑁(10, 3). Find, if we randomly select one of these components, the 

probability that its diameter will be larger than 13.4 mm.  

Solution: 

Here, 𝑋 ∼  𝑁(10, 3). 

∴ 𝑍 =
𝑋 −  10 

3
∼  𝑁(0, 1) 

∴ 𝑃(𝑋 >  13.4) =  𝑃(𝑋 –  10 >  13.4 –  10) 

=  𝑃 (
𝑋 –  10 

3
 >  

13.4 –  10 

3
) 

 =  𝑃(𝑍 >  1.13) 

= 1 − 𝑃(𝑍 ≤  1.13) 



 

=  1 −  0.8708  
=  0.1292.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

MODULE II: MATHEMATICAL LOGIC  

(NUMBER OF LECTURES: 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 11: Introduction to Propositional Calculus, Propositions, Logical Connectives 

 

Mathematical logic is the discipline that mathematicians invented in the late nineteenth 

and early twentieth century so they could stop talking nonsense. It’s the most powerful tool 

we have for reasoning about things that we can’t really comprehend, which makes it a 

perfect tool for Computer Science. 

 

11.1     The basic picture 

Reality                               Model                                           Theory              

herds of sheep 

piles of rocks      →         N =  {0, 1, 2, . . . }    →                    ∀x ∶  ∃y ∶  y =  x + 1 

tally  marks 

We want to model something we see in reality with something we can fit in our 

heads.  Ideally we drop most of the features of the real thing that we don’t care about 

and keep the parts that we do care about.   But there is a second problem:  if our model 

is very big (and the natural numbers are very very big), how do we know what we can 

say about them? 

 

11.2 Axioms, models and inference rules 

One approach is to come up with a list of axioms that are true statements about the model 

and a list of inference rules that let us derive new true statements from the axioms.  The 

axioms and inference rules together generate a theory that consists of all statements that can 

be constructed from the axioms by applying the inference rules.  The rules of the game are 

that we can’t claim that some statement is true unless it’s a theorem:  something we can 

derive as part of the theory. 

Simple example:   All fish are green (axiom).   George Washington is a fish (axiom).   From 

“all X are Y” and “Z is X”, we can derive “Z is Y” (inference rule). Thus George 

Washington is green (theorem).  Since we can’t  do anything else with  our  two axioms  

and  one inference  rule,  these three statements together  form our entire theory  about  

George Washington, fish, greenness, etc. 

Theories are attempts to describe models. A model is typically a collection of objects and 

relations between them.  For a given theory,  there may be many models that are consistent 

with it:  for example, a model that includes both  green fishy George Washington and MC 

900-foot Abraham Lincoln is consistent with  the  theory  above,  because the  theory  

doesn’t  say anything about  Abraham Lincoln. 

 

11.3     Consistency 



 

A theory is consistent if it can’t prove both 𝑃  and not−𝑃  for any  𝑃 . Consistency is 

incredibly important, since all the logics people actually use can prove anything starting 

from 𝑃 and not−𝑃 . 

 

11.4     The language of logic 

The basis of mathematical logic is propositional logic, which was essentially invented by 

Aristotle.   Here the model is a collection of statements that are either true or false.  There  

is no ability  to  refer to  actual  things; though  we might include the statement “George 

Washington is a fish”, from the  point of view of propositional logic that is an indivisible  

atomic  chunk of truth or falsehood  that says nothing  in particular about  George 

Washington  or fish.  If we treat it as an axiom we can prove the truth of more complicated 

statements like “George Washington is a fish or 2 + 2 = 5” (true since the first part  is 

true),  but  we can’t really deduce much else. Still, this is a starting point. 

If we want to talk about things and their properties, we must upgrade to predicate logic.  

Predicate logic adds both constants (stand-ins for objects in the model like “George 

Washington”) and predicates (stand-ins for properties like “is a fish”).  It also lets use 

quantify over variables and make universal statements like “For all x, if x is a fish then  x is 

green.”  As a bonus,  we usually  get  functions  (“f (x)  = the  number  of books George 

Washington owns about  x”)  and  equality  (“George Washington = 12” implies “George 

Washington + 5 =  17”).  This is enough machinery to define and do pretty much all of 

modern mathematics. 

We will discuss both of these logics in more detail below. 

 

11.5     Propositional logic 

Propositional logic is the simplest form of logic. Here the only statements that are 

considered are propositions, which contain no variables.  Because propositions contain no 

variables,  they are either always true or always false. 

Examples of propositions: 

• 2 +  2 =  4. (Always true). 

 

• 2 +  2 =  5. (Always false).  

Examples of non-propositions: 

• x +  2 =  4. (May be true, may not be true; it depends on the value of x. 

• 𝑥 ·  0 =  0.  (Always true,  but  it’s still not a proposition  because of the  variable.) 

• 𝑥 ·  0 =  1. (Always false, but not a proposition of the variable.)  

As the  last  two  examples  show, it is not  enough  for a statement to be always true  or 

always false—whether  a statement is a proposition  or not is a structural property. But  if a 

statement doesn’t contain  any variables  (or other  undefined  terms),  it  is a proposition,  

and  as a side-effect of being a proposition  it’s always true  or always false. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 12: Conjunction, Disjunction, Negation and their truth table 

 

12.1     Operations on propositions 

Propositions by themselves are pretty boring.  So boring,  in fact, that logicians quickly stop  

talking  about  specific propositions  and  instead  haul  out placeholder  names  like 

p, q, or r. But  we can build  slightly  more interesting propositions  by  combining  

propositions  together  using  various  logical connectives,  such as: 

Negation The negation of p is written as ¬p, or sometimes  ∼ p, −p. It has the property 

that it is false when p is true, and true when p is false. 

Or  The  or of two  propositions  𝑝 and  𝑞 is written as 𝑝 ∨  𝑞, and  is true  as long as at 

least one, or possibly both,  of 𝑝 and 𝑞 is true. This is not always the same as what “or” 

means in English; in English, “or” often is used for exclusive or which is not true if both 

𝑝 and 𝑞 are true.  For example,  if someone says “You will give me all your money or I will 

stab  you with  this  table  knife”, you would be justifiably  upset  if you turn  over all your 

money and still get stabbed.  But a logician would not be at all surprised, because the 

standard “or” in propositional logic is an inclusive or that allows for both outcomes. 

Exclusive or If you want to exclude the possibility that both  p and q are true, you can use 

exclusive or instead.  This is written as p ⊕  q, and is true precisely when exactly one of p 

or q is true.    

And   The and of 𝑝 and 𝑞 is written as 𝑝 ∧  𝑞, and is true  only when both  𝑝 and 𝑞 are 

true.  This is pretty much the same as in English, where “I like to eat  ice cream  and  I own 

a private  Caribbean island”  is not  a true  statement when made  by most  people even 

though  most  people like to  eat  ice cream.   The  only complication  in translating  English 

expressions  into  logical and s is that logicians can’t  tell the  difference between  “and”  

and  “but”:   the  statement “2 +  2 =  4 but  3 +  3 =  6” becomes simply “(2 +  2 =
 4)  ∧  (3 +  3 =  6). ” 

Implication This is the most important connective for proofs.  An implication represents 

an “if. . . then”  claim.  If 𝑝 implies 𝑞, then  we write 𝑝 →  𝑞 or 𝑝 ⇒  𝑞, depending  on our  

typographic  convention  and  the availability of arrow  symbols in our favourite  font.  In 

English,  𝑝 →  𝑞 is usually rendered as “If 𝑝, then  𝑞,” as in “If you step  on your own head,  

it will hurt.” The meaning of 𝑝 →  𝑞 is that 𝑞 is true whenever 𝑝 is true,  and the 

proposition  𝑝 →  𝑞 is true  provided  (a) 𝑝 is false (in which case all bets are off), or (b) 

q is true. 

In fact, the only way for 𝑝 →  𝑞 to be false is for 𝑝 to be true but  𝑞 to be false.  Because of 

this,  𝑝 →  𝑞 can be rewritten as ¬𝑝 ∨  𝑞.  So, for example, the statements “If 2 +  2 =  5, 
then  I’m the Pope”,  “If I’m the  Pope,  then  2 +  2 =  4”, and  “If 2 +  2 =  4, then  

3 +  3 =  6”, are all true,  provided  the  if/then is interpreted as implication. Normal 

English usage does not always match this pattern; instead,  if/then in normal  speech is 

often interpreted as the much stronger  biconditional (see below). 

Biconditional Suppose that 𝑝 →  𝑞 and 𝑞 →  𝑝, so that either both 𝑝 and 𝑞 are true or both  

𝑝 and  𝑞 are  false.   In this case, we write 𝑝 ↔  𝑞 or 𝑝 ⇔  𝑞, and say that 𝑝 holds if and 

only  if  𝑞 holds.   The  truth of 𝑝 ↔  𝑞 is still just  a function  of the  truth or falsehood 

of 𝑝 and  𝑞; though  there doesn’t need to be any connection  between the two sides of the  

statement, “2 +  2 =  5 if and  only if I am the  Pope”  is a true statement (provided  it is 



 

not uttered by the Pope).  The only way for 𝑝 ↔  𝑞 to be false is for one side to be true and 

one side to be false. 

The result of applying any of these operations is called a compound proposition. 

𝑁𝑂𝑇 𝑝 ¬𝑝 𝑝, ∼ 𝑝 

𝑝 𝐴𝑁𝐷 𝑞 𝑝 ∧  𝑞  

𝑝 𝑋𝑂𝑅 𝑞 𝑝 ⊕  𝑞  

𝑝 𝑂𝑅 𝑞             𝑝 ∨  𝑞 

𝑝 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑞 𝑝 →  𝑞 𝑝 ⇒  𝑞, 𝑝 ⊃  𝑞 

𝑝 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑞 𝑝 ↔  𝑞 𝑝 ⇔  𝑞 

 

12.2     Truth tables 

To define logical operations formally, we give a truth table. This gives, for any 

combination of truth values (true or false, which as computer scientists we often write as 1 

or 0) of the inputs, the truth value of the output. In this usage, truth tables are to logic what 

addition and multiplication tables are to arithmetic. 

Here is a truth table for negation: 

𝑝   ¬𝑝 

0    1 

1    0 

And here is a truth table for the rest of the logical operators: 

𝑝 𝑞 𝑝 ∨  𝑞 𝑝 ⊕  𝑞 𝑝 ∧  𝑞 𝑝 →  𝑞 𝑝 ↔  𝑞 

0 0 0 0 0 1 1 
0 1 1 1 0 1 0 
1 0 1 1 0 0 0 
1 1 1 0 1 1 1 

 

 

 

12.3     Tautologies and  logical equivalence 

A compound proposition that is true no matter what the truth-values of the propositions 

it contains  is called a tautology. For example,  𝑝 →  𝑝, 𝑝 ∨  ¬𝑝, and  ¬(𝑝 ∧  ¬𝑝) are all 

tautologies, as can be verified by constructing truth tables.  If a compound proposition is 

always false, it’s a contradiction.  The negation of a tautology is a contradiction and vice 

versa. 

The most useful class of tautologies are logical equivalences. This is a tautology of the 

form 𝑋 ↔  𝑌 , where 𝑋 and 𝑌  are compound  propositions. 



 

In this case,  𝑋  and  𝑌   are  said  to  be  logically equivalent and  we can substitute one for 

the other in more complex propositions. We write 𝑋 ≡  𝑌 if 𝑋  and 𝑌  are logically 

equivalent. 

The nice thing about  logical equivalence is that is does the same thing for Boolean 

formulas that equality  does for algebraic  formulas:  if we know (for example),  that 𝑝 ∨
 ¬𝑝 is equivalent to 1, and 𝑞 ∨  1 is equivalent to 1, we can grind 𝑞 ∨ 𝑝 ∨ ¬𝑝 ≡  𝑞 ∨ 1 ≡
 1 without having to do anything particularly clever. 

To prove a logical equivalence, one either constructs a truth table to show that 𝑋  ↔  𝑌  

is a tautology, or transforms 𝑋  to 𝑌  using previously-known logical equivalences. 

Some examples: 

•  𝑝 ∧  ¬𝑝 ≡  0: Construct a truth table 

𝑝   ¬𝑝    𝑝 ∧  ¬𝑝    0 

0    1         0        0 

1    0         0        0 

and observe that the last two columns are always equal. 

 

 

 

•  𝑝 ∨  𝑝 ≡  𝑝: Use the truth table 

p      p ∨ p 

0       0 

1 1



 

𝑝 𝑞   𝑝 ∨  𝑞   ¬(𝑝 ∨  𝑞)   ¬𝑝    ¬𝑞    ¬𝑝 ∧ ¬𝑞  
0 0 0 𝟏 1 1 𝟏 
0 1 1 𝟎 1 0 𝟎 
1 0 1 𝟎 0 1 𝟎 
1 1 1 𝟎 0 0 𝟎 

 

𝑝 𝑞 𝑟  𝑞 ∧  𝑟  𝑝 ∨  (𝑞 ∧  𝑟)  𝑝 ∨  𝑞   𝑝 ∨  𝑟   (𝑝 ∨  𝑞)  ∧  (𝑝 ∨  𝑟) 
0 0 0 0 𝟎 0 0 𝟎 
0 0 1 0 𝟎 0 1 𝟎 
0 1 0 0 𝟎 1 0 𝟎 
0 1 1 1 𝟏 1 1 𝟏 
1 0 0 0 𝟏 1 1 𝟏 
1 0 1 0 𝟏 1 1 𝟏 
1 1 0 0 𝟏 1 1 𝟏 
1 1 1 1 𝟏 1 1 𝟏 

 

•  𝑝 →  𝑞 ≡  ¬𝑝 ∨  𝑞: Again construct a truth table 

𝑝 𝑞 𝑝 →  𝑞 ¬𝑝 ∨  𝑞 

0 0 1 1 
0 1 1 1 
1 0 0 0 
1 1 1 1 

 

•  ¬(𝑝 ∨  𝑞)  ≡  ¬𝑝 ∧  ¬𝑞: (one of De Morgan’s laws; the other  is ¬(𝑝 ∧  𝑞) ≡ ¬𝑝 ∨
 ¬𝑞). 

 

 

 

 

•  𝑝 ∨  (𝑞 ∧  𝑟)  ≡  (𝑝 ∨  𝑞)  ∧  (𝑝 ∨  𝑟) (one of the distributive laws; the other  is               

𝑝 ∧  (𝑞 ∨  𝑟)  ≡  (𝑝 ∧  𝑞)  ∨  (𝑝 ∧  𝑟)). 
 

 

 

 

 

 

 

•  (𝑝  →  𝑟)  ∨  (𝑞 →  𝑟)  ≡  (𝑝 ∧  𝑞)  →  𝑟.  Now things are getting messy, so building a 

full truth table may  take  awhile.   But we have take a shortcut by using logical 

equivalences that we’ve already proved (plus associativity of ∨): 

(𝑝 →  𝑟) ∨  (𝑞 →  𝑟) 

≡  (¬𝑝 ∨  𝑟)  ∨  (¬𝑞 ∨  𝑟)                 [Using 𝑝 →  𝑞 ≡  ¬𝑝 ∨  𝑞 twice] 

≡  ¬𝑝 ∨  ¬𝑞 ∨  𝑟 ∨  𝑟       [Associativity and commutativity of ∨] 

≡  ¬𝑝 ∨  ¬𝑞 ∨  𝑟                                                 [𝑝 ≡  𝑝 ∨  𝑝] 

≡  ¬(𝑝 ∧  𝑞)  ∨  𝑟                                      [De Morgan’s law]  

≡  (𝑝 ∧  𝑞)  →  𝑟.                                            [𝑝 →  𝑞 ≡  ¬𝑝 ∨  𝑞] 

 

 



 

Lecture 13: Converse, Contrapositive, Inverse 

 

13.1    Inverses, converses, and contrapositives 

The contrapositive of 𝑝 →  𝑞 is ¬𝑞 →  ¬𝑝; it is logically equivalent to the original 

implication.    For  example,  the  contrapositive of “If I am  Barack Obama  then  I am a 

Democrat” is “If I am not  a Democrat  then  I am not Barack  Obama”.  A proof by  

contraposition  demonstrates that 𝑝 implies 𝑞 by assuming  ¬𝑞 and then  proving ¬𝑝; it is 

similar but  not identical  to an indirect proof,  which assumes ¬𝑝 and derives a 

contradiction. 

The inverse of 𝑝 →  𝑞 is ¬𝑝 →  ¬𝑞.  So the inverse of “If you take CPSC 202, you will 

surely die” is “If you do not take CPSC 202, you will not surely die.”  There  is often no 

connection  between  the truth of an implication  and the  truth of its  inverse:  “If I am  

Barack  Obama  then  I am  a Democrat” does not  have  the  same truth-value as “If I am 

not  Barack  Obama  then  I am not a Democrat”, at least according to current polling 

numbers. 

The converse of 𝑝 →  𝑞 is 𝑞 →  𝑝.  E.g.  the converse of “If I am Barack Obama  then  I 

am a Democrat” is “If I am a Democrat  then  I am Barack Obama.”   The converse of a 

statement is always logically equivalent to the inverse.  Often in proving a 

biconditional (e.g., “I am Barack Obama if and only if I am a Democrat”), one 

proceeds by proving first the implication in one direction and then either the inverse or 

the converse (which are logically equivalent). 

¬¬p ≡  p                                                                 Double negation 

¬(p ∧  q)  ≡  ¬p ∨  ¬q                                                                De Morgan’s law 

¬(p ∨  q)  ≡  ¬p ∧  ¬q                                                             De Morgan’s law 

p ∧  q ≡  q ∧  p                                             Commutativity of AND 

p ∨  q ≡  q ∨  p                                                Commutativity of OR 

p ∧  (q ∧  r)  ≡  p ∧  (q ∧  r)                                     Associativity of AND 

p ∨  (q ∨  r)  ≡  p ∨  (q ∨  r)                                        Associativity of OR 

p ∧  (q ∨  r)  ≡  (p ∧  q)  ∨  (p ∧  r)                   AND distributes over OR 

p ∨  (q ∧  r)  ≡  (p ∨  q)  ∧  (p ∨  r)                   OR distributes over AND 

p →  q ≡  ¬p ∨  q                        Equivalence  of implication  and OR 

p →  q ≡  ¬q →  ¬p                                                             Contraposition 

p ↔  q ≡  (p →  q)  ∧  (q →  p)                    Expansion  of if and only if 

 

p ↔  q ≡  ¬p ↔  ¬q                                                  Inverse of if and only f 



 

p ↔  q ≡  q ↔  p                                Commutativity of if and only if 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 14: Logical Equivalence, Normal forms-CNF, DNF 

 

14.1 Equivalences involving true and false 

Any tautology is equivalent to true; any contradiction is equivalent to false. Two important 

cases of this are the law of the excluded middle 𝑃 ∨  ¬𝑃 ≡  1 and its dual, the law of non-

contradiction 𝑃 ∧  ¬𝑃 ≡  0. 

The law of the excluded middle is what allows us to do case  analysis, where we prove 

that some proposition  Q holds by showing first that P  implies Q and then  that ¬P 

also implies Q. 

One strategy for simplifying logical expressions is to try to apply known equivalences to 

generate sub-expressions that reduce to true or false via  

P ∧  0 ≡  0                                  P ∨  0 ≡  P 

P ∧  1 ≡  P                                 P ∨  1 ≡  1 

P ↔  0 ≡  ¬P                                P ⊕  0 ≡  P 

P ↔  1 ≡  P                                 P ⊕  1 ≡  ¬P 

P →  0 ≡  ¬P                              0 →  P ≡  1 

P →  1 ≡  1                                1 →  P ≡  P 

Example Let’s show that (P  ∧  (P   → Q))  → Q  is a  tautology.  (This justifies the 

inference rule modus ponens, defined below.)  Working from the inside out, we can 

compute 

                             (P ∧  (P  →  Q))  →  Q      

≡  (P ∧  (¬P ∨  Q))  →  Q                             expand  → 

        ≡  ((P  ∧  ¬P )  ∨  (P ∧  Q))  →  Q   distribute ∨  over ∧ 

      ≡  (0 ∨  (P ∧  Q))  →  Q                    non − contradiction 

≡  (P ∧  Q)  →  Q                                              absorption 

≡  ¬(P ∧  Q)  ∨  Q                                            expand  → 

≡  (¬P ∨  ¬Q) ∨  Q                            De Morgan’s law 

≡  ¬P ∨  (¬Q ∨  Q)                                    associativity 

≡  ¬P ∨  1                                               excluded middle 

≡  1                                                                        absorption 

In this derivation, we’ve labeled each step with  the  equivalence  we used. Most of the 

time we would not be this verbose. 



 

 

14.2     Normal forms 

A compound  proposition  is in conjuctive normal form  (CNF for short) if it is obtained  by 

AND-ing together  ORs of one or more variables  or their negations  (an OR of one variable  is 

just  the variable  itself).  So for example 

P , (P  ∨  Q)  ∧  R, (P  ∨  Q)  ∧  (Q ∨  R)  ∧  (¬P ), and  (P  ∨  Q)  ∧  (P  ∨  ¬R) ∧
 (¬P  ∨  Q ∨  S ∨  T ∨  ¬U ) are in CNF, but  (P  ∨  Q)  ∧  (P  ∨  ¬R) ∧  (¬P  ∧
 Q), (P ∨  Q)  ∧  (P  →  R)  ∧  (¬P ∨  Q), and (P ∨  (Q ∧  R))  ∧  (P ∨  ¬R)  ∧  (¬P ∨  Q) 

are not.  Using the equivalence  P  → Q ≡ ¬P ∨ Q, De Morgan’s laws, and the  distributive law, it 

is possible to rewrite  any compound  proposition  in CNF. 

CNF  formulas  are particularly useful because they  support resolution Using the  tautology 

(𝑃  ∨  𝑄)  ∧  (¬𝑃  ∨  𝑅)   →  𝑄 ∨  𝑅,  we can construct proofs  from  CNF  formulas  by  

looking  for occurrences  of some simple proposition  and its negation  and resolving them,  

which generates  a new clause we can add to the list.  For example, we can compute 

├ (P ∨  Q)  ∧  (P ∨  ¬R) ∧  (¬P ∨  Q)  ∧  (¬Q ∨  R) 

 ├ (P ∨  Q)  ∧  (P ∨  ¬R) ∧  (¬P ∨  Q)  ∧  (¬Q ∨  R)  ∧  Q 

├ (P ∨  Q)  ∧  (P ∨  ¬R)  ∧  (¬P ∨  Q)  ∧  (¬Q ∨  R)  ∧  Q ∧  R 

├ (P ∨  Q)  ∧  (P ∨  ¬R) ∧  (¬P ∨  Q)  ∧  (¬Q ∨  R)  ∧  Q ∧  R ∧  P 

├P. 

Similarly, a compound   proposition   is in disjunctive normal form (DNF) if it consists of 

an OR of ANDs, e.g. (𝑃 ∧  𝑄)  ∨  (𝑃 ∧  ¬𝑅) ∨  (¬𝑃 ∧  𝑄). Just  as  any  compound  

proposition  can  be  transformed into  CNF,  it  can similarly  be transformed into DNF. 

Note that conjunctive and disjunctive normal forms are not unique; for example, 𝑃 ∧  𝑄 and 

(𝑃 ∨  ¬𝑄)  ∧  (𝑃 ∨  𝑄)  ∧  (¬𝑃 ∨  𝑄) are both in conjunctive normal form and are logically 

equivalent to each other.  So while CNF can be handy as a way of reducing the hairiness of a 

formula (by eliminating nested parentheses or negation  of non-variables, for example),  it doesn’t 

necessarily let us see immediately  if two formulas are really the same. 

 

 

 

 

 

 

 

 

 



 

Lecture 15: Predicate logic 

 

15.1     Predicate logic 

Using only propositional logic, we can express a simple version of a famous argument: 

• Socrates is a man. 

• If Socrates is a man, then Socrates is mortal. 

• Therefore, Socrates is mortal. 

This is an application of the inference rule called modus ponens, which says that from 𝑝 and 𝑝 →
 𝑞 you can deduce 𝑞. The first two statements are axioms (meaning we are given them as true 

without proof), and the last is the conclusion of the argument. 

What if we encounter Socrates’s infinitely more logical cousin Spocrates? We’d like to argue 

• Spocrates is a man. 

• If Spocrates  is a man,  then  Spocrates  is mortal. 

• Therefore,  Spocrates  is mortal. 

Unfortunately, the second step depends on knowing that humanity implies mortality for 

everybody,  not  just Socrates.   If we are unlucky in our choice of axioms, we may not know this.   

What we would like is a general way to say that humanity implies mortality for everybody, but  

with  just propositional logic, we can’t write this fact down. 

 

15.2     Variables and predicates 

The solution is to extend our language to allow formulas  that involve variables.  So we might 

let 𝑥, 𝑦, 𝑧, etc.  stand for any element of our universe of discourse or domain—essentially 

whatever  things we happen  to be talking about  at the moment.  We can now write statements 

like: 

• “𝑥 is human.” 

• “𝑥 is the parent of 𝑦.” 

• “𝑥 +  2 =  𝑥2. ” 

These are not propositions because they have variables in them.  Instead, they are predicates; 

statements whose truth-value depends on what concrete object takes the place of the variable.  

Predicates are often abbreviated by single capital letters followed by a list of arguments, the 

variables that appear  in the predicate, e.g.: 

• 𝐻 (𝑥)  =  “𝑥 is human.” 

• 𝑃 (𝑥, 𝑦)  =  “𝑥 is the parent of 𝑦.” 

• 𝑄(𝑥)  =  “𝑥 +  2 =  𝑥2. ” 



 

We can also fill in specific values for the variables, e.g.  H (Spocrates) = “Spocrates is 

human.”   If we fill in specific values  for all the  variables,  we have  a proposition  again,  and  

can  talk  about  that proposition  being true 

(e.g.  𝐻 (2) and 𝐻 (−1) are true)  or false (𝐻 (0) is false). 

In first-order logic, which is what we will be using in this course, variables always refer to things 

and never to predicates: any predicate symbol is effectively a constant.  There are higher-order 

logics that allow variables to refer to predicates, but most mathematics accomplishes the same 

thing by representing predicates  with sets . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 16: Logical Quantifications of propositions 

 

16.1     Quantifiers 

What we really want is to be able to say when 𝐻 or 𝑃  or 𝑄 is true for many different values of 

their arguments. This means we have to be able to talk about the truth or falsehood of statements 

that include variables.  To do this, we bind the variables  using quantifiers, which state  whether  

the claim we are making applies to all values of the variable (universal quantification), or 

whether  it may only apply  to some (existential quantification). 

16.2    Universal quantifier 

The universal quantifier ∀ (pronounced “for all”) says that a statement must be true for all values 

of a variable  within  some universe  of allowed values (which is often implicit).  For example, 

“all humans are mortal” could be written ∀𝑥 : Human(𝑥) → Mortal(𝑥) and  “if 𝑥 is positive  then  

𝑥 +  1 is positive”  could be written ∀𝑥 ∶  𝑥 >  0 →  𝑥 +  1 >  0. 

If you want to make the universe explicit,  use set membership  notation, e.g.  ∀𝑥  ∈  𝑍 ∶
 𝑥 >  0 →  𝑥 +  1 >  0.  This  is logically equivalent  to writing ∀𝑥 ∶  𝑥 ∈  𝑍 →  (𝑥 >  0 →
 𝑥 +  1 >  0) or to writing  ∀𝑥 ∶  (𝑥 ∈  𝑍 ∧  𝑥 >  0)  →  𝑥 +  1 >  0, but the short  form 

makes it more clear that the intent of 𝑥 ∈  𝑍 is to restrict the range of 𝑥4. 

The statement ∀𝑥 ∶  𝑃 (𝑥) is equivalent to a very large AND; for example, ∀𝑥 ∈  𝑁 ∶  𝑃 (𝑥)  

could be rewritten (if you had an infinite amount of paper) as 𝑃 (0)  ∧  𝑃 (1)  ∧  𝑃 (2)  ∧
 𝑃 (3)  ∧ .. . .  Normal first-order logic doesn’t allow infinite expressions like this, but it may help 

in visualizing what  ∀𝑥 ∶  𝑃 (𝑥) actually means.   Another  way of thinking  about  it  is to 

imagine  that 𝑥 is supplied  by some adversary  and you are responsible  for showing that 𝑃 (𝑥) is 

true;  in this  sense, the  universal  quantifier  chooses the  worst case value of  𝑥. 

 

16.3   Existential quantifier 

The existential quantifier ∃ (pronounced “there exists”) says that a statement must be 

true for at least one value of the variable.  So “some human is mortal” becomes ∃𝑥 ∶ Human(𝑥) ∧
 Mortal(𝑥). Note that we use AND rather than  implication  here;  the  statement ∃𝑥  : Human(𝑥) 

→ Mortal(𝑥) makes the much weaker claim that “there  is some thing 𝑥, such that if 𝑥 is human, 

then  𝑥 is mortal,”  which is true  in any universe  that contains  an immortal purple penguin—

since it isn’t human,  Human(penguin) → Mortal(penguin) is true.  

As with ∀, ∃ can be limited to an explicit universe with set membership notation, e.g.,  

∃𝑥  ∈  𝑍 ∶  𝑥  =  𝑥2.   This  is equivalent  to  writing  ∃𝑥 ∶  𝑥  ∈  𝑍 ∧  𝑥 =  𝑥2. 

The formula ∃𝑥 ∶  𝑃 (𝑥) is equivalent to a very large OR, so that ∃𝑥 ∈  𝑁 ∶  𝑃 (𝑥) could be 

rewritten as 𝑃 (0)  ∨  𝑃 (1)  ∨  𝑃 (2)  ∨  𝑃 (3) ∨ . . .. Again, you can’t generally write an 

expression like this if there are infinitely many terms,  but it gets the idea across. 

 

16.4   Negation and quantifiers 

 



 

The following equivalences hold: 

¬∀𝑥 ∶  𝑃 (𝑥)  ≡  ∃𝑥 ∶  ¬𝑃 (𝑥). 

¬∃𝑥 ∶  𝑃 (𝑥)  ≡  ∀𝑥 ∶  ¬𝑃 (𝑥). 

These are essentially the quantifier version of De Morgan’s laws: the first says that if you 

want to show that not all humans are mortal, it’s equivalent to finding some human that is not 

mortal.   The second says that to show that no human is mortal, you have to show that all humans 

are not mortal. 

 

16.6    Examples 

Here we give some more examples of translating English into statements in predicate logic. 

All crows are black.                                   ∀𝑥 ∶  𝐶𝑟𝑜𝑤(𝑥)   →  𝐵𝑙𝑎𝑐𝑘(𝑥) 

The formula is logically equivalent to either of 

¬∃𝑥𝐶𝑟𝑜𝑤(𝑥)  ∧  ¬𝐵𝑙𝑎𝑐𝑘(𝑥) 

𝑜𝑟 

∀𝑥 ∶  ¬𝐵𝑙𝑎𝑐𝑘(𝑥)  →  ¬𝐶𝑟𝑜𝑤(𝑥). 

The  latter is the  core of a classic “paradox of induction”  in philosophy:  if seeing a black crow 

makes me think  it’s more likely that all crows are black, shouldn’t  seeing a logically equivalent 

non-black  non-crow  (e.g.,  a banana yellow AMC  Gremlin)  also make  me think  all non-black  

objects  are  non- crows,  i.e.,  that all  crows  are  black?    The paradox suggests that logical  

equivalence works best for true/false and not so well for probabilities. 

Some cows are brown.                               ∃𝑥 : Cow(=) ∧  Brown(𝑥) 

No cows are blue.                                       ¬∃𝑥 : Cow(𝑥) ∧  Blue(𝑥) 

Some other equivalent versions: 

∀𝑥 ∶  ¬(Cow(𝑥) ∧ Blue(𝑥) 

    ∀𝑥 ∶  (¬Cow(𝑥) ∨ ¬Blue(𝑥)) 

∀𝑥 ∶ Cow(𝑥)  →  ¬Blue(𝑥) 

∀𝑥 : Blue(𝑥)   →  ¬Cow(𝑥). 

All that glitters is not gold.          ¬∀𝑥 ∶ Glitters(𝑥) → Gold(𝑥) 

Or ∃𝑥 ∶ Glitters(𝑥)  ∧ ¬Gold(𝑥).  Note that the English syntax is a bit ambiguous:  a literal 

translation might look like ∀𝑥 : Glitters(𝑥)  →  ¬Gold(𝑥), which is not  logically equivalent. This 

is an example of how predicate logic is often more precise than  natural language. 

No shirt, no service.                                   ∀𝑥 ∶  ¬Shirt(𝑥) →  ¬Served(𝑥) 

 



 

Every event has a cause.                           ∀𝑥∃𝑦 : Causes(𝑦, 𝑥) 

And a more complicated  statement:  Every  even number  greater  than  2 can be expressed as 

the sum of two primes. 

∀𝑥 ∶ (Even(𝑥)  ∧  𝑥 >  2)  →  (∃𝑝∃𝑞 ∶ Prime(𝑝)  ∧ Prime(𝑞)  ∧  (𝑥 =  𝑝 +  𝑞)) 

The last one is Goldbach’s conjecture. The truth value of this statement is currently unknown. 

 

16.7     Functions 

A function symbol looks like a predicate but instead  of computing  a truth value it returns an 

object.   So for example  the  successor function  S in the Peano  axioms for the natural numbers  

returns 𝑥 +  1 when applied  as 𝑆(𝑥). Sometimes  when there  is only a single argument we omit  

the  parentheses, e.g., 𝑆𝑥 =  𝑆(𝑥), 𝑆𝑆𝑆𝑥 =  𝑆(𝑆(𝑆(𝑥))). 

 

16.8     Equality 

Often we include a special equality predicate  =, written 𝑥 =  𝑦. The interpretation of 𝑥 =  𝑦 is 

that 𝑥 and  𝑦 are the same element of the domain.  It satisfies the reflexivity axiom ∀𝑥 ∶  𝑥 =
 𝑥 and the substitution axiom schema: 

∀𝑥∀𝑦 ∶  (𝑥 =  𝑦 →  (𝑃𝑥 ↔  𝑃𝑦)) 

where  𝑃  is any predicate.   This  immediately   gives a  substitution  rule that says                   

𝑥 =  𝑦, 𝑃 (𝑥)├ 𝑃 (𝑦).  It’s likely that almost  every proof you ever wrote  down in high school 

algebra  consisted  only of many  applications of the substitution rule. 

Example:   We’ll prove ∀𝑥∀𝑦 ∶  (𝑥 =  𝑦 →  𝑦 =  𝑥) from the above axioms (this property is 

known as symmetry). Apply substitution to the predicate 𝑃 𝑥 ≡  𝑦 =  𝑥 to get ∀𝑥∀𝑦 ∶  (𝑥 =
 𝑦 →  (𝑦 =  𝑥 ↔  𝑥 =  𝑥)).  Use reflexivity to rewrite this 𝑎𝑠 ∀𝑥∀𝑦 ∶  (𝑥 =  𝑦 →  (𝑦 =
 𝑥 ↔  𝑇 )) or ∀𝑥∀𝑦 ∶  (𝑥 =  𝑦 →  𝑦 =  𝑥) as claimed. 

Exercise:  Prove  ∀𝑥∀𝑦∀𝑧 ∶  (𝑥 =  𝑦 ∧  𝑦 =  𝑧 →  𝑥 =  𝑧).  (This property is known as 

transitivity.) 

 

 

 

16.9    Uniqueness 

An occasionally useful abbreviation is ∃! 𝑥𝑃 (𝑥),  which stands for “there exists a unique 𝑥 such 

that 𝑃 (𝑥). ”  This is short for 

(∃𝑥𝑃 (𝑥))  ∧  (∀𝑥∀𝑦 ∶  𝑃 (𝑥)  ∧  𝑃 (𝑦)  →  𝑥 =  𝑦). 

An example is ∃! 𝑥 ∶  𝑥 +  1 =  12.  To prove this  we’d have  to show not only that there 

is some 𝑥 for which 𝑥 +  1 =  12 (11 comes to mind),  but  that if we have any two values 



 

𝑥 and 𝑦 such that 𝑥 +  1 =  12 and 𝑦 +  1 =  12, then 𝑥 =  𝑦 (this  is not hard to do).  So the 

exclamation point encodes quite a bit of extra work, which is why we usually hope that  ∃𝑥 ∶
 𝑥 +  1 =  12 is good enough. 

 

16.10     Proofs 

A proof  is a  way  to  derive  statements from  other  statements.   It  starts with  

axioms (statements that are  assumed  in the  current  context  always to be true),  

theorems or lemmas (statements that were proved  already; the difference between  a 

theorem  and a lemma is whether  it is intended  as a final result  or an  intermediate 

tool),  and  premises P  (assumptions we are  making  for the  purpose  of seeing what  

consequences  they  have),  and uses  inference rules  to  derive  𝑄.   The axioms, 

theorems,   and premises are in a sense the starting position of a game whose rules are 

given by the inference rules.  The goal of the game is to apply the inference rules until 

𝑄 pops out.  We refer to anything that isn’t proved in the proof itself (i.e., an axiom, 

theorem, lemma, or premise) as a hypothesis; the result  𝑄 is the conclusion. 

When a proof exists of 𝑄 from some premises 𝑃1 , 𝑃2  , . . ., we say that 𝑄 is 

deducible or provable from 𝑃1 , 𝑃2 , . . ., which is written as𝑃1  , 𝑃2 , . . . , ├ 𝑄. 

If we can prove Q directly from our inference rules without making any 

assumptions, we may write ├Q 

The turnstile symbol ├ has the specific meaning that we can derive the conclusion 𝑄 by 

applying inference rules to the premises.  This is not quite the  same  thing  as saying  

𝑃  →  𝑄.   If our  inference  rules  are  particularly weak,  it  may  be that 𝑃  →  𝑄 is 

true  but  we can’t  prove  𝑄 starting with 𝑃 .  Conversely,  if our inference rules are 

too strong  (maybe  they  can prove anything, even things  that aren’t  true)  we might 

have 𝑃 ├ 𝑄 but  𝑃 →  𝑄 is false. 

For propositions, most of the time we will use inference rules that are just right, 

meaning  that 𝑃 ├ 𝑄 implies 𝑃  →  𝑄 (soundness) and  𝑃  →  𝑄 implies  𝑃 ├ 𝑄 

(completeness).  Here the  distinction between ├ and  → is then  whether  we want  to  

talk  about  the  existence  of a proof (the  first case)  or  about  the  logical relation  

between  two statements (the  second). Things  get a little  more complicated  with  

statements involving predicates; in this case there  are incompleteness theorems that say 

that sufficiently powerful sets of axioms have consequences that can’t  be proven  unless 

the theory  is inconsistent. 

 

16.11     Inference Rules 

Inference rules let us construct valid arguments, which have the useful property that if 

their premises are true, their conclusions are also true. The main source of inference rules is 

tautologies  of the form 𝑃1 , 𝑃2  , . . . , → 𝑄;given such a tautology, there  is a corresponding  

inference  rule that allows us to assert  𝑄 once we have 𝑃1 , 𝑃2 , . ..   (either  because  each 

𝑃𝑖  is an axiom/theorem/premise or because  we proved  it  already  while doing  the proof).  

The most important inference rule is modus ponens, based on the tautology (𝑝 ∧  (𝑝 →
 𝑞))  →  𝑞; this lets us, for example, write the following famous argument: 



 

1.  If it doesn’t fit, you must acquit.  [Axiom] 

2.  It doesn’t fit.  [Premise] 

3.  You must acquit.  [Modus ponens applied to 1 + 2] 

There are many named inference rules in classical propositional logic. We’ll list some 

of them below.   You  don’t  need  to  remember  the  names of anything except  modus  

ponens,  and  most of the  rules  are  pretty much straightforward applications of modus 

ponens plus some convenient tautology that can be proved  by truth tables  or stock logical 

equivalences.   (For example, the “addition” rule below is just the result of applying modus 

ponens to p and the tautology 𝑝 →  (𝑝 ∨  𝑞). ) 

Inference rules are often written by putting the premises above a horizontal line and the 

conclusion below.  In text, the horizontal line is often replaced by the symbol ├, which 

means  exactly  the  same thing.   Premises are listed on the left-hand side separated by 

commas, and the conclusion is placed on the right.  We can then write 

𝑝 ├ 𝑝 ∨  𝑞.                                           𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛  

𝑝 ∧  𝑞├ 𝑝.                                         𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  

𝑝, 𝑞 ├ 𝑝 ∧  𝑞.                                     𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑝, 𝑝 →  𝑞 ├ 𝑞.                                        𝑀𝑜𝑑𝑢𝑠 𝑝𝑜𝑛𝑒𝑛𝑠 

¬𝑞, 𝑝 →  𝑞 ├ ¬𝑝.                                         𝑀𝑜𝑑𝑢𝑠 𝑡𝑜𝑙𝑙𝑒𝑛𝑠 

𝑝 →  𝑞, 𝑞 →  𝑟 ├` 𝑝 →  𝑟.                𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙 𝑠𝑦𝑙𝑙𝑜𝑔𝑖𝑠𝑚 

𝑝 ∨  𝑞, ¬𝑝 ├ 𝑞.                            𝐷𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒  𝑠𝑦𝑙𝑙𝑜𝑔𝑖𝑠𝑚 

𝑝 ∨  𝑞, ¬𝑝 ∨  𝑟 ├ 𝑞 ∨  𝑟.                                𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 

Of these rules, addition, simplification, and conjunction are mostly used to pack and 

unpack pieces of arguments.  Modus ponens “the method of affirming” (and its reversed 

cousin modus tollens “the method of denying”) let  us apply  implications.   You  don’t  

need  to  remember  modus  tollens  if you can  remember  the  contraposition rule  (𝑝 →
 𝑞)  ≡  (¬𝑞  →  ¬𝑝).  Hypothetical  syllogism just  says that implication  is transitive; it 

lets you paste together  implications  if the  conclusion  of one matches  the  premise  of the 

other. Disjunctive syllogism is again a disguised version of modus ponens (via the logical 

equivalence (𝑝 ∨  𝑞)  ≡  (¬𝑝 →  𝑞)); you don’t need to remember it if you can remember 

this equivalence.  Resolution is almost never used by humans but is very popular with 

computer theorem provers. 

An argument is valid if the conclusion is true whenever the hypotheses are true.   Any 

proof constructed using the inference rules is valid.  It does not necessarily follow that the  

conclusion  is true;  it  could  be that one or more of the hypotheses  is false: 

1.  If you give a mouse a cookie, he’s going to ask for a glass of milk. [Axiom] 

2.  If he asks for a glass of milk, he will want a straw.  [Axiom] 



 

3.  You gave a mouse a cookie. [Premise] 

4.  He asks for a glass of milk.  [Modus ponens applied to 1 and 3.] 

5.  He will want a straw.  [Modus ponens applied to 2 and 4.] 

Will the mouse want a straw?  No: Mice can’t ask for glasses of milk, so Axiom 1 is false. 

 

16.12     Proofs, implication, and natural deduction 

Recall that 𝑃  ├ 𝑄 means there is a proof of 𝑄 by applying inference rules to 𝑃 , while 

𝑃  →  𝑄 says that 𝑄 holds whenever 𝑃  does.  These are not the same  thing:   

provability (├)  is outside  the  theory  (it’s  a statement about whether  a proof exists 

or not)  while implication  (→) is inside (it’s a logical connective  for making compound  

propositions). But most of the time they mean almost the same thing. 

 

 

For example, suppose that 𝑃 →  𝑄 is provable without any assumptions: 

├ 𝑃 →  𝑄. 

Since we can always ignore extra premises, we get 

𝑃 ├ 𝑃 →  𝑄



 

and thus                 

𝑃 ├ 𝑃, 𝑃 →  𝑄, 

which gives 

𝑃 ├ 𝑄 

by applying  modus ponens to the right-hand side. 

So we can go from  ├𝑃 →  𝑄 𝑡𝑜 𝑃 ├ 𝑄. 

This means that provability is in a sense weaker than implication:   it holds (assuming 

modus ponens) whenever implication does. But we usually don’t use this fact much, since 

𝑃 →  𝑄 is a much more useful statement than 𝑃 ├  𝑄.  Can we go the other way? 

 

_______ 

Thanks to the James Aspnes, Yale University for his kind cooperation. 
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Lecture 17: 

 

Introduction: 

Number theory, branch of mathematics concerned with properties of the positive integers (1, 2, 

3, …)also called natural numbers. However, the theory is not strictly confined to just the natural 

numbers or even to the set of all integers : 0, ±1, ±2,.....  Sometimes called “higher arithmetic,” 

it is among the oldest and most natural of mathematical pursuits. 

Number theory has always fascinated amateurs as well as professional mathematicians. In 

contrast to other branches of mathematics, many of the problems and theorems of number theory 

can be understood by laypersons, although solutions to the problems and proofs of the theorems 

often require a sophisticated mathematical background. 

Until the mid-20th century, number theory was considered the purest branch of mathematics, 

with no direct applications to the real world. The advent of digital computers and digital 

communications revealed that number theory could provide unexpected answers to real-world 

problems. At the same time, improvements in computer technology enabled number theorists to 

make remarkable advances in factoring large numbers, determining primes, testing conjectures, 

and solving numerical problems once considered out of reach. 

Modern number theory is a broad subject that is classified into subheadings such as elementary 

number theory, algebraic number theory, analytic number theory, geometric number theory, and 

probabilistic number theory. These categories reflect the methods used to address problems 

concerning the integers. 

 

Theorem [The well-ordering principle]: Every non-empty subset A of the set N of natural 

numbers has a least element. 

Remark: By the “least element of a set A” it is meant that there exists an element 𝑥 ∈ 𝐴 such 

that 𝑥 ≤ 𝑦, ∀𝑦 ∈ 𝐴. 

Thus if 𝑆 be a non-empty subset of natural numbers then there exists 𝑝 ∈ 𝑆 such that 𝑝 ≤ 𝑞, ∀𝑞 ∈

𝑆. 

A set containing just one element has a smallest member, namely the element itself. Hence the 

well ordering principle is true for sets of size 1. 

Now, let us assume that the principle is true for sets of size 𝑛, i.e. any set of 𝑛 natural numbers 

has a smallest number. 

Let us now consider a set 𝑆 of (𝑛 + 1) numbers from which one element ‘𝑝’ is removed. The 

remaining 𝑛 numbers have a smallest element say 𝑞 (by the induction hypothesis). The smaller 

of 𝑝 and 𝑞 is the smallest element of 𝑆. 

https://www.britannica.com/topic/mathematics
https://www.britannica.com/topic/integer
https://www.britannica.com/technology/computer
https://www.britannica.com/topic/prime-number-theorem
https://www.britannica.com/topic/algebraic-number
https://www.merriam-webster.com/dictionary/analytic


 

Hence, by the principle of mathematical induction, it follows that any non-empty finite set of 

natural numbers has a smallest element.  

 

Divisibility theory: 

Definition. Given two integers 𝑎 and 𝑏, we say 𝑎(≠ 0) divides 𝑏 if there is an integer 𝑐 such that 

 𝑏 =  𝑎𝑐. If 𝑎 divides 𝑏, we write 𝑎|𝑏. If 𝑎 does not divide 𝑏, we write 𝑎 ∤ 𝑏. 

Note. (i) When 𝑎 divides 𝑏, 𝑎 is called a divisor or factor of 𝑏, and 𝑏 is called multiple of 𝑎. 

           (ii) If 𝑎 divides 𝑏 then, −𝑎 also divides 𝑏 because 𝑏 = 𝑎𝑐 ⟹ 𝑏 = (−𝑎)(−𝑐), −𝑐 is an 

integer. 

i.e. 𝑎|𝑏 ⇒ −𝑎|𝑏 

Illustrations. 

(i) 38 is divisible by 19 because 38 = 2 × 19. 

(ii) 11 is a divisor of 143 since 143 = 11 × 13. 

(iii) 0 is divisible by every integer because 0 =  𝑥 × 0, for every value of x. 

Properties of divisibility: 

For any integers 𝑎, 𝑏, 𝑐 and 𝑑 the following statements hold : 

(𝑖) 𝑎|0, 𝑎|1 and 𝑎|𝑎 

(ii) 𝑥|𝑦 ⇒ −𝑎𝑥|𝑎𝑦, ∀𝑎 ∈ 𝕫 

(iii) 𝑎|𝑏 and c|𝑑 ⇒ 𝑎𝑐|𝑏𝑑.        

(iv) 𝑎|𝑏 and 𝑏|𝑐 ⇒ 𝑎|𝑐       (Transitivity) 

(v)  𝑎|𝑏 and 𝑏|𝑎 ⇒ 𝑎 = ±𝑏. 

(vi) 𝑎|𝑏 and 𝑎|𝑐 ⇒ 𝑎|(𝑏𝑥 + 𝑐𝑦), for arbitrary integers 𝑥, 𝑦.      

Remark: we use the symbol ‘ ∤ ’ to mean ‘does not divide’. Thus a∤b means ‘a does not divide b’ 

or ‘b is not divisible by a’. 

Prime numbers: A positive integer 𝑝 > 1 is called prime if the only positive factors of 𝑝 are 1 

and 𝑝. If a positive integer 𝑛 > 1 is not prime, then 𝑛 is called composite.  



 

Note. (1) The positive integer 1 is neither prime nor composite. 

           (2) The only even prime integer is 2; rest of all primes are odd. 

            (3) If 𝑛 is a composite, then there exists positive integers 𝑎 and 𝑏 such that 𝑛 = 𝑎𝑏 where                           

1 < 𝑎, 𝑏 < 𝑛 

Ex. The integers 2,3,5,7 etc are prime where as 4,6,9,10 etc are composite since 

 4 = 2.2, 6 = 3.2, 9 = 3.3, 10 = 5.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 18: 

Fundamental Theorem of Arithmetic: 

If 𝑎 is an integer larger than 1(𝑎 > 1), then 𝑎 can be written as a product of primes. 

Furthermore, this factorization is unique except for the order of the factors.  

Note. (1) The unique expression for the integer 𝑛 > 1 as a product of primes is called the prime 

decomposition or prime factorisation of n. 

(2) If there be 𝑛𝑖 prime factors of 𝑛, each equal to 𝑟𝑖 , where 1 ≤ 𝑖 ≤ 𝑝 , then 𝑛 can be written as 

𝑛 = 𝑛1
𝑟1𝑛2

𝑟2 … 𝑛𝑝

𝑟𝑝
 

Illustration. The prime factorisation of 100, 216 are given by 

100 = 2 × 2 × 5 × 5 = 22 × 52 

216 = 2 × 2 × 2 × 3 × 3 × 3 = 23 × 33 

Theorem (Euclid): The number of prime numbers is infinite. 

Proof: If possible, let the number of primes be finite and be equal to n. Let them be arranged  as 

𝑝1, 𝑝2, … , 𝑝𝑛. Then form the number 

𝑛 = 1 + 𝑝1. 𝑝2 … . . 𝑝𝑛 

Now no one of 𝑝′s is a divisor of n. 

∴ n is either a prime > 𝑝𝑛 or has a prime > 𝑝𝑛 as a factor. 

But this contradicts our assumption that 𝑝𝑛 is the greatest prime. 

Hence the number of prime is infinite. 

Theorem: If 𝑛 > 1 is a composite integer then there exists a prime 𝑝 such that 𝑝|𝑛 and 𝑝 ≤ √𝑛. 

Proof: Since 𝑛 > 1 is a composite integer, 𝑛 can be expressed as 𝑛 = 𝑎𝑏, where                   1 <

𝑎 ≤ 𝑏 < 𝑛 , then 

𝑎 ≤ √𝑛, since if it is not true, 𝑎 > √𝑛 

∴ 𝑎. 𝑏 > √𝑛. √𝑛 ⟹ 𝑎𝑏 > 𝑛 which is a contradiction. 

Now by fundamental theorem, either 𝑎 is a prime or has a prime divisor 𝑝 

∴ 𝑝|𝑛 and  𝑝 ≤ √𝑛. 



 

Note: To check a given integer 𝑛 is prime it is sufficient to see that it is not divisible by any 

prime less than or equal to its square root. 

Illustration: Let 𝑛 = 19 

∴ 4 < √19 < 5 

Here 2 and 3 are the prime less than or equal to 4. But 19 is not divisible by 2 and 3. 

∴ 19 must be a prime number. 

Division algorithm: 

Let a and b be two integers with  𝑏 >  0. Then there exist unique integers 𝑞, 𝑟 such that                       

𝑎 =  𝑞𝑏 +  𝑟, where 0 ≤  𝑟 <  𝑏. The integer 𝑞 is called the quotient and 𝑟, the remainder. 

Ex.1.  Use division algorithm to prove that the square of an odd integer is of the form 8𝑘 + 1, 

where 𝑘 is an integer. 

Solution:  

     By division algorithm every integer, upon division by 4, leaves one of the remainders 0,1,2,3. 

Therefore any integer is one of the forms 4𝑞, 4𝑞 + 1, 4𝑞 + 2, 4𝑞 + 3, where 𝑞 is an integer. 

Odd integers are of the forms 4𝑞 + 1, 4𝑞 + 3. 

Now (4𝑞 + 1)2 = 8(2𝑞2 + 𝑞) + 1 is of the form 8𝑘 + 1 

          (4𝑞 + 3)2 = 8(2𝑞2 + 3𝑞 + 1) + 1 is of the form 8𝑘 + 1 

Hence the square of an odd integer is of the form 8𝑘 + 1. 

Ex.2. Prove that the product of any 𝑚 consecutive integers is divisible by 𝑚. 

Solution: 

     Let the consecutive integers be 𝑐, 𝑐 + 1, 𝑐 + 2, . . . , 𝑐 + (𝑚 − 1) 

Let 𝑞 be the quotient and 𝑟 be the remainder when 𝑐 is divided by 𝑚. 

Then 𝑐 = 𝑚𝑞 + 𝑟,         0 ≤ 𝑟 < 𝑚 

When 𝑟 = 0, 𝑐 = 𝑚𝑞 and therefore 𝑚|𝑐; 

When 𝑟 = 1, 𝑐 + (𝑚 − 1) = 𝑚(𝑞 + 1) and therefore  𝑚|𝑐 + (𝑚 − 1); 

When 𝑟 = 2, 𝑐 + (𝑚 − 2) = 𝑚(𝑞 + 1) and therefore 𝑚|𝑐 + (𝑚 − 2); 



 

...          ...   ...   ...   ... 

When 𝑟 = 𝑚 − 1, 𝑐 + 1 = 𝑚(𝑞 + 1) and therefore 𝑚|𝑐 + 1. 

Therefore whatever integer 𝑟 may be, 𝑚 divides one of the integers 𝑐, 𝑐 + 1, . . . , 𝑐 + (𝑚 − 1) and 

it follows that the product 𝑐(𝑐 + 1)(𝑐 + 2). . . (𝑐 + 𝑚 − 1) is always divisible by 𝑚. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 19: 

 

Greatest Common Divisor: A positive integer 𝑑 is called a common divisor of the integers 

𝑎 and 𝑏, if 𝑑 divides 𝑎 and 𝑏. The greatest possible such 𝑑 is called the greatest common divisor 

of 𝑎 and 𝑏, denoted 𝑔𝑐𝑑(𝑎, 𝑏). If 𝑔𝑐𝑑(𝑎, 𝑏)  =  1 then 𝑎, 𝑏 are called relatively prime.  

Example: The set of positive divisors of 12 and 30 is {1,2,3,6}. 

The greatest common divisor of 12 and 30 is 𝑔𝑐𝑑(12,30)  =  6. 

A few properties of divisors are the following. 

 Let 𝑚, 𝑛, 𝑑 be integers. Then: 

1. If 𝑑|𝑚 and 𝑑|𝑛 then 𝑑|(𝑚 +  𝑛). 

 2. If 𝑑|𝑚 and 𝑑|𝑛 then 𝑑|(𝑚 − 𝑛).  

3. If 𝑑|𝑚 then 𝑑|𝑚𝑛.  

Some another properties: 

1. If 𝑐|𝑎𝑏 and 𝑏, 𝑐 are coprime, then𝑐|𝑎. 

2. If 𝑎 and 𝑏 are coprime and 𝑎 and 𝑐 are coprime, then 𝑎 and 𝑏𝑐 are coprime. 

3. If 𝑔𝑐𝑑(𝑎, 𝑏) = 1, then for any integer 𝑥, 𝑔𝑐𝑑(𝑎𝑥, 𝑏) = 𝑔𝑐𝑑(𝑥, 𝑏). 

Note: Two numbers 𝑎 and 𝑏 are said to be coprime if  𝑔𝑐𝑑(𝑎, 𝑏) = 1. 

Another important result is the following:  

Given integers 𝑎, 𝑏, 𝑐, the equation 𝑎𝑥 +  𝑏𝑦 =  𝑐 has integer solutions if and only if 

𝑔𝑐𝑑(𝑎, 𝑏) divides 𝑐. That is an example of a Diophantine equation. In general a Diophantine 

equation is an equation whose solutions must be integers. 

Example: Consider the Diophantine equation 2𝑥 + 3𝑦 = 4. 

  We have 𝑔𝑐𝑑(2,3)  =  1, and 4 is divisible by 1. So, the given equation has integral solution. 

Now  1 = 2. (−1) + 3.1 

∴ 4 = 2. (−4) + 3.4  

Thus one integral solution is 𝑥0 = −4, 𝑦𝑜 = 4. 

Lemma: For any integers a and b, we have 



 

 𝑔𝑐𝑑(𝑎, 𝑏)  =  𝑔𝑐𝑑(𝑏, 𝑎)  =  𝑔𝑐𝑑(±𝑎, ±𝑏)  =  𝑔𝑐𝑑(𝑎, 𝑏 − 𝑎)  =  𝑔𝑐𝑑(𝑎, 𝑏 +  𝑎). 

Theorem (Euclidean Algorithm): Let 𝑎 and 𝑏 be nonzero integers. Divide 𝑏 into 𝑎 and carry 

out further divisions according to the following method, where the old remainder becomes the 

new divisor: 

                                                 𝑎 =  𝑏𝑞1   +  𝑟1, 0 ≤  𝑟1 <  𝑏 

 𝑏 =  𝑟1𝑞2  +  𝑟2, 0 ≤ 𝑟2  < 𝑟1  

 𝑟1  =  𝑟2𝑞3 +  𝑟3, 0 ≤ 𝑟3   < 𝑟2  

. . . . . . . . . . . . 
 

The non-negative remainders  𝑟1, 𝑟2, …. are strictly decreasing, and thus must eventually become 

0. The last nonzero remainder is the greatest common divisor. 

 This algorithm of Euclid for finding 𝑔𝑐𝑑(𝑎, 𝑏) can be carried out very rapidly on a computer, 

even for very large integers which are not easy to factor into primes. 

 Example. let’s see how it looks for the pair given below. 

Consider 𝑎 =  19088597 and 𝑏 =  39083 

                                                   19088597 =  39083 · 488 + 16093  

39083 =  16093 · 2 + 6897  

16093 =  6897 · 2 + 2299  

6897 =  2299 · 3 + 0. 

The last nonzero remainder is 2299, and we said 𝑔𝑐𝑑(19088597,39083)  =  2299  

 Example.  We compute (322345, 21419):  

322345 =  21419 · 15 + 1060, 

 21419 =  1060 · 20 + 219, 

1060 =  219 · 4 + 184, 

 219 =  184 · 1 + 35, 

184 =  35 · 5 + 9, 

 35 =  9 · 3 + 8, 



 

9 =  8 · 1 + 1, 

8 =  1 · 8 + 0. 

Therefore 𝑔𝑐𝑑(322345,21419)  =  1. The last equation was superfluous: if we ever reach a 

remainder of 1, then the next remainder is ≥ 0 and less than 1 and therefore must be 0, so 1 is 

the last nonzero remainder.  

Not only is the last equation superfluous, but we could have stopped already in the fourth 

equation: here we meet a remainder of 35, which is small enough that we can factor it in our 

heads as 5 · 7. Therefore  

(322345, 21419) =  (184,35), 

 and we can easily check 5 and 7 are not factors of 184, so this greatest common divisor must be 

1. 

Theorem: Let 𝑎 and 𝑏 (𝑎 > 𝑏) be  any two integers. Then 𝑔𝑐𝑑(𝑎, 𝑏) can be expressed as an 

integral linear combination of 𝑎 and 𝑏 

i.e. 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑚𝑎 + 𝑛𝑏, where 𝑚 and 𝑛 are integers. 

Illustration: First we consider the steps used to find 𝑔𝑐𝑑(1120,128) as given below: 

1120 = 8.128 + 96     ............(1) 

128 = 1.96 + 32          ............(2) 

∴ From (2), we have 

32 = 128 − 1.96 

                                                                   = 128 − 1. (1120 − 8.128) , by (1) 

                                                                   =9.128 − 1.1120   ...........(3) 

Thus 32 = 𝑔𝑐𝑑(1120,128) = (−1).1120 + 9.128 

∴ 𝑚 = −1, 𝑛 = 9 

Note: 𝑔𝑐𝑑(1120,128) =  (9 + 1120).128 − (1 + 128).1120 

                   = 1129.128 − 129.1120  = (−129).1120 + 1129.128 

∴ 𝑚 = −129, 𝑛 = 1129 

Thus 𝑚 and 𝑛 are not unique. 



 

Hence the expression of 𝑔𝑐𝑑(𝑎, 𝑏) in the form of 𝑚𝑎 + 𝑛𝑏 is not unique. 

Ex. Show that 𝑔𝑐𝑑(𝑎, 𝑎 + 2) = 1 or 2 for every integer 𝑎. 

Ans. Let 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑎 + 2) then 𝑑|𝑎 and 𝑑|𝑎 + 2 

Therefore 𝑑|𝑎𝑥 + (𝑎 + 2)𝑦 for all integers 𝑥, 𝑦. 

Taking 𝑥 = −1 and 𝑦 = 1, it follows that 𝑑|2. i.e. 𝑑 is either 1 or 2. 

Theorem: If 𝑘 be a positive integer, 𝑔𝑐𝑑(𝑘𝑎, 𝑘𝑏) = 𝑘. 𝑔𝑐𝑑(𝑎, 𝑏). 

Proof. Let 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏). Then there exist integers 𝑢 and 𝑣 such that 𝑑 = 𝑎𝑢 + 𝑏𝑣. 

Since 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏), 𝑑|𝑎 and 𝑑|𝑏. 

𝑑|𝑎 ⟹ 𝑘𝑑|𝑘𝑎, 𝑑|𝑏 ⟹ 𝑘𝑑|𝑘𝑏  

Therefore 𝑘𝑑 is a common divisor of 𝑘𝑎 and 𝑘𝑏. 

Let 𝑐 be a common divisor of 𝑘𝑎 and 𝑘𝑏. 

𝑐|𝑘𝑎 ⟹ 𝑘𝑎 = 𝑝𝑐 for some integer 𝑝, and 𝑐|𝑘𝑏 ⟹ 𝑘𝑏 = 𝑞𝑐 for some integer q. 

Now 𝑘𝑑 = 𝑘(𝑎𝑢 + 𝑏𝑣) = 𝑝𝑐𝑢 + 𝑞𝑐𝑣 = (𝑝𝑢 + 𝑞𝑣)𝑐. 

As (𝑝𝑢 + 𝑞𝑣) is an integer, it follows that 𝑐|𝑘𝑑. 

Consequently, 𝑘𝑑 = 𝑔𝑐𝑑(𝑘𝑎, 𝑘𝑏), i.e. 𝑔𝑐𝑑(𝑘𝑎, 𝑘𝑏) = 𝑘. 𝑔𝑐𝑑(𝑎, 𝑏). 

Note: (1) Two integers 𝑎 and 𝑏, not both zero, are said to be prime to each other (or relatively 

prime) if 𝑔𝑐𝑑(𝑎, 𝑏) = 1. 

(1) Let 𝑎 and 𝑏 be integers not both zero. Then 𝑎 and 𝑏 are prime to each other iff there 

exists integers 𝑢 and 𝑣 such that 1 = 𝑎𝑢 + 𝑏𝑣. 

 

 

 

 

 

 

 



 

Lecture 20: 

 

CONGRUENCE: 

If 𝑎 and 𝑏 are integers and 𝑛 > 0, we write 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛)  to mean 𝑛|(𝑏 − 𝑎). We read this as 

“𝑎 is congruent to 𝑏 modulo (or mod) 𝑛.” 

For example, 29 ≡  8 (𝑚𝑜𝑑 7), and 60 ≡  0 (𝑚𝑜𝑑 15). 

Theorem: For any integers 𝑎 and 𝑏, and positive integer 𝑛, we have: 

 1. 𝑎 ≡  𝑎 (𝑚𝑜𝑑 𝑛).  

2. If 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛) then 𝑏 ≡  𝑎 (𝑚𝑜𝑑 𝑛). 

 3. If 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛) and 𝑏 ≡  𝑐 (𝑚𝑜𝑑 𝑛) then 𝑎 ≡  𝑐 (𝑚𝑜𝑑 𝑛). 

These results are classically called:  

1. Reflexivity;  2. Symmetry;  and 3. Transitivity.  

The proof is as follows:  

1. 𝑛|(𝑎 − 𝑎) since 0 is divisible by any integer. Therefore 𝑎 ≡  𝑎 (𝑚𝑜𝑑 𝑛).  

2. If 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛) then 𝑛|(𝑏 −  𝑎). Therefore, 𝑛|(−1)(𝑏 −  𝑎) or 𝑛|(𝑎 −  𝑏). Therefore, 

𝑏 ≡  𝑎 (𝑚𝑜𝑑 𝑛).  

3. If 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛) and 𝑏 ≡  𝑐 (𝑚𝑜𝑑 𝑛) then 𝑛|(𝑏 − 𝑎) and 𝑛|(𝑐 − 𝑏). Using the linear 

combination theorem, we have 𝑛|(𝑏 − 𝑎 +  𝑐 − 𝑏) or 𝑛|(𝑐 − 𝑎). Thus, 𝑎 ≡  𝑐 (𝑚𝑜𝑑 𝑛). 

Theorem:  If 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛) then 𝑏 =  𝑎 +  𝑛𝑞 for some integer 𝑞, and conversely. 

Proof: If 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛) then by definition 𝑛|(𝑏 − 𝑎). Therefore, 𝑏 − 𝑎 =  𝑛𝑞 for some 𝑞. 

Thus 𝑏 =  𝑎 + 𝑛𝑞. Conversely if 𝑏 =  𝑎 + 𝑛𝑞, then 𝑏 − 𝑎 =  𝑛𝑞 and so 𝑛|(𝑏 − 𝑎) and hence 

𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛).Then  𝑏 =  𝑎 +  𝑛𝑞. 

Theorem: If 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛) then 𝑎 and 𝑏 leave the same remainder when divided by 𝑛. 

Conversely if 𝑎 and 𝑏 leave the same remainder when divided by 𝑛, then 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛). 

Proof: Suppose 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛). Then 𝑏 =  𝑎 + 𝑛𝑞. If 𝑎 leaves the remainder 𝑟 when divided 

by 𝑛, we have 𝑎 =  𝑛𝑄 +  𝑟 with 0 ≤  𝑟 < 𝑛.  

Therefore, 𝑏 =  𝑎 +  𝑛𝑞 =  𝑛𝑄 +  𝑟 +  𝑛𝑞 =  𝑛(𝑄 +  𝑟) + 𝑟, and so 𝑏 leaves the same 

remainder when divided by 𝑛. The converse is straightforward and we omit the proof. 



 

Theorem: If 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛) and 𝑐 ≡  𝑑 (𝑚𝑜𝑑 𝑛) then 

 1. 𝑎 +  𝑐 ≡  𝑏 +  𝑑 (𝑚𝑜𝑑 𝑛). 

 2. 𝑎𝑐 ≡  𝑏𝑑 (𝑚𝑜𝑑 𝑛). 

Proof: Write 𝑏 =  𝑎 +  𝑛𝑞1 and 𝑑 =  𝑐 +  𝑛𝑞2. Then adding equalities, we get                  𝑏 +

 𝑑 =  𝑎 +  𝑐 +  𝑛𝑞1 +  𝑛𝑞2  =  𝑎 +  𝑐 +  𝑛(𝑞1 + 𝑞2).  

This shows that 𝑎 +  𝑐 ≡  𝑏 +  𝑑 (𝑚𝑜𝑑 𝑛). 

Similarly, multiplying, we get 

 𝑏𝑑 = ( 𝑎 +  𝑛𝑞1)(𝑐 +  𝑛𝑞2) = 𝑎𝑐 +  𝑛𝑎𝑞2  +  𝑛𝑐𝑞1 +  𝑛2𝑞1𝑞2.  

Thus, 𝑏𝑑 =  𝑎𝑐 +  𝑛(𝑎𝑞2  +  𝑐𝑞1 +  𝑛𝑞1𝑞2), and so 𝑎𝑐 ≡  𝑏𝑑 (𝑚𝑜𝑑 𝑛). 

Theorem: If 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛), then 𝑎𝑐 ≡  𝑏𝑐 (𝑚𝑜𝑑 𝑛). 

Proof: Since 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛), 𝑎 − 𝑏 is divisible by 𝑛. 

∴ (𝑎 − 𝑏)𝑐 = 𝑎𝑐 − 𝑏𝑐 is also divisible by 𝑛. 

∴  𝑎𝑐 ≡  𝑏𝑐 (𝑚𝑜𝑑 𝑛). 

Theorem: 𝑐𝑎 ≡ 𝑐𝑏 ( 𝑚𝑜𝑑 𝑚 ) implies 𝑎 ≡  𝑏 ( 𝑚𝑜𝑑 𝑚 ) if and only if 𝑔𝑐𝑑(𝑐, 𝑚)  =  1.  

  Proof: Note that we already know that 𝑎 ≡  𝑏 ( 𝑚𝑜𝑑 𝑚 ) implies 𝑐𝑎 ≡  𝑐𝑏 ( 𝑚𝑜𝑑 𝑚 ), We will 

prove the other direction, which is what is new, and that allows us to divide.  

That is, if 𝑔𝑐𝑑(𝑐, 𝑚)  =  1, then 𝑐𝑎 ≡  𝑐𝑏 ( 𝑚𝑜𝑑 𝑚 ) implies 𝑎 ≡  𝑏 ( 𝑚𝑜𝑑 𝑚 ).  

𝑐𝑎 ≡  𝑐𝑏 ( 𝑚𝑜𝑑 𝑚 ) implies 𝑚 | ( 𝑐𝑎 −  𝑐𝑏 ). That is, 𝑚 | 𝑐(𝑎 −  𝑏).  

Since 𝑔𝑐𝑑(𝑐, 𝑚)  = 1, a theorem from divisibility tells us that 𝑚 | ( 𝑎 −  𝑏).  

Hence 𝑎 ≡  𝑏 ( 𝑚𝑜𝑑 𝑚 ).  

  Example1: Find the remainder when 25100 +  11500 is divided by 3.  

We observe that 25 ≡  1 ( 𝑚𝑜𝑑 3 ) and 11 ≡  −1 ( 𝑚𝑜𝑑 3 ). Raising these to the appropriate 

powers, 25100 ≡ 1100   ( 𝑚𝑜𝑑 3 ) and 11500 ≡  (−1)500 ( 𝑚𝑜𝑑 3 ).  

That is, 25100 ≡ 1( 𝑚𝑜𝑑 3 ) and 11500 ≡   ( 𝑚𝑜𝑑 3 ). Adding these congruencies, we get 

25100 +  11500 ≡  2( 𝑚𝑜𝑑 3 )  

Thus the remainder is 2.  



 

  Example 2: Prove that 3. 4𝑛+1 ≡ 3(𝑚𝑜𝑑 9) for all positive integer 𝑛. 

Ans. 3. 4𝑛+1 = 12. 4𝑛 = 9. 4𝑛 + 3. 4𝑛 

 3. 4𝑛 = 12. 4𝑛−1 = 9. 4𝑛−1 + 3. 4𝑛−1 

... ... ... ... ... ... 

 3. 42 = 12.4 = 9.4 + 3.4 
 

  3.4 = 12 = 9 + 3 

Therefore, 3. 4𝑛+1 = 9(1 + 4 + 42 + ⋯ + 4𝑛) + 3 

Hence 3. 4𝑛+1 ≡ 3(𝑚𝑜𝑑 9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 21: 

 

Residue classes of integer modulo n: 

The set of all integers b which are congruent to a modulo n is called the congruence class of 

integer modulo n or residue classes of integer modulo n and is denoted by [𝑎]𝑛 or  [𝑎] or, �̅�. 

Thus, [𝑎] = {𝑏 ∈ ℤ ∶ 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛)}. 

For example, all congruence classes of integer modulo 4 are 

 [0] = {𝑏 ∈ ℤ ∶ 𝑏 ≡ 0 (𝑚𝑜𝑑 4)} 

 = {𝑏 ∈ ℤ ∶ 𝑏 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 4 𝑜𝑟 𝑏 = 4𝑘 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘)} 

 = {… − 8, −4,0,4,8, … } 

   [1] = {𝑏 ∈ ℤ ∶ 𝑏 ≡ 1 (𝑚𝑜𝑑 4)} 

 = {𝑏 ∈ ℤ ∶ 𝑏 − 1 = 4𝑘 𝑖. 𝑒. 𝑏 = 1 + 4𝑘 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘} 

 = {… − 7, −3,1,5,9, … } 

Similarly, 

 [2] = {… − 6, −2,2,6,10, … } 

 [3] = {… − 5, −1,3,7,11, … } 

 [4] = {… − 8, −4,0,4,8, … } = [0] 

Thus, there are only 4 distinct congruence classes of integer modulo 4, namely [0], [1], [2], [3]. 

In general [0], [1], [2],…, [𝑛 − 1] are n distinct residue classes of integer modulo n. 

It is evident that  

  [𝑎] = [𝑎 + 𝑛] = [𝑎 + 2𝑛] = ⋯ 

 [0] = [𝑛] = [2𝑛] = ⋯ 

For any positive integer n, ℤ𝑛 denote the set of all congruence classes of integer modulo n. Thus 

ℤ4 = {[0], [1], [2], [3]} 

In general, 

ℤ𝑛 = {[0], [1], [2], … [𝑛 − 1]}. 

Theorem: The number of elements of ℤ𝑛 is finite and  this number is n. 

Proof: Left as exercise. 



 

Arithmetic of Residue classes: Addition and multiplication for residue classes of integer 

modulo n are defined as given below: 

[𝑎] + [𝑏] = [𝑎 + 𝑏] and [𝑎]. [𝑏] = [𝑎𝑏] 

As an illustration, consider the residue classes of integer modulo 3 namely [0], [1], [2]. 

Then, [0] + [1] = [1], [1] + [2] = [3] =  [0] 

[1]. [2] = [2], [2]. [2] = [4] = [1] 

Following composite tables show the addition and multiplication tables for the residue classes of 

integer modulo 3: 

+ [0] [1] [2]

[0] [0] [1] [2]
[1] [1] [2] [0]

[2] [2] [0] [1]

 

. [0] [1] [2]

[0] [0] [0] [0]
[1] [0] [1] [2]

[2] [0] [2] [1]

 

Definition: An element [𝑏] ∈ ℤ𝑛 is called an inverse of an element [𝑎] ∈ ℤ𝑛 if [𝑎][𝑎] = [1] in 

ℤ𝑛. 

Definition: An element [𝑎] ∈ ℤ𝑛 is said to be a unit element in ℤ𝑛 if [𝑎] has inverse in ℤ𝑛. 

Theorem: Let 𝑎 and 𝑛 be integers with 𝑛 ≥ 2 relatively prime. Then  [𝑎] has an inverse in ℤ𝑛 iff 

𝑎 and 𝑛 are relatively prime. 

Illustration: (i) The unit elements of ℤ6 are [1]and [5], as 𝑔𝑐𝑑(1,6) = 𝑔𝑐𝑑(5,6) = 1 

(ii) The inverse of [5] in ℤ6 in [3] as [5][3] = [1] 

Ex. 1. Find all units of ℤ18. 

Solution. We have 

 ℤ18 = {[0], [1], [2], … , [16], [17]} 

Now 𝑔𝑐𝑑(1,18) = gcd(5,18) = gcd (7,18) 

                           = gcd(11,18) = gcd(13,18) = gcd(17,18) = 1. 

Hence [1], [5], [7], [11], [13], [17] are the only unit elements of ℤ18 . 



 

Ex.2. In ℤ16 find the inverse of [9] and use it to solve [9]𝑥 = [12] 

Solution: Since 𝑔𝑐𝑑(9,16) = 1, the inverse [9] exists in ℤ16. From the Euclidean algorithm, we 

have 

16 = 1.9 + 7 

9 = 1.7 + 2 

7 = 3.2 + 1 

∴ 1 = 7 − 3.2 = 7 − 3. (9 − 1.7) 

= 4.7 − 3.9 

                                                                     = 4. (16 − 1.9) − 3.9 

     = 4.16 − 7.9 

                                                                      = 16.4 + 9(−7) 

 Hence,  

 [1] = [16][4] + [9][−7] 

       =[0][4] + [9][9]                                  [∵ 9 ≡ −7 (𝑚𝑜𝑑 16) = [9][9]] 

 Thus the inverse of [9] is [9] 

 Now [9]𝑥 = [12] 

 ⇒ [9][9]𝑥 = [12][9] 

 ⟹ 𝑥 = [−4][−7] 

          = [28] 

          = [12]. 

 Linear congruence:  

 Let 𝑓(𝑥) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑛 , (𝑛 ≥ 1) be a polynomial with integer coefficients 

𝑎0, 𝑎1, … , 𝑎𝑛 with 𝑎0 ≢ 0 (𝑚𝑜𝑑 𝑚). Then 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚) is said to be a polynomial 

congruence (𝑚𝑜𝑑 𝑚) of degree 𝑛. 



 

If there exists an integer 𝑥0 such that 𝑓(𝑥0) ≡ 0 (𝑚𝑜𝑑 𝑚), then 𝑥0 is said to be a solution of the 

congruence. 

Definition: A polynomial congruence of degree 1 is said to be a linear congruence. The general 

form of a linear congruence modulo a positive integer 𝑚 > 1 is 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚), where 𝑎 ≢

0 (𝑚𝑜𝑑 𝑚). 

An integer 𝑐 is said to be a solution of the linear congruence 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) if 

 𝑎𝑐 ≡ 𝑏 (𝑚𝑜𝑑 𝑚). 

Theorem: If 𝑥1 be a solution of the linear congruence 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) and if 𝑥2 ≡ 𝑥1 (𝑚𝑜𝑑 𝑚) 

,then 𝑥2 is also a solution of the congruence. 

Theorem: If 𝑔𝑐𝑑(𝑎, 𝑚) = 1, then the linear congruence 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) has a unique solution. 

 Theorem: If 𝑔𝑐𝑑(𝑎, 𝑚) = 𝑑, then the linear congruence 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) has no solution if 𝑑 is 

not a divisor of 𝑏. 

 Ex.1. Solve the linear congruence 5𝑥 ≡ 3 (𝑚𝑜𝑑 11). 

 Ans: 𝑔𝑐𝑑(5,11) = 1. Hence the congruence has a unique solution. 

Since 𝑔𝑐𝑑(5,11) = 1, there exists integers 𝑢 and 𝑣 such that 5𝑢 + 11𝑣 = 1.  

Here 𝑢 = −2, 𝑣 = 1. Therefore 5. (−2) + 11.1 = 1 and this implies 5. (−2) ≡ 1 (𝑚𝑜𝑑 11). 

 Therefore  5. (−6) ≡ 3 (𝑚𝑜𝑑 11). 

 Hence 𝑥 = −6 is a solution. 

 All solutions are 𝑥 ≡ −6 (𝑚𝑜𝑑 11), 𝑖. 𝑒. 𝑥 ≡ 5 (𝑚𝑜𝑑 11). 

 All the solutions are congruent to 5 (mod 11) and therefore the given congruence has a unique 

solution. 

Exercise: Solve the linear congruence 15𝑥 ≡ 9 (𝑚𝑜𝑑 18). 

 

 

 

 

 

 



 

 

Lecture 22: 

 

 Cartesian product (review): 
 
Let A={a1, a2, ..ak} and B={b1,b2,..bm}. 
 
The Cartesian product A x B is defined by a set of pairs {(a1 b1), (a1, b2), … (a1, bm), 

…, (ak,bm)}. 

 

Cartesian product defines a product set, or a set of all ordered arrangements of elements in 

sets in the Cartesian product. 

 Definition of Relation: 

  A relation is something that relates one set of values to another set of 

values. Sometimes the relationship that is specified between sets is meaningful, other times it is 

not. 

In general, a relations are defined in the following manner: 

A relation R defined over sets A and B is a subset of A x B. Thus, we have R  A x B. This is 

known as a binary relation, because it relates elements between two sets. 

 Illustration: 

 

• Let R⊆ A x B means R is a set of ordered pairs of the form (a,b) where a ∈A and b∈ B.  

• We use the notation a R b to denote (a , b)∈ R . If a R b, we say a is related to b by R.  

 

Example: Let A={a,b,c} and B={1,2,3}. 
 
• Is R={(a,1),(b,2),(c,2)} a relation from A to B? Yes.  
 
• Is Q={(1,a),(2,b)} a relation from A to B? No.  
 
• Is P={(a,a),(b,c),(b,a)} a relation from A to A? Yes  

 Domain and Range of a relation: 

In domain and range of a relation, if R be a relation from set A to set B, then  

 

• The set of all first components of the ordered pairs belonging to R is called the domain of R.  

Thus, Dom(R) = {a ∈ A: (a, b) ∈ R for some b ∈ B}.  

 

• The set of all second components of the ordered pairs belonging to R is called the range of R.  

Thus, range of R = {b ∈ B: (a, b) ∈R for some a ∈ A}.  

 

Therefore, Domain (R) = {a : (a, b) ∈ R} and Range (R) = {b : (a, b) ∈ R} 

Note: 

The domain of a relation from A to B is a subset of A.  



 

The range of a relation from A to B is a subset of B. 

 Some Useful Definition:  

Let R be a binary relation on A. 

• R is reflexive if for all x ∈ A, (x,x) ∈ R. (Equivalently, for all x ∈ 

A, x R x.) 

• R is symmetric if for all x,y ∈ A, (x,y) ∈ R implies (y,x) ∈ R. (Equivalently, for all x,y ∈ 
A, x R y implies that y R x. 

• R is transitive if for all x,y,z ∈ A, (x,y) ∈ R and (y,z) ∈ R implies (x,z) ∈ R. (Equivalently, 

for all x,y,z ∈ A, x R y and y R z implies x R z.) 

Examples: 

• Reflexive: The relation R on {1,2,3} given by R = {(1,1), (2,2), (2,3), (3,3)} is 

reflexive. (All loops are present.) 
 

• Symmetric: The relation R on {1,2,3} given by R = {(1,1), (1,2), (2,1), (1,3), (3,1)} is 

symmetric. (All paths are 2-way.) 
 

• Transitive: The relation R on {1,2,3} given by R = {(1,1), (1,2), (2,1), (2,2), (2,3), 

(1,3)} is transitive. (If I can get from one point to another in 2 steps, then I can get 

there in 1 step.) 

 The Anti-symmetry Property 

• Definition:  

A relation R on a set A is called anti-symmetric if (x,y) ∈ R and (y,x) ∈  R implies x = y. 

• This is equivalent to requiring that if x ≠ y and (x,y) ∈  R, then (y,x) ∉ R. (All 

streets are one-way.) 
 

• Example: R = {(1,1), (1,2), (3,2), (3,3)} is anti-symmetric. 
 

• Is every relation symmetric or anti-symmetric? 
 

• No! Consider R = {(1,2), (2,1), (1,3)}. 

 

 Partial Order Relation: 
 

–  A relation R on a set S is called a partial order if it is 

• Reflexive 

• Antisymmetric 

• Transitive 
 

– A set S together with a partial ordering R is called a partially ordered set 

(poset, for short) and is denote (S,R) 



 

• Partial orderings are used to give an order to sets that may not have a natural one. 

• In our renovation example, we could define an ordering such that (a,b) ∈ R if ‘a must 
be done before b can be done’. 

Example: 

• Show that “greater than or equal” relation is a partial ordering on the set of integers?  

a≥a for every integer a (reflexive) 

 

a≥b, b≥a, then a=b (anti-symmetric) 

 

a≥b, b≥c, then a≥c (transitive) 

 

• Thus ≥ is a partial ordering on the set of integers 

• (Z, ≥) is a poset. 

• Similarly, the division symbol ‘|’ is a partial ordering on the set of positive integers.  

• The inclusion relation is a partial ordering on the set of P(S) 

 Partial Orderings: Notation: 
 

• We use the notation: 

   a  b, when (a,b)R 

• The notation  is used to denote any partial ordering. 

 

 Comparable and Incomparable: 

 

• The elements a and b of a poset (S,  ) are called comparable, if either a  b or b a. 

When a and b are elements of S such that neither a  b or b a, they are called 

incomparable.  

• In the Poset (Z+,|), are the integers 3 and 9 comparable? Yes, as 3|9 => 3 9.  

• But 5 and 7 are incomparable. 

 

 

Properties of posets: 

1. ORDERED SETS: 

• Definitions. (Partially and totally ordered sets.) : 



 

(1) The ordered pair (X,R) is called a partially ordered set if X is a set and R is a 

partial order relation in X. 

(2) The ordered pair (X,R) is called a totally ordered set (or linear ordered set) if X is 

a set and R is a total (linear) order relation in X . 

Let (X,R) be a (partially or totally) ordered set and S ⊂X .  

 Special elements of a Po set: 

• Definitions. (Upper and lower bounds, bounded set.) : 

(1) u∈X is called an upper bound for S if ∀x∈S (x,u)∈R.  

(2) v ∈X is called a lower bound for S if ∀x∈S (v,x)∈R.  

(3) S is called bounded above if ∃u∈X upper bound for S.  

(4) S is called bounded below if ∃v ∈X lower bound for S.  

(5) S is called bounded if it is bounded both above and below. 

• Definitions. (Maximal and minimal elements.) : 

(1) M ∈S is called a maximal element of S if there is no x∈S such that x≠ M and 

(M,x)∈R.  

(2) m∈S is called a minimal element of S if there is no x∈S such that x≠ m and 

(x,m)∈R.  

• Definitions. (Greatest and least elements.):  

(1) M ∈S is called the greatest element of S if ∀x∈S (x,M)∈R.  

(2) m ∈S is called the least element of S if ∀x∈S (m,x) ∈R.  

• Definitions. (Supremum and infimum.):  

(1) If S is bounded above and the set of all upper bounds for S has a least element, 

we call it the least upper bound or the supremum for S, and denote it by supS. (I.e., 

supS ∈U :={u∈X : ∀x∈S (x,u)∈R} and ∀u∈U (supS,u)∈R.)  

(2) If S is bounded below and the set of all lower bounds for S has a greatest 

element, we call it the greateast lower bound or the infimum for S, and denote it by 

inf S. (I.e., inf S ∈V :={v ∈X : ∀x∈S (v,x)∈R} and ∀v ∈V (v,inf V)∈R.)  

Example. 

 Let ρ be the divisibility in N+. Then (N+,ρ) is a partially ordered set. 1 is the only 

minimal (and least) element of N+, 1 is also the infimum for N+. The primes are 

minimal elements of N+\{1}, there is no least element of N+\{1}, 1 is the infimum 

for N+\{1}. 

 



 

Lecture 23: 

 

 Hasse Diagram: 
 

Posets are depicted with Hasse diagrams.  The Hasse diagram of a poset shows the poset’s 

covering relations.  The Hasse diagram of P is formed by representing each element of P with a 

dot.  These dots are arranged such that if y covers x, x is drawn below y and the two dots are 

connected with a line.  For example, consider the set P={2,3,6,9}.  Division gives a partial 

ordering for this set: x  y if x divides y.  With the dots labeled for clarity, the Hasse diagram for 

this poset is: 

 

 

 

 

 

 A connected poset is a poset whose Hasse diagram is a connected graph.  As in graph 

theory, if y covers x in P, we call x a child of y and refer to y as a parent of x.  Often we 

consider Hasse diagrams whose dots are labeled with integers.  A labeled poset on [n] is a 

partial ordering on n: The elements in the Hasse diagram are labeled with the integers 1 to n.  

The poset is naturally labeled if i < j in P implies that i < j as integers.  Visually, the label of a 

dot must be larger than the labels of its children. 

   Within a poset, there are maximal and minimal elements.  A maximal element in P is an 

element that is not covered by any other elements.  Similarly, a minimal element is one that 

does not cover any other elements.  Hasse diagrams make maximal and minimal elements 

particularly easy to identify.  Minimal elements have no lines below them and maximal elements 

have no lines drawn above them in the Hasse diagram.  In the above example, 2 and 3 are 

minimal elements while 6 and 9 are maximal.  At times we will consider posets with a unique 

maximal element.  Observe that if a poset is not connected, each connected component of its 

Hasse diagram will have at least one maximal element.  So posets with a unique maximal 

element are necessarily connected.    

6 

3 

9 

2 



 

 How to Draw Hasse diagram: 

• There is a dot for each a ∈ A 

• If a ≺ b, then the dot for b is positioned higher than the dot for a  

• If a ≺ b and there is no c such that a ≺ c ≺ b, then a line is drawn from a to b (say “b 

covers a”). 
 

 

 
Example: 

Construct the Hasse diagram of (P({a, b, c}), ⊆ ) 

The elements of P({a, b, c}) are 

                    ∅ ,{a}, {b}, {c} ,{a, b}, {a, c}, {b, c}{a, b, c} 

 

The digraph is 



 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 24: 

 

 Lattice: 

 

A lattice is a poset in (L,≤) in which every subset {a,b} consisiting of two elements has a 

least upper bound and a greatest lower bound. 
 

• LUB({a,b}) is denoted by a v b and is called the join of a and b. 

•  GLB({a,b}) is denoted by a Λ b and is called the meet of a and b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Theorem:  

If (L1, ≤) and (L2, ≤) are lattices then (L, ≤) is a lattice where L = L1xL2 and the partial 

order ≤ of L is the product partial order. 

  Properties of Lattices: 



 

 

• Idempotent Properties 

 a v a = a 

 a Λ a = a 

• Commutative Properties 

 a v b = b v a 

 a Λ b = b Λ a 

• Associative Properties 

 a v (b v c)= (a v b) v c 

 a Λ(b Λ c)= (a Λ b) Λ c 

• Absorption Properties 

 a v (a Λ b) = a 

 a Λ (a v b) = a 

  

 Theorem: 

• a v b = b iff a ≤ b 

• a Λ b =a iff a ≤ b 

• a Λ b =a iff a v b = b 

 

 

 

  Types of Lattices:  

1. Isomorphic Lattices  

If f: L1 -> L2 is an isomorphism from the poset (L1, ≤1) to the poset (L2, ≤2) then L1 is a 

lattice iff  L2 is a lattice. 

If a and b are elements of L1 then f(a Λ b) = f(a) Λ f(b) and 

f( a v b) = f(a) v f(b) 

If two lattices are isomorphic as posets we say they are isomorphic lattices. 

2. Bounded Lattice  

A lattice L is said to be bounded if it has a greatest element I and a least element 0. 

3. Complemented Lattice 

 

A lattice L is said to be complemented if it is bounded and if every element in L has a 

complement. 

 Theorem:  

Let L = {a1,a2,a3,a4…..an} be a finite lattice. Then L is bounded. 

 Theorem:  



 

Let L be a bounded lattice with greatest element I and least element 0 and let a belong to 

L. an element a’ belong to L is a complement of a if 

a v a’ = I and a Λ a’ =0 

 Theorem: 

 

Let L be a bounded distributive lattice. If complement exists it is unique. 
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LECTURE 25: INTRODUCTION TO COUNTING TECHNIQUES 

25.1.  INTRODUCTION 

In our daily life, we often need to find the number of ways that a particular event can occur.  

Moreover, we must count objects to solve many different types of problems. For instances: 

 Counting is used to determine the complexity of algorithms. 

 Counting is also required to determine whether there are enough telephone numbers 

or Internet protocol addresses to meet demand. 

 Recently, it has played a key role in mathematical biology, especially in sequencing 

DNA.  

 Furthermore, counting techniques are used extensively when probabilities of events are 

computed. 

The problem of counting and enumeration of specified objects, patterns and designs, arise in 

every area of mathematics, might not be addressed without the knowledge of logical counting 

techniques. The branch of Mathematics which deals with such logical counting techniques is 

known as Combinatorics.   

Today, the interest in combinatorial analysis is fueled by important problems in science, 

including chemistry, biology, physics and computer science.   This subject was studied as long 

ago as the seventeenth century, when combinatorial questions arose in the study of gambling 

games.  

We will here study mainly the following counting techniques: 

 The basic rules of counting, which can solve a tremendous variety of problems. For 

instance, we can use these rules to enumerate the different telephone numbers 

possible in the United States, the allowable passwords on a computer system, and the 

different orders in which the runners in a race can finish. 

 The permutations and combinations, which can phrase many counting problems in 

terms of ordered or unordered arrangements of the objects of a set with or without 

repetitions. For instance, suppose the 100 top finishers on a competitive exam taken 

by 2000 students are invited to a banquet. We can count the possible sets of 100 

students that will be invited, as well as the ways in which the top 10 prizes can be 

awarded. 

 The pigeonhole principle, which states that when objects are placed in boxes and 

there are more objects than boxes, then there is a box containing at least two objects. 

For instance, we can use this principle to show that among a set of 15 or more 

students, at least 3 were born on the same day of the week. 

 The recurrence relation and generating functions, which involves generating all the 

arrangements of a specified kind. This is often important in computer simulations. We 

will devise algorithms to generate arrangements of various types. 

25.2. BASIC COUNTING PRINCIPLES  

There are two basic counting rules or principles which we use frequently in solving the problems 

of counting. 

 

 



 

Rule 1: Addition Rule (Principle of Disjunctive Counting)  

If an event 𝐸 can occur in 𝑚 ways and an another event 𝐹 can occur in 𝑛 ways, but the events 

cannot occur simultaneously, then the number of ways by which one event (𝐸 or 𝐹) can occur is 

𝑚 + 𝑛. 

NOTE: More generally, if the events 𝐸1, 𝐸2, ……, 𝐸𝑛 can occur in 𝑛1, 𝑛2, …, 𝑛𝑛 ways 

respectively and no two of them can occur simultaneously, then the number of ways by which 

one event (𝐸1, 𝐸2, …… or 𝐸𝑛) can occur is 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑛 ways. 

Rule 2: Multiplication Rule (Principle of Sequential Counting)  

If an event 𝐸 can occur in 𝑚 ways and, independent of this event, an another event 𝐹 can occur 

in 𝑛 ways, then the number of ways by which the events (𝐸 and 𝐹) can occur in  the given order 

is 𝑚𝑛. 

NOTE: More generally, if the events 𝐸1, 𝐸2, ……, 𝐸𝑛 can occur in 𝑛1, 𝑛2, …, 𝑛𝑛 ways 

respectively and then the number of ways by which the events (𝐸1, 𝐸2, …… and 𝐸𝑛) can occur in 

the order indecated is 𝑛1𝑛2 ⋯ 𝑛𝑛 ways. 

Worked out Problems: 

Problem 25.1. Suppose you can travel from a place A to a place B by 3 buses, from place B to 

place C by 4 buses, from place C to place D by 2 buses and from place D to place E by 3 buses. 

In how many ways can you travel from A to E? 

Solution: 

The bus from A to B can be selected in 3 ways. 

The bus from B to C can be selected in 4 ways. 

The bus from C to D can be selected in 2 ways. 

The bus from D to E can be selected in 3 ways. 

So, by the multiplication rule of counting (i,e., Principle of sequential counting), one can travel 

from A to E in 3 × 4 × 2 × 3 =  𝟕𝟐 ways. 

Problem 25.2. How many 3-digit numbers can be formed with the digits 1,4,7,8 and 9 if the 

digits are not repeated? 

Solution: 

Three digit numbers will have unit's, ten's and hundred's place. 

Out of 5 given digits any one can take the unit's place. 

This can be done in 5 ways.  

After filling the unit's place, any of the four remaining digits can take the ten's place. 

This can be done in 4 ways. 

After filling in ten's place, hundred's place can be filled from any of the three remaining digits.  

This can be done in 3 ways. 

 So, by the multiplication rule of counting (i,e., Principle of sequential counting), the number of 

3 digit numbers = 5 × 4 × 3 =  𝟔𝟎 

Problem 25.3. Suppose you have five story books and you want to distribute one each to Asha, 

Akhtar and Jasvinder. In how many ways can you do it? 



 

Solution: 

Any one of the five books can be given to Asha and after that any one of the remaining four 

books can be given to Akhtar. Thereafter, any one of the remaining four books can be given to 

Jasvinder. So, by the multiplication rule of counting (i,e., Principle of sequential counting), you 

can distribute the books in 5 × 4 × 3 i.e. 60 ways. 

Problem 25.4. Each user on a computer system has a password, which is six to eight characters 

long, where each character is an uppercase letter or a digit. Each password must contain at least 

one digit. How many possible passwords are there? 

Solution: Let P be the total number of possible passwords, and let 𝑃6, 𝑃7, and 𝑃8 denote the 

number of possible passwords of length 6, 7, and 8, respectively. By the sum rule, 𝑃 =  𝑃6 +
𝑃7 + 𝑃8.We will now find 𝑃6, 𝑃7, and 𝑃8. Finding 𝑃6 directly is difficult. To find 𝑃6 it is easier to 

find the number of strings of uppercase letters and digits that are six characters long, including 

those with no digits, and subtract from this the number of strings with no digits. By the product 

rule, the number of strings of six characters is 366, and the number of strings with no digits is 

266. Hence, 

𝑃6 =  366 − 266 =  2,176,782,336 −  308,915,776 =  1,867,866,560. 

Similarly, we have 

𝑃7 =  367 − 267  =  78,364,164,096 −  8,031,810,176 =  70,332,353,920 
and 

𝑃8  =  368 − 268  =  2,821,109,907,456 −  208,827,064,576 = 2,612,282,842,880. 

Consequently, 

𝑃 =  𝑃6 + 𝑃7 + 𝑃8  =  2,684,483,063,360. 

Problem 25.5.  In a version of the computer language BASIC, the name of a variable is a string 

of one or two alphanumeric characters, where uppercase and lowercase letters are not 

distinguished. (An alphanumeric character is either one of the 26 English letters or one of the 10 

digits.) Moreover, a variable name must begin with a letter and must be different from the five 

strings of two characters that are reserved for programming use. How many different variable 

names are there in this version of BASIC? 

Solution: Let V equal the number of different variable names in this version of BASIC. Let 𝑉1 

be the number of these that are one character long and 𝑉2 be the number of these that are two 

characters long. Then by the sum rule, 𝑉 = 𝑉1 + 𝑉2. Note that 𝑉1 = 26, because a one-character 

variable name must be a letter. Furthermore, by the product rule there are 26 . 36 strings of 

length two that begin with a letter and end with an alphanumeric character. However, five of 

these are excluded, so 𝑉2 = 26. 36 − 5 = 931. Hence, there are 𝑉 = 𝑉1 + 𝑉2 = 26 + 931 =
957 different names for variables in this version of BASIC. 

Problem 25.6. A new company with just two employees, Sanchez and Patel, rents a floor of a 

building with 12 offices. How many ways are there to assign different offices to these two 

employees? 

Solution: The procedure of assigning offices to these two employees consists of assigning an 

office to Sanchez, which can be done in 12 ways, then assigning an office to Patel different from 

the office assigned to Sanchez, which can be done in 11 ways. By the product rule, there are 12 ·
11 = 132 ways to assign offices to these two employees. 



 

Problem 25.7. The chairs of an auditorium are to be labeled with an uppercase English letter 

followed by a positive integer not exceeding 100. What is the largest number of chairs that can 

be labeled differently? 

Solution: The procedure of labeling a chair consists of two tasks, namely, assigning to the seat 

one of the 26 uppercase English letters, and then assigning to it one of the 100 possible integers. 

The product rule shows that there are 26 · 100 = 2600 different ways that a chair can be 

labeled. 

Therefore, the largest number of chairs that can be labeled differently is 2600. 

Problem 25.8. There are 32 microcomputers in a computer center. Each microcomputer has 24 

ports. How many different ports to a microcomputer in the center are there? 

Solution: The procedure of choosing a port consists of two tasks, first picking a microcomputer 

and then picking a port on this microcomputer. Because there are 32 ways to choose the 

microcomputer and 24 ways to choose the port no matter which microcomputer has been 

selected, the product rule shows that there are 32 · 24 = 768 ports. 

Problem 25.9. How many different bit strings of length seven are there? 

Solution: Each of the seven bits can be chosen in two ways, because each bit is either 0 or 1. 

Therefore, the product rule shows there are a total of 27 = 128 different bit strings of length 

seven. 

Problem 25.10. How many different license plates can be made if each plate contains a 

sequence of three uppercase English letters followed by three digits (and no sequences of letters 

are prohibited, even if they are obscene)? 

Solution: There are 26 choices for each of the three uppercase English letters and ten choices for 

each of the three digits. Hence, by the product rule there are a total of 26 · 26 · 26 · 10 · 10 · 10 

=17,576,000 possible license plates. 

25.3. PERMUTATIONS  

Definition 25.1. 

Any arrangement of a given set of objects taking some or all at a time is called a permutation of 

the objects. 

NOTE: An arrangement of any 𝑟 objects taken from a set of 𝑛 objects (𝑟 ≤ 𝑛) in a definite order 

is called 𝑟-permutation or a permutation of the 𝑛 objects taken 𝑟 at a time. 

Examples 25.1 

Suppose five letters, viz., 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are given. Then the arrangements such as 

𝑎𝑏𝑐𝑑𝑒, 𝑏𝑐𝑑𝑒𝑎, 𝑑𝑐𝑎𝑏𝑒, …. etc. are examples of permutations of 5 objects taken all at a time. On 

the other hand, 𝑎𝑐𝑑𝑒, 𝑏𝑐𝑒𝑎, 𝑑𝑐𝑏𝑒, …. etc. are examples of permutation of the 5 objects taken 4 at 

a time (4-permutation); 𝑐𝑑𝑒, 𝑏𝑒𝑎, 𝑐𝑏𝑒, …. etc. are examples of permutation of the 5 objects taken 

3 at a time (3-permutation); 𝑑𝑒, 𝑏𝑎, 𝑎𝑒, …. etc. are examples of permutation of the 5 objects taken 

2 at a time (2-permutation); 𝑒, 𝑎, 𝑑, 𝑐, 𝑏  are examples of permutation of the 5 objects taken 1 at a 

time (1-permutation). 

 



 

 

25.3.1. Rules for Finding the Number of Different Types of Permutations 

As per our earlier discussion there exist different permutations of objects. People may be 

interested in counting the number of 𝑟-permutation. The rules for finding the number of different 

types of 𝑟-permutations can be derived using basic counting principles as follows.  

Rule 1: The number of 𝑟-permutations of 𝑛 distinct objects (𝑟 ≤ 𝑛), in which repetition is not 

allowed, is 𝑃𝑛
𝑟 = 𝑃(𝑛, 𝑟) =

𝑛!

(𝑛−𝑟)!
. 

NOTE: The number of permutations of 𝑛 distinct objects taking all at a time, in which repetition 

is not allowed, is 𝑃𝑛
𝑛 = 𝑃(𝑛, 𝑛) =

𝑛!

(𝑛−𝑛)!
=

𝑛!

0!
= 𝑛!. 

Rule 2: The number of 𝑟-permutations of 𝑛 distinct objects (𝑟 ≤ 𝑛), in which repetition is 

allowed, is 𝑛𝑟. 

NOTE: The number of permutations of 𝑛 distinct objects taking all at a time, in which repetition 

is allowed, is 𝑛𝑛. 

Rule 3: The number of 𝑟-permutations of 𝑛 objects (𝑟 ≤ 𝑛), when objects are not all distinct (i.e. 

repetition is obvious), say, 𝑛1are of first kind, 𝑛2 are of second kind, ….., 𝑛𝑘 are of 𝑘𝑡ℎ kind, 

where 0 < 𝑛𝑖 < 𝑛, 𝑖 = 1,2, … , 𝑘; ∑ 𝑛𝑖
𝑘
𝑖=1 = 𝑛,  is 

𝑃𝑛
𝑟

 𝑛1!  𝑛2!….𝑛𝑘!
. 

Rule 4: The number of 𝑟-permutations of 𝑛 distinct objects (𝑟 ≤ 𝑛), in which repetition is not 

allowed, but 𝑘 particular objects (𝑘 ≤ 𝑟 ≤ 𝑛) are 

(i) always included, is 𝑃𝑟
𝑘 × 𝑃𝑛−𝑘

𝑟−𝑘 

(ii) never included, is 𝑃𝑛−𝑘
𝑟. 

Rule 5: The number of permutations of 𝑛 distinct objects taking all at a time, in which repetition 

is not allowed, but 𝑘 particular objects (𝑘 ≤ 𝑛) 

(i) always occur together, is {𝑘! × (𝑛 − 𝑘 + 1)!} 

(ii) never occur together, is [𝑛! − {𝑘! × (𝑛 − 𝑘 + 1)!}]. 

Rule 6: The number of permutations of 𝑛 distinct objects taking not more than 𝑟 at a time, in 

which repetition is not allowed, is 
𝑛(𝑛𝑟−1)

(𝑛−1)
. 

Remarks:  

Arrangements of objects around a circle are known as Circular Permutations. The fundamental 

difference between linear and that of circular permutation is that in the former, there are always 

two separate ends but in circular permutations we cannot distinguish the two ends. For this, in 

linear permutations, arrangements depend on the absolute position while in the case of circular 

permutations we shall be concerned with relative positions of the things. Thus, in case circular 



 

permutation, one object from 𝑛 distinct objects is fixed in particular place of the circle and then 

the remaining objects are arranged around the circle which includes both clockwise and anti-

clockwise arrangements in the same way of linear arrangements. Hence, the number of 𝑟-

permutation (circular) is same as the number of (𝑟 − 1)-permutation (linear). 

∴ The number of circular permutations of 𝑛 different things taken all at a time, when clockwise 

and anti-clockwise arrangements are distinguishable, is (𝑛 − 1)!; whereas when clockwise and 

anti-clockwise arrangements are indistinguishable, the  number of such permutations is 
(𝑛−1)!

2
. 

25.3.2. Some Important Results Related to Permutations 

The important results those can be derived using the concept of permutation are as follows.  

Result 1: The number of integers between 1 and n which are divisible by 𝑘(0 < 𝑘 ≤ 𝑛) is [
n

k
], 

where [x] denotes the greatest integer not exceeding 𝑥. 

Result 2: The number of distinct divisors (or factors) of a natural number 𝑛(𝑛 > 1) is (𝑘1 +

1)(𝑘2 + 1)(𝑘3 + 1) … . (𝑘𝑟 + 1) if the given natural number 𝑛 can be expressed as follows 

𝑛 = 𝑝1
𝑘1 × 𝑝2

𝑘2 × 𝑝3
𝑘3 × … .× 𝑝𝑟

𝑘𝑟 

where 𝑝1, 𝑝2, 𝑝3 … , 𝑝𝑟 are distinct prime factors of 𝑛 and 𝑘1, 𝑘2, 𝑘3 … , 𝑘𝑟 are positive integers. 

Result 3: 𝑃𝑛
𝑟 = 𝑃𝑛−1

𝑟 + 𝑟. 𝑃𝑛−1
𝑟−1 = 𝑛. 𝑃𝑛−1

𝑟−1 

Worked out Problems: 

Problem 25.11. If you have 6 New Year greeting cards and you want to send them to 4 of 

your friends, in how many ways can this be done? 

Solution: 

We have to find number of permutations of 4 objects out of 6 objects. 

This number is 𝑃6
4 =

6!

(6−4)!
=

6!

2!
= 3 × 4 × 5 × 6 = 360. 

Therefore, cards can be sent in 360 ways. 

Problem 25.12. Suppose you want to arrange your English, Hindi, Mathematics, History, 

Geography and Science books on a shelf. In how many ways can you do it? 

Solution: 

Here, 6 books are to be arranged. 

∴ The number of possible arrangements = The number of permutations of 6 objects = 6! =
6.5.4.3.2.1 =  𝟕𝟐𝟎.  

Problem 25.13. In how many ways can 6 people be seated at a round table? 

Solution: The number of ways will be (6 – 1)!, i.e., 120. 

Problem 25.14. Find the number of ways in which 5 people A,B,C,D,E can be seated at a 

round table, such that 

(i) A and B must always sit together. 

(ii) C and D must not sit together. 



 

Solution:  

(i) If we wish to seat A and B together in all arrangements, we can consider these two as one 

unit, along with 3 others. So effectively we’ve to arrange 4 people in a circle, the number 

of ways being (4 – 1)! or 6. Let me show you the arrangements: 

 
But in each of these arrangements, A and B can themselves interchange places in 2 ways. 

Here’s what I’m talking about: 

 
Therefore, the total number of ways will be 6 x 2 = 12. 

(ii) The number of ways in this case would be obtained by removing all those cases (from the 

total possible) in which C & D are together. The total number of ways will be (5 – 1)! or 

24. Similar to (i) above, the number of cases in which C & D are seated together, will be 

12. Therefore the required number of ways will be 24 – 12 = 12. 

Problem 25.15. In how many ways can 3 men and 3 ladies be seated at around table such 

that no two men are seated together? 

Solution: Since we don’t want the men to be seated together, the only way to do this is to make 

the men and women sit alternately. We’ll first seat the 3 women, on alternate seats, which can be 

done in (3 – 1)! or 2 ways, as shown below. (We’re ignoring the other 3 seats for now) 

 
Note that the following 6 arrangements are equivalent: 

 



 

That is, if each of the women is shifted by a seat in any direction, the seating arrangement 

remains exactly the same. That is why we have only 2 arrangements, as shown in the previous 

figure. 

Now that we’ve done this, the 3 men can be seated in the remaining seats in 3! or 6 ways. Note 

that we haven’t used the formula for circular arrangements now. This is so because, after the 

women are seated, shifting the each of the men by 2 seats, will give a different arrangement. 

After fixing the position of the women (same as ‘numbering’ the seats), the arrangement on the 

remaining seats is equivalent to a linear arrangement. 

Therefore the total number of ways in this case will be 2! X 3! = 12. 

Exercise: 

E 25.1. How many functions are there from a set with 𝑚 elements to a set with 𝑛 elements? 

E 25.2. How many one-to-one functions are there from a set with 𝑚 elements to one with 𝑛 

elements? 

E 25.3. The North American numbering plan (NANP) specifies the format of telephone numbers 

in the U.S., Canada, and many other parts of North America. A telephone number in this 

plan consists of 10 digits, which are split into a three-digit area code, a three-digit office 

code, and a four-digit station code. Because of signaling considerations, there are certain 

restrictions on some of these digits. To specify the allowable format, let X denote a digit 

that can take any of the values 0 through 9, let N denote a digit that can take any of the 

values 2 through 9, and let Y denote a digit that must be a 0 or a 1. Two numbering plans, 

which will be called the old plan, and the new plan, will be discussed. (The old plan, in 

use in the 1960s, has been replaced by the new plan, but the recent rapid growth in 

demand for new numbers for mobile phones and devices will eventually make even this 

new plan obsolete. In this example, the letters used to represent digits follow the 

conventions of the North American Numbering Plan.) As will be shown, the new plan 

allows the use of more numbers. 

In the old plan, the formats of the area code, office code, and station code are NYX, 

NNX, and XXXX, respectively, so that telephone numbers had the form NYX-NNX-

XXXX. In the new plan, the formats of these codes are NXX, NXX, and XXXX, 

respectively, so that telephone numbers have the form NXX-NXX-XXXX. How many 

different North American telephone numbers are possible under the old plan and under 

the new plan? 

E 25.4. What is the value of 𝑘 after the following code, where 𝑛1, 𝑛2, . . . , 𝑛𝑚 are positive 

integers, has been executed? 

 

 
 

k := 0 

for 𝑖1: = 1 to 𝑛1  

for 𝑖2: = 1 to 𝑛2 

. 

. 

. 

for 𝑖𝑚: = 1 to 𝑛𝑚 

𝑘 ∶=  𝑘 +  1 
 



 

E 25.5. Use the product rule to show that the number of different subsets of a finite set 𝑆 is 2|𝑆|. 

LECTURE 26: COMBINATIONS AND BINOMIAL COEFFICIENTS 

26.1. COMBINATIONS  

Definition 26.1.  

Any unordered selection of a given set of objects taking some or all at a time is called a 

combination of the objects. 

Thus, by the combination of 𝑛 different objects taken 𝑟 (𝑟 ≤ 𝑛) at a time, we mean all 

possible grouping of 𝑟 different objects taken from the 𝑛 objects without giving any importance 

to the order of arrangement of objects forming the group. The number of combinations of 𝑛 

objects taken 𝑟 at a time is denoted by 𝐶𝑛
𝑟 or 𝐶(𝑛, 𝑟) or (

𝑛
𝑟

)  

NOTE: An unordered selection of any 𝑟 objects taken from a set of 𝑛 objects (𝑟 ≤ 𝑛) is called 

𝑟-combination or a combination of the 𝑛 objects taken 𝑟 at a time. 

Example 26.1.  

Suppose five letters, viz., 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are given. Then the selection of all objects 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 (in 

any order) is a combination of 5 objects taken all at a time. On the other hand, the selection of 

four objects 𝑎, 𝑐, 𝑑, 𝑒 (in any order), the selection of four objects 𝑏, 𝑐, 𝑑, 𝑒 (in any order), the 

selection of four objects 𝑎, 𝑏, 𝑐, 𝑒 (in any order), ….. etc. are examples of combinations of the 5 

objects taken 4 at a time (4-combination); the selection of three objects 𝑎, 𝑐, 𝑑 (in any order), the 

selection of three objects 𝑏, 𝑐, 𝑒 (in any order), the selection of three objects 𝑎, 𝑏, 𝑒 (in any order), 

….. etc. are examples of combinations of the 5 objects taken 3 at a time (3-combination); the 

selection of two objects 𝑎, 𝑐 (in any order), the selection of two objects 𝑏, 𝑐 (in any order), the 

selection of two objects 𝑎, 𝑒 (in any order), ….. etc. are examples of combinations of the 5 

objects taken 2 at a time (2-combination); the selection of one object 𝑎, the selection of one 

object 𝑏, the selection of one object 𝑒, ….. etc. are examples of combinations of the 5 objects 

taken 1 at a time (1-combination). 

26.1.1. Rules for Finding the Number of Different Types of Combinations 

As per our earlier discussion (see 1.4.2), there exists different combinations of objects. People 

may be interested in counting the number of 𝑟-combination. The rules for finding the number of 

different types of 𝑟-combinations can be derived using basic counting principles as follows.  

Rule 1: The number of 𝑟-combinations of 𝑛 distinct objects (𝑟 ≤ 𝑛), in which repetition is not 

allowed, is 𝐶𝑛
𝑟 = 𝐶(𝑛, 𝑟) = (

𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
. 

NOTE: The number of permutations of 𝑛 distinct objects taking all at a time, in which repetition 

is not allowed, is 𝐶𝑛
𝑛 = 𝐶(𝑛, 𝑛) = (

𝑛
𝑛

) =
𝑛!

𝑛!(𝑛−𝑛)!
=

𝑛!

𝑛!0!
= 1. 



 

Rule 2: The number of combinations of 𝑛 distinct objects, taking at least one at a time is 2𝑛 − 1. 

Rule 3: The number of combination of 𝑛 objects, when objects are not all distinct, say, 𝑛1are of 

first kind, 𝑛2 are of second kind, ….., 𝑛𝑘 are of 𝑘𝑡ℎ kind, where 0 < 𝑛𝑖 < 𝑛, 𝑖 = 1,2, … , 𝑘; 

∑ 𝑛𝑖
𝑘
𝑖=1 = 𝑛,  is [(𝑛1 + 1)(𝑛2 + 1) … (𝑛𝑘 + 1) − 1]. 

Rule 4: The number of combination of 𝑛 objects taking some or all, when objects are not all 

distinct, say, 𝑛1are of first kind, 𝑛2 are of second kind, ….., 𝑛𝑘 are of 𝑘𝑡ℎ kind and 𝑚 are all 

distinct, where 0 < 𝑛𝑖, 𝑚 < 𝑛, 𝑖 = 1,2, … , 𝑘; ∑ 𝑛𝑖
𝑘
𝑖=1 + 𝑚 = 𝑛,  is [(𝑛1 + 1)(𝑛2 + 1) … (𝑛𝑘 +

1)2𝑚 − 1]. 

Rule 5: The number of 𝑟-combination of 𝑛 distinct objects (𝑟 ≤ 𝑛.), in each of which 𝑘 

particular objects (𝑘 ≤ 𝑟 ≤ 𝑛) are 

(i) always included, is 𝐶𝑛−𝑘
𝑟−𝑘 

(ii) never included, is 𝐶𝑛−𝑘
𝑟. 

Rule 6: The number of 𝑟-combination of 𝑛 distinct objects, in which repetition is allowed, is 

𝐶𝑛+𝑟−1
𝑟. 

Worked out Problems: 

Problem 26.1. Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels 

can be formed? 

Solution:  

Number of ways of selecting 3 consonants from 7 = 𝐶7
3. 

Number of ways of selecting 2 vowels from 4 = 𝐶4
2. 

∴ Number of ways of selecting 3 consonants from 7 and 2 vowels from 4 = 𝐶7
3 × 𝐶4

2 

= (
7×6×5

3×2×1
) × (

4×3

2×1
) 

= 210 

So, we can have 210 groups where each group contains total 5 letters (3 consonants and 2 

vowels). 

Now, the number of ways of arranging 5 letters among themselves = 5! = 120. 

Hence, required number of ways = 210 × 120 = 25200. 

Problem 26.2. In a group of 6 boys and 4 girls, four children are to be selected. In how many 

different ways can they be selected such that at least one boy should be there? 

Solution:  

In a group of 6 boys and 4 girls, four children are to be selected such that at least one boy should 

be there. 

Hence we have 4 options as given below: 

Option 1: All 4 members are boys 



 

 The number of ways by which 4 boys can be selected out of 6 boys is 𝐶4
6 . 

Option 2: 3 members are boys and 1 member is girl 

The number of ways by which 3 boys can be selected out of 6 boys is 𝐶3
6 . 

The number of ways by which 1 girl can be selected out of 4 girls is 𝐶1
4 . 

So, by the multiplication rule of counting (i,e., Principle of sequential counting), the number of 

ways by which 3 boys and 1 girl can be selected for the group is 𝐶3
6 × 𝐶1

4 . 

Option 3: 2 members are boys and 2 members are girls 

The number of ways by which 2 boys can be selected out of 6 boys is 𝐶2
6 . 

The number of ways by which 2 girls can be selected out of 4 girls is 𝐶2
4 . 

So, by the multiplication rule of counting (i,e., Principle of sequential counting), the number of 

ways by which 2 boys and 2 girls can be selected for the group is 𝐶2
6 × 𝐶2

4 . 

Option 4: 1 member is boy and 3 members are girls 

The number of ways by which 1 boy can be selected out of 6 boys is 𝐶1
6 . 

The number of ways by which 3 girls can be selected out of 4 girls is 𝐶3
4 . 

So, by the multiplication rule of counting (i,e., Principle of sequential counting), the number of 

ways by which 1 boy and 3 girls can be selected for the group is 𝐶1
6 × 𝐶3

4 . 

Since, the group of 4 members can be selected by considering only one of the 4 options 

mentioned above, by the addition rule of counting (i,e., Principle of disjunctive counting), the 

number of ways = 𝐶4
6 + 𝐶3

6 × 𝐶1
4 + 𝐶2

6 × 𝐶2
4 + 𝐶1

6 × 𝐶3
4

 

= (
6 × 5

2 × 1
) + (

6 × 5 × 4

3 × 2 × 1
) × 4 + (

6 × 5

2 × 1
) × (

4 × 3

2 × 1
) + (6 × 4) 

= 15 + 80 + 90 + 24 

= 209 

Problem 26.3. Example 6.1.21. In how many ways can you allocate 3 identical passes to 10 

students so that each student receives at most one? 
Solution:  Here, we have only 3 passes to distribute among 10 students. Since, passes are 

identical and a student can receive at most one, we can classify the 10 students in 2 categories: 

one who will receive only one pass and other who will receive no pass. The first group consists 

of three students and the second group consists of 7 students. Thus, the required number of ways 

by which the passes can be allocated is same as the number of ways by which a group of 3 

students can be formed out of 10 students (or same as the number of ways by which a group of 7 

students can be formed out of 10 students). 

∴ the required number of ways = 𝐶3
10  (or 𝐶7

10 ). [NOTE: 𝐶𝑟
𝑛 = 𝐶𝑛−𝑟

𝑛 ] 

26.2. BINOMIAL THEOREM  

Statement: For any real numbers 𝑥, 𝑦 and any integer 𝑛 ≥ 0, 

(𝑥 + 𝑦)𝑛 = ∑ 𝐶𝑛
𝑟𝑥𝑟𝑦𝑛−𝑟

𝑛

𝑟=0

 



 

NOTE: Here, 𝐶𝑛
𝑟 is known as binomial coefficient. The binomial coefficient is also written as 

𝐶(𝑛, 𝑟) or (
𝑛
𝑟

). The symbol 𝐶𝑛
𝑟 has two meaning 

(i) Combinatorial meaning where it represents the number of ways of 

choosing 𝑟 objects from given 𝑛 distinct objects 

(ii) Algebraic meaning where it is expressed as 𝐶𝑛
𝑟 =

𝑛!

𝑟!(𝑛−𝑟)!
 

Hence, all theorems and identities about Binomial coefficients and factorials can be given two 

kinds of proofs a combinatorial proof and an algebraic proof. 

Corollary: When 𝑛 is a positive integer, 

(i) (1 + 𝑥)𝑛 = ∑ 𝐶𝑛
𝑟𝑥𝑟𝑛

𝑟=0  

(ii) (1 + 𝑥)−𝑛 = ∑ (−1)𝑟 𝐶𝑛+𝑟−1
𝑟𝑥𝑟𝑛

𝑟=0  

(iii) (1 − 𝑥)−𝑛 = ∑ 𝐶𝑛+𝑟−1
𝑟𝑥𝑟𝑛

𝑟=0  

Some Important Identities: 

(i) 𝐶𝑛
0 = 𝐶𝑛

𝑛=1 

(ii) 𝐶𝑛
1 = 𝐶𝑛

𝑛−1 = 𝑛 

(iii) 𝐶𝑛
𝑟 =

𝑛

𝑟
𝐶𝑛−1

𝑟−1 

(iv) 𝐶𝑛
0 + 𝐶𝑛

1 + 𝐶𝑛
2 + ⋯ + 𝐶𝑛

𝑛 = 2𝑛 

(v) 𝐶𝑛
𝑟 = 𝐶𝑛

𝑛−𝑟 , 𝑓𝑜𝑟 𝑟 ≤ 𝑛 

(vi) 𝐶𝑛
𝑟 = 𝐶𝑛

𝑝 ⇒ 𝑟 = 𝑝 𝑜𝑟 𝑟 + 𝑝 = 𝑛 

(vii) 𝐶𝑛
𝑟 + 𝐶𝑛

𝑟−1 = 𝐶𝑛+1
𝑟 

(viii) Newton’s Identity: 𝐶𝑛
𝑟 𝐶𝑟

𝑘 = 𝐶𝑛
𝑘 𝐶𝑛−𝑘

𝑟−𝑘  , 𝑓𝑜𝑟 𝑖𝑛𝑡𝑔𝑒𝑟𝑠 0 ≤ 𝑘 ≤ 𝑟 ≤ 𝑛 

(ix) Pascal Identity:  

(x) Pascal's identity was probably first derived by Blaise Pascal, a 19th century French 

mathematician, whom the theorem is named after. 

Statement: For any positive integers 𝑟 and 𝑛, 𝐶𝑛+1
𝑟 = 𝐶𝑛

𝑟 + 𝐶𝑛
𝑟−1 

NOTE: (Combinatorial Meaning) 

(xi) Vandermonde’s Identity: 𝐶𝑛+𝑚
𝑟 = ∑ 𝐶𝑚

𝑟−𝑘 𝐶𝑛
𝑘

𝑟
𝑘=0 , 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 0 ≤ 𝑟 ≤ 𝑚, 𝑛 

 

26.3. MULTINOMIAL THEOREM 

The multinomial theorem describes how to expand the power of a sum of more than two terms. It 

is a generalization of the binomial theorem to polynomials with any number of terms. It 

expresses a power (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘)𝑛 as a weighted sum of monomials of the 

form 𝑥1
𝑏1𝑥2

𝑏2 … 𝑥𝑘
𝑏𝑘  where the weights are given by generalizations of binomial 

coefficients called multinomial coefficients. 

Definition 26.2. (Multinomial Coefficient ) 

For non-negative integers 𝑏1, 𝑏2, … , 𝑏𝑘 such that ∑ 𝑏𝑖
𝑘
𝑖=1 = 𝑛, the multinomial coefficient is 

(
𝑛

𝑏1, 𝑏2, … , 𝑏𝑘
) =

𝑛!

𝑏1! 𝑏2! … 𝑏𝑘!
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NOTE: For 𝑘 = 2, the multinomial coefficient  reduces to binomial coefficient: 

(
𝑛

𝑏1, 𝑏2
) =

𝑛!

𝑏1!𝑏2!
, where 𝑏1 + 𝑏2 = 𝑛 

=
𝑛!

𝑏1! (𝑛 − 𝑏1)!
 

= (
𝑛
𝑏1

) 

 

 

For a positive integer 𝑘 and a non-negative integer 𝑛, 

(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘)𝑛 = ∑ (
𝑛

𝑏1, 𝑏2, … , 𝑏𝑘
)

0≤ 𝑏1,𝑏2,…,𝑏𝑘  ≤ 𝑛
𝑎𝑛𝑑 𝑏1+𝑏2+⋯+𝑏𝑘=𝑛 

∏ 𝑥𝑗
𝑏𝑗

𝑘

𝑗=1

 

 

 

 

Theorem 26.1. (Multinomial Theorem) 

Statement: For a positive integer 𝑘 and a non-negative integer 𝑛, 

(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘)𝑛 = ∑ (
𝑛

𝑏1, 𝑏2, … , 𝑏𝑘
)

0≤ 𝑏1,𝑏2,…,𝑏𝑘  ≤ 𝑛
𝑎𝑛𝑑 𝑏1+𝑏2+⋯+𝑏𝑘=𝑛 

∏ 𝑥𝑗
𝑏𝑗

𝑘

𝑗=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE 27: ADVANCED COUNTING TECHNIQUES 

27.1. PRINCIPLE OF INCLUSION AND EXCLUSION 

The Principle of Inclusion and Exclusion (PIE) is a counting technique that computes the number 

of elements satisfying at least one of several properties while guaranteeing that elements 

satisfying more than one property are not counted twice. 

An underlying idea behind PIE is that summing the number of elements that satisfy at least 

one of two categories and subtracting the overlap prevents double counting. For instance, the 

number of people that have at least one cat or at least one dog can be found by taking the number 

of people who own a cat, adding the number of people that have a dog, then subtracting the 

number of people who have both. 

PIE is particularly useful in combinatorics and probability problem solving when it is 

necessary to devise a counting method that ensures an object is not counted twice. 

 

Statement (for Two Sets): 

In the case of objects being separated into two (possibly disjoint) sets 𝐴 and 𝐵, the principle of 

inclusion and exclusion states 

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| 

where |𝑆| denotes the cardinality, or number of elements, of set 𝑆 in set notation. 
 

Statement (for Three Sets): 

In the case of objects being separated into three (possibly disjoint) sets 𝐴, 𝐵 and 𝐶, the principle 

of inclusion and exclusion states 

 

|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐵 ∩ 𝐶| − |𝐶 ∩ 𝐴| + |𝐴 ∩ 𝐵 ∩ 𝐶| 

where |𝑆| denotes the cardinality, or number of elements, of set 𝑆 in set notation. 

Worked out Problems: 

Problem 27.1. How many integers from 1 to 100 are multiples of 2 or 3? 

Solution: Let, 𝐴 and 𝐵 are the sets of integers from 1 to 100 that are respectively multiples of 2 

and 3.  

∴ |𝐴| = ⌈
100

2
⌉ = 50 and |𝐵| = ⌈

100

3
⌉ = 33, where ⌈. ⌉ denotes the ceiling function. 

Now, 𝐴 ∩ 𝐵 be the set of integers from 1 to 100 that are multiples of both 2 and 3, and hence are 

multiples of 6, implying |𝐴 ∩ 𝐵| = ⌈
100

6
⌉ = 16. 

Since, 𝐴 ∩ 𝐵 is the set of integers from 1 to 100 that are multiples of 2 or 3, by principle of 

inclusion and exclusion, 

 

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| = 50 + 33 − 16 = 67 

So, the total number of integers from 1 to 100 which are multiples of 2 or 3 is 67. 
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Problem 27.2. There are exactly three types of students in a school: the geeks, the wannabees, 

and the athletes. Each student is classified into at least one of these categories. Out of 1000 

school students, 310 are geeks, 650 are wannabees, 440 are athletes, 170 are both geeks and 

wannabees, 150 are both geeks and athletes and 180 are both wannabees and athletes. What is 

the total number of students who fit into all 3 categories? 

Solution: Let, 𝐴, 𝐵 and 𝐶  denote the set for geeks, wannabees, and athletes, respectively. Thus, 

∴ |𝐴| = 310, |𝐵| = 650 and |𝐶| = 440. 

Since, the total number of students in the school is 1000 and each student is classified into at 

least one of these categories, we have 

|𝐴 ∪ 𝐵 ∪ 𝐶| = 1000 

Now, 𝐴 ∩ 𝐵, 𝐵 ∩ 𝐶 and 𝐶 ∩ 𝐴 are the sets of school students who are both geeks and wannabees, 

both geeks and athletes, and both wannabees and athletes, respectively.  

∴ |𝐴 ∩ 𝐵| = 170, |𝐵 ∩ 𝐶| = 150 and |𝐶 ∩ 𝐴| = 180. 

Since, 𝐴 ∩ 𝐵 ∩ 𝐶 denotes the set of school students who fit into all 3 categories; by the principle 

of inclusion and exclusion, we have 

|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐵 ∩ 𝐶| − |𝐶 ∩ 𝐴| + |𝐴 ∩ 𝐵 ∩ 𝐶| 
⟹ 1000 = 310 + 650 + 440 − 170 − 150 − 180 + |𝐴 ∩ 𝐵 ∩ 𝐶| 
⟹ |𝐴 ∩ 𝐵 ∩ 𝐶| = 1000 − 310 − 650 − 440 + 170 + 150 + 180 

⟹ |𝐴 ∩ 𝐵 ∩ 𝐶| = 100 
So, the total number of students who fit into all 3 categories is 100. 

27.2. DERANGEMENT 

A derangement is an arrangement (i.e., a permutation) of some number of objects into positions 

such that no object goes to its specified position.  

Theorem27.1.  

Statement: Let 𝐷(𝑛) or 𝐷𝑛 be the number of derangements for 𝑛 different objects, then 

𝐷𝑛 = 𝑛! ∑
(−1)𝑟

𝑟!

𝑛

𝑟=0

 

Proof: Let there be 𝑛 distinct objects with their 𝑛 distinct respective positions. So, The number 

of all possible arrangements is 𝑛!. 

Now, let 𝑁 is the number of ways of arranging the 𝑛 objects in such a way that at least one 

object goes to its right position. 

∴ The number of derangements (𝐷𝑛) = 𝑛! − 𝑁. 

Let, 𝐴𝑖 be the set of permutations in which the 𝑖𝑡ℎ object goes into its right position. Then, 𝐴𝑖 ∩
𝐴𝑗 is the set of permutations in which the 𝑖𝑡ℎ object and 𝑗𝑡ℎ  object go into their right positions; 

𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘 is the set of permutations in which the 𝑖𝑡ℎ object, 𝑗𝑡ℎ  object and 𝑘𝑡ℎ object go into 

their right positions and so on. 

 Thus, |𝐴𝑖| = (𝑛 − 1)!, |𝐴𝑖 ∩ 𝐴𝑗| = (𝑛 − 2)!, |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘| = (𝑛 − 3)! and so on. 

Now, (⋃ 𝐴𝑖
𝑛
𝑖=1 ) is the set of permutations in which at least one object goes into its right position. 



 

∴ 𝑁 = |⋃ 𝐴𝑖

𝑛

𝑖=1

| 

By the principle of inclusion and exclusion 

𝑁 = ∑|𝐴𝑖|

𝑛

𝑖=1

− ∑ |𝐴𝑖 ∩ 𝐴𝑗|
1≤ 𝑖 ,𝑗≤ 𝑛

𝑖<𝑗 

+ ∑ |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘|
1≤ 𝑖 ,𝑗,𝑘≤ 𝑛

𝑖<𝑗<𝑘 

− ⋯ + (−1)𝑛+1|𝐴1 ∩ 𝐴2 ∩ … ∩ 𝐴𝑛| 

= 𝐶1
𝑛 (𝑛 − 1)! − 𝐶2

𝑛 (𝑛 − 2)! + 𝐶3
𝑛 (𝑛 − 3)! − ⋯ + (−1)𝑛+1 𝐶𝑛

𝑛 (𝑛 − 𝑛)! 

= ∑(−1)𝑟+1 𝐶𝑟
𝑛 (𝑛 − 𝑟)!

𝑛

𝑟=1

 

= ∑(−1)𝑟+1
𝑛!

𝑟!

𝑛

𝑟=1

 

Therefore, the number of derangements (𝐷𝑛) = 𝑛! − 𝑁 

= 𝑛! − ∑(−1)𝑟+1
𝑛!

𝑟!

𝑛

𝑟=1

 

= 𝑛! ∑
(−1)𝑟

𝑟!

𝑛

𝑟=0

 

NOTE: The above result can also be rewritten as follows: 

𝐷𝑛 = 𝑛! ∑
(−1)𝑟

𝑟!

𝑛

𝑟=0

 

= 𝑛! [∑
(−1)𝑟

𝑟!
+

(−1)𝑛

𝑛!

𝑛−1

𝑟=0

] 

= 𝑛(𝑛 − 1)! ∑
(−1)𝑟

𝑟!

𝑛−1

𝑟=0

+ (−1)𝑛 

= 𝑛𝐷𝑛−1 + (−1)𝑛 

 

Problem 27.3. Mickey the mailman is very lazy. He has received 10 parcels to 10 different 

people. However, because he is lazy, he doesn't bother reading the address and delivers them off 

randomly. In how many ways can Mickey deliver the parcels such that no one gets the right 

parcel? 

Solution: This is just a derangement problem (sending the set {1,2,3, … ,10} to another set such 

that none of the original elements are in the same place).  
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∴ The required number of ways = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 10 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 (𝐷10) 

= 10! ∑
(−1)𝑟

𝑟!

10

𝑟=0

 

= 10! (
1

0!
−

1

1!
+

1

2!
−

1

3!
+ ⋯ +

1

10!
) 

= 1334961 

Therefore, there are a total of 1334961 ways to deliver the parcels such that no one gets the right 

parcel. 

Problem 27.4. There are 4 men: A, B, C and D. Each has a son. The four sons are asked to enter 

a dark room. Then A, B, C and D enter the dark room, and each of them walks out with just one 

child. If none of them comes out with his own son, in how many ways can this happen? 

Solution: This is just a derangement problem (sending the set {1,2,3,4} to another set such that 

none of the original elements are in the same place).  

∴ The required number of ways = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 4 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 (𝐷4) 

= 4! ∑
(−1)𝑟

𝑟!

4

𝑟=0

 

= 4! (
1

0!
−

1

1!
+

1

2!
−

1

3!
+

1

4!
) 

= 24 (1 − 1 +
1

2
−

1

6
+

1

24
) 

= 24 (
1

2
−

1

6
+

1

24
) 

= 12 − 4 + 1 

= 9 

Therefore, there are a total of 9 ways that none of them comes out with his own son. 

27.2. PIGEONHOLE PRINCIPLE 

The Pigeonhole Principle (also known as the Dirichlet box principle, Dirichlet principle or box 

principle) is one of the simplest but most useful concept in mathematics, discovered all the way 

back in the 1800s.  

Suppose there are fifteen pigeonholes and sixteen pigeons. A storm comes along, and all of 

the pigeons take shelter inside the pigeonholes. They could be arranged any number of ways. For 

all we know, all sixteen pigeons could be inside one hole, and the rest of the holes could be 

empty. What we know for sure, no matter what, is that there is at least one hole that contains 

more than one pigeon. The principle works no matter what the particular number of pigeons and 

pigeonholes, of course. As long as there are (𝑁 − 1) number of pigeonholes, and 𝑁 number of 

pigeons, we know there will always be at least two pigeons in one hole. 

Theorem 27.1 (Pigeonhole Principle) 
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Statement: If 𝑛 + 1 or more pigeons are placed in 𝑛 holes, then one hole must contain two or 

more pigeons. 

Proof: We prove the pigeonhole principle using a proof by contraposition. Suppose that none of 

the 𝑘 boxes contains more than one object. Then the total number of objects would be at most 𝑘. 

This is a contradiction, because there are at least 𝑘 + 1 objects. 

Corollary 27.1.1. A function 𝑓 from a set with 𝑘 + 1 or more elements to a set with 𝑘 

elements is not one-to-one. 

Proof: Suppose that for each element y in the codomain of 𝑓 we have a box that contains all 

elements x of the domain of f such that 𝑓(𝑥) = 𝑦. Because the domain contains 𝑘 + 1 or more 

elements and the codomain contains only 𝑘 elements, the pigeonhole principle tells us that one of 

these boxes contains two or more elements 𝑥 of the domain. This means that 𝑓 cannot be one-to-

one. 

Theorem 27.2 (Extension of Pigeonhole Principle) 

Statement: If 𝑘 objects are placed in 𝑛 boxes (𝑛 < 𝑘), then at least one box must contain at least 

⌈
𝑛

𝑘
⌉ objects, where ⌈. ⌉ denotes the ceiling function. 

There are many examples which use pigeonhole principle. Few of the examples are given below: 

Example 27.1 (Golf) 

Let us suppose that there are 8 balls and 7 holes. If balls are to be put in different holes, then at 

least one hole must has more than one ball. 

Example 27.2 (Handshake) 

If a number of people does handshake with one another, then according to pigeonhole principle, 

there must exist two people who shake hands with same people. 

Example 27.3 (Birthday) 

Let us consider that n people are chosen at random from a group of people. Then, in order to find 

the probability of having same birthday, pigeonhole principle is applied. It says that at least two 

people will have same birthday. 

Example 27.4 (Marble picking) 

Consider that we have a mixture of different color marbles in a jar. In order to find at least how 

many marbles will be picked before two same color marbles are guaranteed. It can be calculated 

using pigeonhole principle assuming one pigeonhole per color will be assumed. 

Worked out Problems: 

Problem 27.5.  How many students must be in a class to guarantee that at least two students 

receive the same score on the final exam, if the exam is graded on a scale from 0 to 100 points? 

Solution: There are 101 possible scores on the final. The pigeonhole principle shows that among 

any 102 students there must be at least 2 students with the same score. 



 

Problem 27.6. Show that for every integer n there is a multiple of n that has only 0s and 1s in its 

decimal expansion. 

Solution: Let 𝑛 be a positive integer. Consider the 𝑛 +  1 integers 1, 11, 111, . . . , 11 . . . 1 (where 

the last integer in this list is the integer with 𝑛 +  1 1s in its decimal expansion). Note that there 

are 𝑛 possible remainders when an integer is divided by 𝑛. Because there are 𝑛 + 1 integers in 

this list, by the pigeonhole principle there must be two with the same remainder when divided by 

𝑛. The larger of these integers less the smaller one is a multiple of 𝑛, which has a decimal 

expansion consisting entirely of 0s and 1s. 

Problem 27.7.  A bag contains 10 red marbles, 10 white marbles, and 10 blue marbles. What is 

the minimum no. of marbles you have to choose randomly from the bag to ensure that we get 4 

marbles of same color? 

Solution: Apply pigeonhole principle. 

No. of colors (pigeonholes) 𝑛 = 3 

No. of marbles (pigeons) 𝐾 + 1 = 4 

Therefore the minimum no. of marbles required = 𝐾𝑛 + 1 

By simplifying we get Kn+1 = 10. 

Verification: ceil[Average] is [Kn+1/n] = 4 

[Kn+1/3] = 4 

Kn+1 = 10 

i.e., 3 red + 3 white + 3 blue + 1(red or white or blue) = 10 

Problem 27.8. If a Martian has an infinite number of red, blue, yellow, and black socks in a 

drawer, how many socks must the Martian pull out of the drawer to guarantee he has a pair? 

Solution: The Martian must pull 5 socks out of the drawer to guarantee he has a pair. In this case 

the pigeons are the socks he pulls out and the holes are the colors. Thus, if he pulls out 5 socks, 

the Pigeonhole Principle states that some two of them have the same color. Also, note that it is 

possible to pull out 4 socks without obtaining a pair. 

Problem 27.9. Suppose S is a set of (n + 1) integers. Prove that there exist distinct a, b ∈ S such 

that a − b is a multiple of n. 

Solution: Consider the residues of the elements of 𝑆, modulo 𝑛. By the Pigeonhole Principle, 

there exist distinct 𝑎, 𝑏 ∈ 𝑆 such that 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛), as desired. 

Problem 27.10. Show that in any group of n people, there are two who have an identical 

number of friends within the group.  

Solution: The maximum number of friends that one person in the group can have is 𝑛 − 1, and 

the minimum is 0. If all of the members have at least one friend, then each individual can have 

somewhere between 1 to 𝑛 − 1 friends; as there are 𝑛 individuals, by pigeonhole there must be at 

least two with the same number of friends. If one individual has no friends, then the remaining 

friends must have from 1 to 𝑛 − 2 friends for the remaining friends not to also have no friends. 

By pigeonhole again, this leaves at least 1 other person with 0 friends. 



 

Problem 27.11. Six distinct positive integers are randomly chosen between 1 and 2006, 

inclusive. What is the probability that some pair of these integers has a difference that is a 

multiple of 5? 

Solution:  

Let, 𝑎 and 𝑏 are any two integer such that |𝑎 − 𝑏| is multiple of 5, i.e., |𝑎 − 𝑏| = 5𝑘, for some 

integer 𝑘, 0 ≤ 𝑘. For the difference to be a multiple of 5, the two integers must have the same 

remainder when divided by 5. Since there are 5 possible remainders, viz., 0,1,2,3,4, by the 

pigeonhole principle, at least two of the integers must share the same remainder. Thus, the 

answer is 1 (E). 

Exercise: 

E.27.1. In a higher secondary examination 80% of the examinees have passed in English and 

85% in Mathematics, while 75% passed in both English and Mathematics. If 45 

candidates failed in both the subjects, find the total number of candidates. 

E.27.2. A local grocery store in the outback newly opened. They were offering 1 free bottle 

Marmite to every 11𝑡ℎ customer, and 1 free pound of kangaroo meat for 

every 13𝑡ℎ customer. If there were 1000 customers that visited them on opening day, 

how many customers walked away with free goodies? 

E.27.3. How many positive integers less than or equal to 60 are divisible by 3, 4 or 5? 

E.27.4. There were 5 family members, who each brought their own gift, and then the 5 gifts were 

exchanged within the family. How many ways could they exchange such that none of 

them got their own present? 

E.27.5. At the Winter Sochi Olympics Press Conference, there are 200 foreign journalists. Out of 

them, 175 people can speak German, 150 people can speak French, 180 people can speak 

English, 160 people can speak Japanese. What is the minimum number of foreigners that 

can speak all the four languages? 

E.27.6. Seven line segments, with lengths no greater than 10 inches, and no shorter than 1 inch, 

are given. Show that one can choose three of them to represent the sides of a triangle. 

(Manhattan Mathematical Olympiad 2004) 

E.27.7. Prove that having 100 whole numbers, one can choose 15 of them so that the difference 

of any two is divisible by 7. 

(Manhattan Mathematical Olympiad 2005) 

E.27.8. Prove that from any set of one hundred whole numbers, one can choose either one 

number which is divisible by 100, or several numbers whose sum is divisible by 100. 

(Manhattan Mathematical Olympiad 2003) 

E.27.9. Prove that among any ten points located on a circle with diameter 5, there exist at least 

two at a distance less than 2 from each other. 

(Japan 1997) 

E.27.10. Every point in a plane is either red, green, or blue. Prove that there exists a 

rectangle in the plane such that all of its vertices are the same color. 

(USAMTS Year 18 - Round 1 - Problem 4) 

E.27.11. There are 51 senators in a senate. The senate needs to be divided into 

 committees such that each senator is on exactly one committee. Each senator hates 



 

exactly three other senators. (If senator A hates senator B, then senator B does 'not' 

necessarily hate senator A.) Find the smallest  such that it is always possible to arrange 

the committees so that no senator hates another senator on his or her committee. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 28: RECURRENCE  RELATION. 

28.1.  INTRODUCTION 

An equation involving several terms of a sequence is called a recurrence relation. We shall think 

of the integer n as the independent variable, and restrict our attention to real sequence, so that the 

sequence 𝑎𝑛 is considered as a function of the type 

                                  𝑓: ℕ ∪ {0} ⟶ ℝ: 𝑛 → 𝑎𝑛 
A Recurrence relation is then an equation of the type 

                                  𝐹(𝑛, 𝑎𝑛 , 𝑎𝑛+1, … , 𝑎𝑛+𝑘) = 0 ,     where 𝑘 ∈ ℕ is fixed. 

Recurrence relation is useful in counting problems. It defines a sequence by giving the nth value 

in terms of (n-1) th or (n-2) th value or in terms of other predecessors. 

 

EXAMPLES 

(i) 𝑎𝑛+1 = 5𝑎𝑛 is a Recurrence relation of order 1. 

(ii) 𝑎𝑛+1
4 + 𝑎𝑛

5 = 𝑛 is a Recurrence relation of order 1. 

(iii) 𝑎𝑛+3 + 5𝑎𝑛+2 + 4𝑎𝑛+1 + 𝑎𝑛 = cos 𝑛 is a Recurrence relation of order 3. 

(iv) 𝑎𝑛+2 + 5(𝑎𝑛+1
2 + 𝑎𝑛)

1

3 = 0 is a Recurrence relation of order 2. 

 

28.2. ORDER OF A RECURRENCE RELATION 

The order of a recurrence relation is the difference between the greatest and lowest subscripts of 

the terms of the sequence in the equation. 

 

28.3. LINEAR AND NON-LINEAR RECURRENCE RELATION 

A recurrence relation of order k is said to be linear if it is linear in 𝑎𝑛 , 𝑎𝑛+1, … , 𝑎𝑛+𝑘 . Otherwise, 

the recurrence relation is said to be non-linear. 

 

The recurrence relations in Examples (i) and (iii) are linear, while those in Examples (ii) and (iv) 

are non-linear. 

 

28.4. FORMULATION OF DIFFERENT COUNTING PROBLEMS IN TERMS OF 

RECURRENCE RELATION 

 

       It is typical to want to derive a Recurrence relation with initial conditions for the number of 

objects satisfying certain conditions. The main technique involves giving counting argument that 

gives the number of objects of “size” n in terms of the number of objects of smaller size. This 

typically involves an analysis of several cases.  

 

Suggestion: When attempting to derive a Recurrence relation with initial conditions, start by 

working out the first few cases directly. You’ll need these for the initial conditions anyway, and 

doing this might help you see how to proceed. If you do enough cases, then you can use them 

later to check your recurrence. 

 



 

Example 28.1 Fibonacci numbers: Assume you start with one pair of new-born rabbits (one of 

each gender), and in each subsequent month each pair of rabbits which are more than 1 month 

old gives birth to a new pair of rabbits, one of each gender. Determine a Recurrence relation with 

initial conditions for 𝑓𝑛, the number of pairs of rabbits present at the end of n months. 

 

Solution: 

The statement tells us that 𝑓0 = 1. Also, 𝑓1 = 1 because the original pair of rabbits is not yet old 

enough to breed. At the end of two months, we have our pair from before, plus one new pair. At 

the end of 3 months, we have the 𝑓2 pairs from before, and 𝑓1 of them are old enough to breed, so 

we have 𝑓3 = 𝑓2 + 𝑓1 = 3 pairs. Consider what happens at the end of n months. We still have the 

𝑓𝑛−1 pairs from the month before. The number of pairs old enough to breed is the number alive 

two months ago, or 𝑓𝑛−2, so we get 𝑓𝑛−2 new pairs. Thus, 𝑓𝑛 = 𝑓𝑛−1+ 𝑓𝑛−2, n ≥ 2, and 𝑓0= 𝑓1 = 1. 

Using the Recurrence relation with initial conditions yields the sequence 1, 1, 2, 3, 5, 8, ... which 

agrees with our initial counting. 

 

Example 28.2 There are guests in a gathering. Each person shakes hand with everyone else 

exactly once. Formulate the Recurrence relation representing the number of handshake occurred 

in the gathering. 

 

Solution: 

Let there be n number of guests present in the gathering.  𝐻𝑛 = number of handshakes occurred 

in this gathering. Obviously  𝐻1 = 0. 

Now,  𝐻𝑛 = number of handshakes occurred among the gathering of (𝑛 − 1) guests + number of 

handshakes made by the nth guests with the  (𝑛 − 1) number of guests 

                =  𝐻𝑛−1 + (𝑛 − 1) 

Thus the required Recurrence relation is  

 𝐻𝑛 =  𝐻𝑛−1 + (𝑛 − 1) 

 

 

Exercise 28.1: Vinod deposits Rs. 15,000 in a savings account at a bank .The bank gives 8.5% 

interest per annum. Formulate the recurrence relation to compute the amount Vinod will have in 

his account at the end of nth year. 

  

 

 

 

 

 

 

 

 



 

 

28.5.  LINEAR  RECURRENCE  RELATION WITH  CONSTANT  COEFFICIENTS 

Recall that a linear recurrence relation with constant coefficients 𝑐1, 𝑐2 ,···, 𝑐𝑘 (𝑐𝑘 ≠ 0) of degree 

k has the form 

𝑎𝑛= 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 +···+  𝑐𝑘𝑎𝑛−𝑘  + F(n) (n ≥ k). 

It follows from the general recursion theorem that for every string of initial values 

𝑎0, 𝑎1,···, 𝑎𝑛−𝑘 there is exactly one sequence {𝑎𝑛} that satisfies the above recurrence relation 

and matches the given initial conditions. Consequently, if no initial conditions are imposed, there 

will always be an infinite set of solutions. 

If  F(n)=0 then it is called linear homogeneous recurrence relation with constant coefficients. 

 

EXAMPLES 

(i) 𝑎𝑛 = 2𝑎𝑛−1 is a 1st order linear homogeneous recurrence relation with constant 

coefficients.  

(ii) Hn = 2Hn−1 + 1 is a 1st order linear non homogeneous recurrence relation with constant 

coefficients. 

(iii) 𝑎𝑛 = 2𝑎𝑛−1𝑎𝑛−2 + 𝑛2 is a 2nd order non linear non homogeneous recurrence relation 

with constant coefficients. 

 

28.5.1. SOLUTION OF RECURRENCE RELATION 

A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation. 

The relation  𝑎𝑛 = 𝑎𝑛−1 + 2 expresses 𝑎𝑛 in terms of its preceding terms 𝑎𝑛−1.So it is a 

recurrence relation for the sequence {𝑎𝑛}.Here we see that the sequence {2𝑛 − 1} satisfies the 

recurrence relation. So it is a solution of the recurrence relation. 

 

28.6. ITERATIVE METHOD 

Let {𝑎𝑛} be the sequence defined by: 𝑎𝑘 = 𝑎𝑘−1+ 2 with 𝑎0 = 1.  

• Plugging values of k into the relation, we get: 

 𝑎1 = 𝑎0 + 2 = 1 + 2  

 𝑎2= 𝑎1 + 2 = 1 + 2 + 2 = 1 + 2(2)  

 𝑎3 = 𝑎2 + 2 = 1 + 2 + 2 + 2 = 1 + 3(2)  

 𝑎4 = 𝑎3 + 2 = 1 + 2 + 2 + 2 + 2 = 1 + 4(2)  

• Continuing in this fashion reinforces the apparent pattern that 𝑎𝑛 = 1 + n(2) = 1 + 2n. 

• This brute force technique is the Method of Iteration. 

 

Example 28.3. Using Iterative  method solve the recurrence relation 

                                     𝑢𝑛 = 𝑢𝑛−1 + 𝑛 for 𝑛 ≥ 1; 𝑢0 = 1  ………………(1) 

 

Solution: Replacing n by 𝑛 − 1, 𝑛 − 2, 𝑛 − 3, … ,2,1 in 𝑢𝑛 = 𝑢𝑛−1 + 𝑛  we get 

𝑢𝑛−1 = 𝑢𝑛−2 + 𝑛 − 1 

𝑢𝑛−2 = 𝑢𝑛−3 + 𝑛 − 2 
                                                               ………………. 

                                                               .……………… 



 

𝑢2 = 𝑢1 + 2 

𝑢1 = 𝑢0 + 1 
 Then from above we get  

𝑢𝑛 = (𝑢𝑛−2 + 𝑛 − 1) + 𝑛 

                         = 𝑢𝑛−3 + (𝑛 − 2) + (𝑛 − 1) + 𝑛 

                                             = 𝑢𝑛−4 + (𝑛 − 3) + (𝑛 − 2) + (𝑛 − 1) + 𝑛 
                                                                      ………………. 

                                                                      .……………… 

                                             = 𝑢2 + 3 + 4 + ⋯ + (𝑛 − 2) + (𝑛 − 1) + 𝑛 

                                                             = 𝑢0 + 1 + 2 + 3 + 4 + ⋯ + (𝑛 − 2) + (𝑛 − 1) + 𝑛 

                                                   = 1 + 2 + 3 + 4 + ⋯ + (𝑛 − 2) + (𝑛 − 1) + 𝑛 

                                                           = 1 +
𝑛(𝑛+1)

2
 

Therefore the required solution is 𝑢𝑛 = 1 +
𝑛(𝑛+1)

2
,  𝑛 ≥ 1 

Exercise 28.2: Using Iterative  method solve the recurrence relation 

                                                  𝑆𝑘 = 𝑎𝑆𝑘−1  with 𝑆0 = 𝑏 

Exercise 28.3: Using Iterative  method solve the recurrence relation 

                                                 𝑡𝑛 = 2𝑡𝑛−1 + 5𝑛 , 𝑛 ≥ 1 and 𝑡0 = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 29: SOLUTION  OF  LINEAR  RECURRENCE  RELATION 

WITH  CONSTANT  COEFFICIENTS  BY  CHARACTERISTIC ROOT 

METHOD. 

29.1. METHOD OF CHARACTERISTIC ROOT   

     In this method the general solution of the recurrence relation ∑ 𝑐𝑖𝑎𝑛−𝑖
𝑘
𝑖=0 = 𝑓(𝑛) … … . (1) 

consists of two parts (i.e two numeric function).The first one is called homogeneous solution 

which satisfies the homogeneous recurrence relation ∑ 𝑐𝑖𝑎𝑛−𝑖
𝑘
𝑖=0 = 0....................(2) 

and the other is called particular solution which satisfies (1)  

 

29.2. HOMOGENEOUS SOLUTION 

Here the recurrence relation is ∑ 𝑐𝑖𝑎𝑛−𝑖
𝑘
𝑖=0 = 0......................................................(3) 

We seek for a solution of the form 𝑎𝑛 = 𝑟𝑛  where r is a real number. 

Putting in (3) we get  

𝑐0𝑟𝑛 + 𝑐1𝑟𝑛−1 + 𝑐2𝑟𝑛−2 + ⋯ + 𝑐𝑘𝑟𝑛−𝑘 = 0  

Dividing by 𝑟𝑛−𝑘  we get 

𝑐0𝑟𝑘 + 𝑐1𝑟𝑘−1 + 𝑐2𝑟𝑘−2 + ⋯ + 𝑐𝑘 = 0  
This is called the characteristic equation of the recurrence relation (3) 

Case 1: 

If the characteristic equation has 𝑘 distinct roots  𝑟1, 𝑟2, … . . , 𝑟𝑘 

then a sequence  {𝑎𝑛} is a solution of the recurrence relation iff 

𝑎𝑛 = 𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛 + ⋯ + 𝛼𝑘𝑟𝑘
𝑛   for integers 𝑛 ≥ 0 

Where  𝛼1, 𝛼2 … . . , 𝛼𝑘  are constants. 

Case 2: 

If the characteristic equation has t distinct roots 𝑟1, 𝑟2, … . . , 𝑟𝑡 with multiplicities 

𝑚1, 𝑚2, 𝑚3, … . , 𝑚𝑡 respectively so that all 𝑚𝑖
′𝑠 are positive and ∑ 𝑚𝑖 = 𝑘𝑡

𝑖=1  

then a sequence  {𝑎𝑛} is a solution of the recurrence relation iff 

𝑎𝑛 = (𝛼1,0 + 𝛼1,1𝑛 + 𝛼1,2𝑛2 + ⋯ + 𝛼1,𝑚1−1𝑛𝑚1−1)𝑟1
𝑛 + (𝛼2,0 + 𝛼2,1𝑛 + 𝛼2,2𝑛2 + ⋯ +

𝛼2,𝑚2−1𝑛𝑚2−1)𝑟2
𝑛 + ⋯ + (𝛼𝑡,0 + 𝛼𝑡,1𝑛 + 𝛼𝑡,2𝑛2 + ⋯ + 𝛼𝑡,𝑚𝑡−1𝑛𝑚𝑡−1)𝑟𝑡

𝑛  

                                                                                                                        for integers 𝑛 ≥ 0  

where 𝛼𝑖,𝑗 are constants for 1 ≤ 𝑖 ≤ 𝑡 ; 0 ≤ 𝑗 ≤ 𝑚𝑖 − 1 

29.3. PARTICULAR SOLUTION 

    Let us consider the recurrence relation (1) 

For particular solution there is no general method for every function f(n).However for certain 

types of functions , the solution can be obtained by the method of inspection which is sometimes 

called trial sequence method. 

 

The following table shows a list of trial functions T(n) against specified f(n).The coefficients 

𝐴0. 𝐴1, 𝐴2, … are unknown constants to be determined. 

 f(n) T(n) 

1 
𝑏𝑛 where b is not a root of the 

characteristic equation 

A𝑏𝑛 



 

2 
𝑏𝑛 where b is  a root of the 

characteristic equation with 

multiplicity m 

A𝑛𝑚𝑏𝑛 

3 
Polynomial P(n) of degree s 𝐴0 + 𝐴1𝑛 + 𝐴2𝑛2 + ⋯ + 𝐴𝑠𝑛𝑠  

4 
𝑐𝑛 P(n) where Polynomial P(n) 

of degree s and c is not a root 

of the characteristic equation 

𝑐𝑛(𝐴0 + 𝐴1𝑛 + 𝐴2𝑛2 + ⋯ + 𝐴𝑠𝑛𝑠 )  

5 
𝑐𝑛 P(n) where Polynomial P(n) 

of degree s and c is a root of 

the characteristic equation with 

multiplicity m 

𝑛𝑚𝑐𝑛(𝐴0 + 𝐴1𝑛 + 𝐴2𝑛2 + ⋯ + 𝐴𝑠𝑛𝑠 )  

 

Example 29.1 Solve the recurrence relation by characteristic root method 

𝑎𝑛 − 6𝑎𝑛−1 + 8𝑎𝑛−2 = 3𝑛 
 

Solution: The characteristic equation of the given recurrence relation is  

                 𝑥2 − 6𝑥 + 8 = 0 which gives 𝑥 = 2 , 4 

Therefore the homogeneous solution(H.S) = A. 2𝑛 + 𝐵. 4𝑛 

Since right hand side of the given recurrence relation is 3𝑛 and 3 is not a root of the 

characteristic equation so particular solution(P.S) is of the form 𝛽. 3𝑛 

Putting 𝑎𝑛 = 𝛽. 3𝑛 in the given recurrence relation we get  

𝛽. 3𝑛 − 6𝛽. 3𝑛−1 + 𝛽. 3𝑛−2 = 3𝑛  

𝑜𝑟 (𝛽 − 2𝛽 +
8𝛽

9
) 3𝑛 = 3𝑛  

𝑜𝑟 −
𝛽

9
3𝑛 = 3𝑛  

Since this is an identity so coefficient of 3𝑛 on both sides are equal. 

i.e  −
𝛽

9
= 1  𝑜𝑟 𝛽 = −9 

therefore P.S = −9. 3𝑛 

therefore the general solution is 𝑎𝑛 = A. 2𝑛 + 𝐵. 4𝑛 − 9. 3𝑛 

 

Exercise 29.1: Solve the recurrence relation by characteristic root method 

                                      𝑎𝑛 = 2 𝑎𝑛−1 +  3 𝑎𝑛−2 ; 𝑎0 = 1 , 𝑎1 = 2 

 

 

Exercise 29.2: Solve the recurrence relation by characteristic root method 

𝑎𝑛 = 4𝑎𝑛−1 − 3𝑎𝑛−2 + 2𝑛 + 𝑛 + 3 ; 𝑎0 = 1, 𝑎1 = 4 
 

 

 

 

 

 

 



 

LECTURE 30: SOLUTION  OF  LINEAR  RECURRENCE  RELATION 

WITH  CONSTANT  COEFFICIENTS  BY  GENERATING FUNCTION 

METHOD. 

30.1. GENERATING FUNCTION   

      For a sequence {𝑎𝑛} we define an infinite series  

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 + ⋯ + ∞ =  ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0   

Which is called the generating function of the sequence {𝑎𝑛} and is denoted by g(x). 

 

For example, the generating function of the sequence {2𝑛} is  

g(x)= 20 + 21𝑥 + 22𝑥2 + ⋯ + 2𝑛𝑥𝑛 + ⋯ + ∞ = ∑ 2𝑛𝑥𝑛∞
𝑛=0  

which can be written in closed form g(x) = (1 − 2𝑥)−1 =  
1

(1−2𝑥)
 

30.2. CLOSED FORM OF SOME GENERATING FUNCTION 

 

I. (𝑎 + 𝑥)𝑛 =  ∑ 𝐶𝑛
𝑟𝑎𝑛−𝑟𝑥𝑟𝑛

𝑟=0  where n is a positive integer 

II. (𝑎 − 𝑥)𝑛 =  ∑ (−1)𝑟 𝐶𝑛
𝑟𝑎𝑛−𝑟𝑥𝑟𝑛

𝑟=0  where n is a positive integer 

III. (1 − 𝑥)−1 = ∑ 𝑥𝑟∞
𝑟=0  ; −1 < 𝑥 < 1 

IV. (1 + 𝑥)−1 =  ∑ (−1)𝑟𝑥𝑟∞
𝑟=0  ; −1 < 𝑥 < 1 

V. 𝑒𝑥 =  ∑
𝑥𝑟

𝑟!

∞
𝑟=0  

VI. 𝑙𝑜𝑔(1 + 𝑥) =  ∑ (−1)𝑟+1∞
𝑟=1

𝑥𝑟

𝑟
, −1 < 𝑥 ≤ 1 

 

30.3. THEOREM 

 

          If 𝑔1(𝑥)𝑎𝑛𝑑 𝑔2(𝑥) are generating functions of {𝑎𝑛} and {𝑏𝑛} respectively then 

 𝛼𝑔1(𝑥) + 𝛽𝑔2(𝑥) is generating function of the sequence {𝛼𝑎𝑛 + 𝛽𝑏𝑛} where 𝛼, 𝛽 are real 

numbers independent of n. 

Exercise 30.1: Find the generating function for the following sequence. 

I. {1,1,1,1, … … } 

II. {1, −2,3,4, … … } 

III. {2. 3𝑟} ,𝑟 ≥ 0 

 

30.4. SOLUTION OF RECURRENCE RELATION 

 

We solve the recurrence relation by using generating function method and we illustrate this 

by the following examples. 

 

Example 30.1: Using generating function solve the recurrence relation, 

                            𝑎𝑛 − 7𝑎𝑛−1 + 10𝑎𝑛−2 = 0 for all n> 1 and 𝑎0 = 3, 𝑎1 = 3 

 

Solution: Let g(x) be the generating function of {𝑎𝑛} 



 

                i.e, g(x) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0   

multiplying the recurrence relation by 𝑥𝑛 and summing from 𝑛 = 2 𝑡𝑜 ∞, we get 

       ∑ 𝑎𝑛𝑥𝑛∞
𝑛=2 − 7 ∑ 𝑎𝑛−1𝑥𝑛 + 10 ∑ 𝑎𝑛−2𝑥𝑛 = 0∞

𝑛=2
∞
𝑛=2   

𝑜𝑟 (∑ 𝑎𝑛𝑥𝑛 − 𝑎0 − 𝑎1𝑥∞
𝑛=0 ) − 7𝑥 ∑ 𝑎𝑛−1𝑥𝑛−1 + 10𝑥2 ∑ 𝑎𝑛−2𝑥𝑛−2 = 0∞

𝑛=2
∞
𝑛=2   

𝑜𝑟 (𝑔(𝑥) − 3 − 3𝑥) − 7𝑥(∑ 𝑎𝑛−1𝑥𝑛−1 − 𝑎0
∞
𝑛=1 ) + 10𝑥2 ∑ 𝑎𝑛𝑥𝑛 = 0∞

𝑛=0   

𝑜𝑟 (𝑔(𝑥) − 3 − 3𝑥) − 7𝑥(𝑔(𝑥) − 3) + 10𝑥2𝑔(𝑥) = 0  

𝑜𝑟 𝑔(𝑥) =  
3−18𝑥

(5𝑥−1)(2𝑥−1)
  

𝑜𝑟 𝑔(𝑥) =  
4

1−2𝑥
−

1

1−5𝑥
  

𝑜𝑟 𝑔(𝑥) = 4(1 − 2𝑥)−1 − (1 − 5𝑥)−1  

𝑜𝑟 𝑔(𝑥) = 4 ∑ 2𝑛𝑥𝑛 −∞
𝑛=0 ∑ 5𝑛𝑥𝑛 = ∑ (2𝑛+2 − 5𝑛)𝑥𝑛∞

𝑛=0
∞
𝑛=0   

 

Hence 𝑎𝑛 = 2𝑛+2 − 5𝑛 for all n≥ 0 

 

Exercise 30.1: Using generating function solve the recurrence relation, 

𝑎𝑛 − 8𝑎𝑛−1 = 10𝑛−1 , 𝑎0 = 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

MODULE V: ALGEBRAIC STRUCTURE 

(NUMBER OF LECTURES: 6L) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 31: Introduction    

          

31.1 What is this course about? 

 

Take a look at the following questions. 

 

 Give a number n which leaves a remainder of 20 when divided by 23 and 62 when 

divided by 83. 

 How many different necklaces can you form with 2 black beads and 8 white beads? How 

many necklaces can you form with blue, green and black beads? 

 What are the last two digits of 𝑎40when 𝑎 is not divisible by 2 or 5? 

 When does the equations of the form 𝑥 −  𝑦 =  𝑧 make sense? If 𝑥 is a natural number or 

an integer or a matrix or an apple or a permutation? 

 

When we look at these questions, they seem unrelated and seem to have no common thread.. 

Mathematicians realized long time back that problems in algebra, number theory and even 

geometry can be solved using very similar techniques. They were interested in finding out the 

common element among these proofs and were interested in searching for more domains where 

such techniques are applicable. It turns out that there is a single mathematical theory which can 

help us understand these questions in a single framework and give us answers to these seemingly 

non-related topics. 

The mathematical framework which ties these questions together is called abstract algebra. 
Not surprisingly, given the name, the course is going to be about abstract algebra. 

Exercise What does abstract mean? 

Note. The exercises given in the course notes are practice problems with the exception of this 
particular introduction. The exercises given in this particular document are to motivate the study 
of abstract algebra. You should try to think about them but remember that there are no clear 
answers. 

We will precisely study the mathematical structures which can represent numbers, matrices, 
permutations, geometric objects under different parameters. The first step would be to define 
these mathematical (algebraic) structures like groups, rings and fields. The next step is to find 
properties of these algebraic structures. Finally we will also see how these properties give so 
many beautiful results in different areas of mathematics. 

Let’s start with a more basic question, 

Exercise What does algebra mean? 

31.2 Arithmetic and algebra 



 

Most of the people when asked the above question, think about numbers, equations and 

operations between them. So let’s make the previous question more precise. What is the 

difference between arithmetic and algebra? Arithmetic is the study of numbers and the 

operations (like addition, subtraction, multiplication) between them. Algebra, intuitively, talks 

about equations, variables, symbols and relations between them. 

The primary difference is the use of variables, which can stand for an unknown or a group of 
numbers. These variables are somewhat abstract but really help us in manipulating equations and 
solving them. It would be too cumbersome to write things in words instead of using equations 
and variables. 

Exercise Give an example where using a variable helps you to write a statement concisely. 

Now we know what algebra is, let’s talk about abstract part of it. 

31.3 Abstraction 

All of us like numbers (or at least understand the importance of it). One of the reasons is that 
numbers are very well-behaved. In other words, there are so many nice properties that it is easy 
to manipulate and work with numbers. Let’s look at one of the most fundamental properties, 

Theorem Fundamental theorem of arithmetic: Every integer greater than 1 can be uniquely 
expressed as the product of primes up to different orderings. 

Since this property is so useful, we should ask, are there other objects which satisfy similar 

theorems. 

Exercise Do we have unique factorization theorem for matrices or permutations. 

There is a very important methodology to generalize given proofs. You look at the proof and 

figure out the crucial step and properties which make the proof work. So one way to approach 

this question would be, carefully look at the proof of the theorem and figure out the properties of 

integers we have used at different step. Then check if another mathematical object satisfies the 

same properties. 

In other words, any mathematical object which satisfies these properties will also have a 

unique factorization theorem. The abstract object which has all these properties can be given an 

appropriate name. This is similar to variables. As variables can take different values, this abstract 

object can be assigned different mathematical objects. 

We will turn this method upside down. We will consider some basic properties and give a 
name to the abstract structure which satisfies these “basic properties”. 

Exercise Who decides these basic properties? 

Using these “basic properties” we will come up with multiple theorems like the unique 

factorization theorem above. By the above discussion any mathematical object (from arithmetic, 

algebra, geometry or anywhere else) which has these “basic properties” will satisfy all the 

theorems too. Hence in one shot we will get theorems in diverse areas. 



 

You are already familiar with one such abstract structure, set. A collection of objects is called 
set and it needs no other property to be satisfied. 

Exercise What kind of theorems can you prove for sets? 

In the course we will look at the collection of objects (sets) with certain composition 
properties. These will give rise to groups, rings etc.. The first such abstraction we will study is 
group. 

Exercise Should we choose as many basic properties as possible or as less basic properties as 

possible? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 32: Groups 

 

These notes are about the first abstract mathematical structure we are going to study, groups. 

You are already familiar with set, which is just a collection of objects. Most of the sets we 

encounter in mathematics are useful because of the operations we can perform on them. We can 

do addition, multiplication, AND, OR, take power etc.. 

Sets, by definition, need not have such operations. For example, S = {Apple; Oranges; M201; 

Monitor} is a set. But, if we look at more interesting sets like integers, matrices, permutations 

etc., we generally have operations which can be done on them. For example, you can add 

matrices, multiply permutations, add and multiply integers and so on. 

Our next task is to define an abstract object (say a special set) with operation to compose 
elements inside the object. But first let’s ask a basic question. What are the nice properties of 
addition of two natural numbers? What about integers? 

To begin with, it is great that we can add two numbers, that is, the addition of any two 
numbers is a number. Another property not present in natural numbers is that we can always 

solve 𝑎 +  𝑥 =  𝑏 (𝑎, 𝑏 are given, 𝑥 is unknown). Notice that we have to assume the existence of 

Zero. 

32.1 Groups 

A group G is a set with binary operation  ∗, s.t., 

•  Closure: For any two elements 𝑎, 𝑏 ∈ 𝐺; their composition under the binary operation 𝑎 ∗
 𝑏 ∈ 𝐺. 
•  Associativity: For all 𝑎, 𝑏, 𝑐 ∈ 𝐺;we have 𝑎 ∗ ( 𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐. This property basically 

means that any bracketing of 𝑎1 ∗  𝑎2 ∗ … . . 𝑎𝑘 is same (exercise). 

• Identity: There is an element identity (𝑒) in G, s.t., 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 for all 𝑎 ∈ 𝐺. 
• Inverse: For all 𝑎 ∈ 𝐺, there exist 𝑎−1  ∈ 𝐺, s.t., 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒. 

 
Note Some texts define binary operation as something which has closure property. In that case, 
the first property is redundant. For the sake of brevity, it is sometimes easier to write 𝑥𝑦 instead 
of 𝑥 ∗ 𝑦. 

Sometime we denote a group by its set and the operation, e.g., (𝑍; +) is the group of integers 
under addition. 

Exercise Show that integers form a group under addition (In other words, Integers have a group 
structure with respect to addition). Do they form a group under multiplication? 

You can think of groups as being inspired by integers. In other words, we wanted to abstract 

out some of the fundamental properties of integers. We will later see that all groups share some 

properties with integers, but more interestingly, there are a lot of other groups which do not look 

like integers. That means there are some properties of integers which are not captured by the 

definition of groups. So what properties of integers do you think is not captured by groups? 



 

To start with, we haven't specified commutativity as one of the basic properties. The 

properties are chosen so that we have many examples of groups and simultaneously we can 

prove a lot of theorems (properties) of this group structure. Later we will see that some important 

groups do not have commutativity property. 

Definition A group is called commutative or abelian if, ∀𝑎, 𝑏 ∈ 𝐺; 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎. 

 

 

32.2 Examples of groups 

Exercise Can you think of any other group except integers under addition? Is it commutative? 

The whole exercise of abstraction will be a waste if integers (addition) is the only set which 
follow group property. Indeed, there are many examples of groups around you, or at least in the 
mathematics books around you  

 Integers, Rationals, Reals, Complex numbers under addition. Clearly for all these 0 is the 
identity element. The inverse of an element is the negative of that element. 

  Rationals, Reals, Complex numbers (without zero) under multiplication. Identity for these 
groups is the element 1. Why did we exclude integers? 

 Positive rationals, positive reals under multiplication. 
 The group 𝑍𝑛, set of all remainders modulo 𝑛 under addition modulo 𝑛. Will it be a group 

under multiplication? How can you make it a group under multiplication? 

Till now all the examples taken are from numbers. They are all subsets of complex numbers. 
Let’s look at a few diverse ones. 

 The symmetries of a regular polygon under composition. In other words, the operations 

which keep the polygon fixed. The symmetries are either obtained through rotation or 
reflection or combination of both. This group is called Dihedral group. 

 The set of all permutations of {1, 2, ... , n} under composition. What is the inverse 
element? 

 The set of all 𝑛 × 𝑛 matrices under addition. The identity in this case is the all 0 matrix, 
 

(
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

) 

 
 The set of all 𝑛 × 𝑛 invertible matrices of real numbers. What is the identity element? 

We have seen so many examples of groups. Are they all similar (we will define the word 
similar later). Can we represent a group in a succinct way. One of the trivial representation is the 
multiplication table of the group. It is a matrix with rows and columns both indexed by group 
elements. The (𝑖;  𝑗)𝑡ℎ  entry denotes the sum of 𝑖𝑡ℎ and 𝑗𝑡ℎ  group element. For example, let’s 
look at the multiplication table of 𝑍5

+under multiplication. Here 𝑍5
+ denotes all the remainders 

modulo 5 Co-prime to 5 (gcd with 5 is 1). 



 

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

 

 

Exercise Notice that every element occurs exactly once in every row and every column. Do you 
think this property is true for any group or just 𝑍5

+ ? 

Multiplication table gives us all the information about the group but is a pretty long 

description. Specifically it is quadratic in the size of the group. It turns out that groups have lot of 

properties which can help us in giving a more succinct representation. We already showed one 

property, that the identity is unique. What other theorems can be shown for groups? 

32.3 Properties of groups 

To start with, we need to define few quantities. Suppose we are given an element 𝑥 ≠ 𝑒 of 
group 𝐺. What other elements can be constructed with 𝑥. The composition with identity will not 

give anything new, so let’s compose it with itself. Since 𝐺 is a group, 𝑥2 ∶=  𝑥 ∗ 𝑥;  𝑥3 ∶=  𝑥2 ∗ 𝑥 
(notice the new notation) and so on will be elements of group 𝐺. In this way we can create new 
elements in 𝐺 except if these elements start repeating. 

Suppose 𝐺 is finite, then sooner or later there will exist 𝑖 and 𝑗, s.t., 𝑥 𝑖 =  𝑥 𝑗 . 

Exercise Show that the first element which will repeat is 𝑒. 

The least positive 𝑗 for which 𝑥 𝑗 = e is called the order of 𝑥 and is denoted by |𝑥|. Clearly 
the only element with order 1 is 𝑒 and everything else will have a bigger order. 

We will now go on to prove more properties of groups, but before that there is a warning. 
Groups are inspired by numbers and the notations are very similar. It is not surprising that 
sometimes you can get carried away and use properties of integers which are not really true for 
groups (e.g., commutativity). 

For all the proofs for the theorems given below, notice that we will use the already known 
properties like closure, associativity, inverse, existence of identity. Then using those theorems 
we can prove other results. Now check your proofs for the exercises given in this section above. 

This distinction can be made more clear by an analogy which we will use later too. Working 

with groups is like playing football. In general, for any activity you use your hands, feet or any 

other tool. But in case of football there is a restriction that you only use your feet. Using your 

feet you develop other skills which can be used to score a goal. 

Our goal would be to prove theorems. Our feet will be the defining properties of groups 

(closure, associativity, inverse, identity). And the intermediate theorems would be like dribbling 

or kicking. You should not foul (use properties of integers) to prove a theorem (score a goal). So 

let’s play football. We will use 𝐺 to denote a group. 

 The inverse of an element is unique. 



 

Proof: Suppose 𝑎 has two inverses 𝑏 and 𝑐. Then 𝑐 =  (𝑏𝑎)𝑐 =  𝑏(𝑎𝑐)  =  𝑏. What 
properties of groups did we use in this proof? 

 Cancellation laws: Given 𝑎, 𝑏, 𝑥 ∈  𝐺, we know 𝑎𝑥 =  𝑏𝑥 ⟹  𝑎 =  𝑏, and also 𝑥𝑎 =
 𝑥𝑏 ⟹ 𝑎 =  𝑏. These are called respectively the right and the left cancellation law. 

Exercise Prove the assertion. What does it say about the rows (or columns) of multiplication 

table? 

 𝑥 ∈  𝐺 and 𝑥−1 have the same order. 

Proof: We will show that order of 𝑥−1 is at most the order of 𝑥, by symmetry this will prove 
the assertion. Suppose 𝑥𝑛  =  𝑒. Multiply this equality by 𝑥−𝑛 and we get 𝑥−𝑛  =  𝑒 and 
hence the order of 𝑥−1 is less than  𝑛. 

Exercise We did not define 𝑥𝑛. What do you think it should be? 

For a finite group we have shown that its order is less than the cardinality (also called the 
order) of the group. Actually order of an element can be restricted to just the divisors of the order 
of the group. Look carefully at the following theorem and proof. 

Theorem Suppose 𝐺 is a finite group with 𝑛 elements (𝑛 is the order of the group). If 𝑑 is the 

order of an element 𝑥 ∈  𝐺 then 𝑛 is a multiple of 𝑑 (𝑑 | 𝑛). 

Proof: We will prove the theorem in two steps. First, we will show that 𝑥𝑛  = 𝑒 ∀ 𝑥 ∈  𝐺. 
Second, if there is any 𝑚, s.t., 𝑥𝑚  = 𝑒 then 𝑑 divides 𝑚. From these two steps the conclusion 
can be easily inferred. 

From the cancellation laws, it is clear that  𝑆𝑥 = {𝑥𝑔 ∶  𝑔 ∈  𝐺}  =  𝐺 is a set. All elements of 
𝑆𝑥 are distinct, in 𝐺 and hence they are just a permutation of elements of 𝐺. Taking the product 
over all elements of 𝑆𝑥 , 

𝛱𝑠∈𝑆𝑥𝑠 = 𝛱𝑔∈𝐺𝑥𝑔 = 𝑥𝑛𝛱𝑔∈𝐺𝑔 = 𝑥𝑛𝛱𝑠∈𝑆𝑥𝑠. 

Using the first and the last step, 

𝑒 = 𝑥𝑛 . 

So for every element 𝑥 ∈  𝐺, we know 𝑥𝑛  =  𝑒. 

For the second part, suppose 𝑚 =  𝑘𝑑 +  𝑟 by division. Here 𝑘 is the quotient and 𝑟 <  𝑑 is 
the remainder. Then looking at  𝑥𝑚, 

𝑒 = 𝑥𝑚 = 𝑥𝑘𝑑 + 𝑟 = 𝑥𝑟 . 

So there exists  𝑟 <  𝑛, s.t. 𝑥𝑟  =  𝑒. By the definition of order, 𝑟 =  0. Hence 𝑑 divides 𝑚.  

Actually the proof given above is not correct. 

Exercise Where is the mistake in the proof? Hint: It is in the first part. 

If you look at the proof of fact that 𝑥𝑛  = 𝑒 ,then it was proved using commutativity. So we have 
only proved that for a commutative or abelian group the theorem. 2.10 is true. It turns out that it 



 

is true for non-commutative groups too. We will prove the full generalization later with a 
different technique. 

32.4 Isomorphism and homomorphism of a group 

As discusses above we want to find out what kind of groups are there. Are they all similar. Let 

us formalize the notion of similarity now. Clearly if two sets are equal if and only if there is a 

bijection between them. But the bijection need not respect the composition. That means the 

composition properties of two groups might be completely different even if they have a bijection 

between them. 

Exercise Would you say that groups (𝑍4, +) and (𝑍8
+,×) similar (both have four elements). The 

second group is the set of all remainders modulo 8 which are Co-prime to 8. 

Hint: Look at the orders of different elements in these groups. 

Hence for group similarity, we need to take care of composition too. Two groups are 

considered same if they are isomorphic to each other. In other words there exist an isomorphism 

between the two. To define, a group 𝑮𝟏 is isomorphic to group 𝑮𝟐  if there exist a bijection: 

ɸ: 𝑮𝟏  → 𝑮𝟐 , s.t., 

∀𝑔, ℎ ∈ 𝐺1 ∶ ɸ(𝑔)ɸ(ℎ) = ɸ(𝑔ℎ). 

The second property takes care of the composition. A related notion is called homomorphism 

where we drop the bijection criteria. So 𝑮𝟏  is homomorphic to 𝑮𝟐 if there exist a map: ɸ: 𝑮𝟏  →

𝑮𝟐, s.t., 

∀𝑔, ℎ ∈ 𝐺1 ∶ ɸ(𝑔)ɸ(ℎ) = ɸ(𝑔ℎ). 

Exercise Give a homomorphism which is not an isomorphism from a group 𝐺 to itself. 

Assignment 

Exercise For any 𝑎1, 𝑎2, … . . 𝑎𝑘 ∈ 𝐺, show that expression 𝑎1 ∗  𝑎2 ∗ … . . 𝑎𝑘  is independent of 

bracketing. 

Hint: Show it using induction that all expression are same as 𝑎1 ∗ (𝑎2 ∗ (… . .∗  𝑎𝑘) … ). 

Exercise Prove that the identity is unique for a group. 

Exercise Which Groups are commutative from the list of groups given in the section 2.1.1? 

Exercise Prove that 𝐺 = {𝑎 +  𝑏√2 | 𝑎, 𝑏 ∈ 𝑄} is a group under addition. 

Exercise Which of them are groups under addition? 

 The set of all rational numbers with absolute 
value < 1.  

 The set of all rational number with absolute 
value ≥1. 

 The set of all rational numbers with denominator either 1 or 2 in the reduced form. 



 

Exercise Find the order of following, 

 3 in (𝑍5, +). 
 5 in (𝑍7,×). 

Exercise Give an example of a finite group where order of an element is different from order of 
the group. 

Exercise If all elements have order 2 for a group 𝐺, prove that it is abelian. 

Exercise Show that if 𝑮𝟏 is isomorphic to 𝑮𝟐  then 𝑮𝟐  is isomorphic to 𝑮𝟏 . 

Exercise Show an isomorphism from real numbers with addition to positive real numbers with 
multiplication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 33: Subgroups 

 

We are interested in studying the properties and structure of the group. By properties, we mean 
the theorems which can be proven about groups in general. Then any mathematical construct 
having the group structure (satisfy closure, associativity etc.) will satisfy those theorems. 

Another important task is to understand the structure of group itself. It is deeply related to the 
properties of group. It ultimately helps us in figuring out which groups are similar (with respect 
to isomorphism) and can we list out all possible kind of groups (not isomorphic to each other). 

One of the natural questions is that if groups can exist inside a group. 

Exercise Can we have a subset of group which itself is a group under the group operation? Try 

to construct such a set in Z. 

33.1 Definition 

As the intuition would suggest, 

Definition A subset H of a group G is called a subgroup if it is not empty, closed under group 
operation and has inverses. The notation 𝐻 ≤  𝐺 denotes that 𝐻 is a subgroup of 𝐺. 

Note The subgroup has the same operation as the original group itself 

Exercise Why did we not consider associativity, existence of inverse? 

Every group 𝐺 has two trivial subgroups { 𝑒} and the group 𝐺 itself. Let’s look at few 
examples of non-trivial subgroups. Try to prove that each of them is a subgroup. 

 𝑛𝑍, the set of all multiples of n is a subgroup of Integers. 

 Under addition, integers (𝑍) are a subgroup of Rationals (𝑄) which are a subgroup of Reals 

(𝑅). Reals are a subgroup of Complex numbers, 𝐶. 
 𝑍+, the set of all positive integers is not a subgroup of 𝑍. Why?  

 The set 𝑆 = {𝑎 +  𝑏√2 | 𝑎, 𝑏 ∈ 𝑍}is a subgroup of 𝑅 under addition. 

 Center of a group: The center of a group 𝐺 is the set of elements which commute with every 

element of 𝐺. 

𝐶(𝐺) = {ℎ ∈  𝐺 ∶  ℎ𝑔 =  𝑔ℎ  ∀𝑔 ∈  𝐺}. 

We will show that center is the subgroup. Associativity follows from 𝐺 and existence of 

identity is clear. Suppose ℎ, 𝑘 ∈  𝐶(𝐺), then for any 𝑔 ∈  𝐺, 

𝑔(ℎ𝑘) =  ℎ𝑔𝑘 =  (ℎ𝑘)𝑔. 

Hence 𝐶(𝐺) is closed. For the inverse, note that 𝑔ℎ =  ℎ𝑔 is equivalent to ℎ−1𝑔ℎ =  𝑔 and              
𝑔 =  ℎ𝑔ℎ−1. Hence existence of inverse follows (Why?). 

 



 

Lecture 34: Cyclic groups 

 

We noticed that { 𝑒}  is a subgroup of every group. Let’s try to construct more subgroups. 
Suppose 𝑥 is some element which is not the identity of the group 𝐺. If 𝑘 is the order of 𝑥 then 
𝑆𝑥 = {𝑒, 𝑥, 𝑥2, … , 𝑥𝑘−1} is a set with all distinct entries. It is clear from previous discussion of 
groups that 𝑆𝑥 is a subgroup. 

Exercise Prove that 𝑆𝑥 is a subgroup. 

While proving the previous exercise, we need to use the fact that 𝑘 is finite. What happens 

when 𝑘 is infinite? Can we construct a group then? The answer is yes, if we include the inverses 

too. All these kind of groups, generated from a single element, are called cyclic groups. 

Definition A group is called cyclic if it can be generated by a single element. In other words, 

there exist an element 𝑥 ∈ 𝐺, s.t., all elements of 𝐺 come from the set, 

<  𝑥 >= {… , 𝑥−2, 𝑥−1, 𝑒, 𝑥, 𝑥2, … } 

There are many things to note here: 

 For an infinite group, we need to consider inverses explicitly. For a finite group, inverses 

occur in the positive powers. 

 The group generated by the set 𝑆 is the group containing all possible elements obtained from 

𝑆 through composition (assuming associativity, inverses etc.). 

 The notation for the group generated by 𝑆 is <  𝑆 >. 

The structure of cyclic groups seems very simple. You take an element and keep composing. 
What different kind of cyclic groups can be there? Look at different examples of cyclic groups of 
order 4 in the following figure. The next theorem shows that all these are isomorphic. 

𝑍4 = {0̅, 1̅, 2̅, 3̅} 

𝑍5
+ = {1̅, 2̅, 3̅, 4̅} 

𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ⊂  𝑆4 

(1 2 2 4) (4 1 2 3) (3 4 1 2) (2 3 4 1) 

                             Rotational Symmetryies of 

 

Theorem Every finite cyclic group 𝐺 of order 𝑛 is isomorphic to 𝑍𝑛. 

Proof. Suppose 𝑥 is a generator for 𝐺. It exists by the definition of 𝐺. Then since the order is 

finite, group 𝐺 is, 

𝐺 = {𝑒, 𝑥, 𝑥2, … , 𝑥𝑛−1} 

1                 2 

3                 4 



 

Lets look at the obvious bijection from 𝑍𝑛 to 𝐺. The element 𝑘 is mapped to 𝑥𝑘. It is a bijection 

because, the inverse maps 𝑥𝑘 to 𝑘. For the above bijection, 

ɸ(𝑗 + 𝑘) = 𝑥𝑗+𝑘   𝑚𝑜𝑑 𝑛 = 𝑥𝑗 ∗ 𝑥𝑘 = ɸ(𝑗) ∗ ɸ(𝑘). 

Where first inequality follows from the definition of 𝑍𝑛 and second from the fact that 𝑥𝑛 =  1. 
This shows that ɸ is an isomorphism. Hence proved.  

Using the previous theorem and exercise (assignment), we have given complete 

characterization of cyclic groups. This loosely means that we can get all the properties of any 

cyclic group of order 𝑛 from 𝑍𝑛 and an in finite cyclic group with integers. 

This is called a classification of cyclic groups. We would ideally like to give classification of 

groups and finding out more properties of groups. These two questions are not independent. We 

will explore both simultaneously and progress in one question helps in finding the answer for 

other. 

Exercise What are the subgroups of a cyclic group? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 35: Cosets 

 

The next step in understanding the structure of a group is to partition it using a subgroup. 

Suppose we are given a group 𝐺 and its subgroup 𝐻. We will show that 𝐺 can be partitioned into 

disjoint sets of equal size (|𝐻|)This will imply that|𝐺| is always divisible by|𝐻|. Lets define 

these parts first and then we can prove the fact given above. 

Definition Cosets: The left coset (𝑔𝐻) of 𝐻 with respect to an element 𝑔 in 𝐺 is the set of all 

elements which can be obtained by multiplying g with an element of 𝐻, 

𝑔𝐻 = {𝑔ℎ ∶ ℎ ∈ 𝐻}. 

This is called the left coset because 𝑔 is multiplied on the left. We can similarly define the right 

cosets 𝐻𝑔. 

Exercise How are left and right coset related for commutative groups? 

Let us show some properties of these cosets. Remember not to use any illegal property while 

proving these. Without loss of generality we will assume that cosets are left. Same properties 

hold true for right ones too. 

Every element of 𝐺 is in at least one coset. 𝐻 is one of the cosets too. 

Proof: Exercise.  

The cardinality of all cosets is equal and hence their cardinality is |𝐻|. 

Proof: Consider a coset 𝑔𝐻 and a subgroup 𝐻 = {ℎ1, ℎ2, … , ℎ𝑘}. The elements of the left 

coset 𝑔𝐻 are {𝑔ℎ1, 𝑔ℎ2, … , 𝑔ℎ𝑘}.. It is easy to show that any two elements in this set are 

distinct (why?). Hence all cosets have cardinality 𝑘 = |𝐻|.  

  For any two elements 𝑔1, 𝑔2of 𝐺 either 𝑔1𝐻, 𝑔2𝐻 are completely distinct (disjoint) or 

completely same 𝑔1𝐻 =  𝑔2𝐻. 

Proof: Suppose there is one element common in 𝑔1𝐻 𝑎𝑛𝑑 𝑔2𝐻 (otherwise they are 

completely distinct). Say it is 𝑔1𝐻 =  𝑔2𝐻, then, 

𝑔1 =  𝑔2ℎ2ℎ1
−1 → ∃ℎ ∈ 𝐻: 𝑔1 =  𝑔2ℎ.  

Now you can prove a simple exercise. 

Exercise If ∃ℎ ∈ 𝐻: 𝑔1 =  𝑔2ℎ then show that𝑔1𝐻 ⊆  𝑔2𝐻. 

But if 𝑔1 =  𝑔2ℎ then𝑔2 =  𝑔1ℎ−1. This will show from the previous exercise that 𝑔2𝐻 ⊆
 𝑔1𝐻. Hence both the sets 𝑔1𝐻 𝑎𝑛𝑑 𝑔2𝐻 are the same.  

Using the properties we have shown that the two columns of the following table are 

completely the same or completely distinct. 



 

𝐺
𝐻⁄  𝑒 𝑔2 … 𝑔𝑛 

𝑒 𝑒 𝑔2 … 𝑔𝑛 

ℎ2 ℎ2 𝑔2ℎ2 … 𝑔𝑛ℎ2 

⋮ ⋮ ⋮ ⋱ ⋮ 
ℎ𝑘 ℎ𝑘 𝑔2ℎ𝑘  … 𝑔𝑛ℎ𝑘 

 

This conclusion is beautifully summarized in Lagrange’s theorem. 

 

35.1 Lagrange's theorem 

Using the previous list of properties it is clear that if we look at the distinct cosets of 𝐻 then they 

partition the group 𝐺 into disjoint parts of equal size. 

Exercise What is the size of these parts? 

Theorem Lagrange: Given a group 𝐺 and a subgroup 𝐻 of this group, the order of 𝐻 divided 

the order of 𝐺. 

Proof: The proof is left as an exercise. You should try to do it without looking at the hint given 

in the next line. 

Hint: From the previous discussion, the |
𝐺

𝐻
|is just the number of distinct cosets of 𝐻.  

Note If the set of left and right cosets coincide the subgroup is called normal. In this case, the set 

of cosets actually forms a group, called the quotient group 
𝐺

𝐻
 (What is the composition rule?). 

This is a great discovery. The statement of Lagrange's theorem does not do justice to the 

implications. We started with an abstract structure with some basic properties like associativity, 

inverses etc. (group). The proof of Lagrange's theorem implies that if we can find a subgroup of 

the group then the whole group can be seen as a disjoint partition with all parts related to the 

subgroup. Notice that it is easy to construct a cyclic subgroup of a group. 

Exercise Prove that the order of an element always divides the order of a group. We had proved 

this for commutative groups in an earlier lecture. 

Exercise What does Lagrange's theorem say about groups with prime order? 

Let’s look at one application of Lagrange's theorem in the case of 𝑍𝑚
× . We know that this 

group contains all the remainders mod 𝑚 which are coprime (gcd is 1) to 𝑚. If 𝑚 is a prime 𝑝 

then 𝑍𝑝
× contains             𝑝 − 1 elements. This proves the well known Fermat's little theorem. 

Exercise Fermat's little theorem: For a prime 𝑝 and any number 𝑎, 𝑎𝑝−1  =  1 mod 𝑝. 

Prove this theorem. 

 



 

 

Assignment 

Exercise List all possible subgroups of 𝑍6 under addition. 

Exercise The kernel of a homomorphism  ɸ: 𝐺 →  𝐿 is the subset of 𝐺 which maps to identity of 

𝐿. Hence, 𝐾𝑒𝑟(ɸ) = {𝑔 ∈ 𝐺 ∶ ɸ&(𝑔) =  𝑒𝐿}. 

Similarly, the image of ɸ are the elements of 𝐿 which have some element mapped to them 

through ɸ. 𝐼𝑚𝑔(𝐺) = {ℎ ∈  𝐿 ∶  ∃𝑔 ∈  𝐺 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ (𝑔) = ℎ. }  

Show that 𝐼𝑚𝑔(𝐺) and 𝐾𝑒𝑟(𝐺) are subgroups. 

Exercise Show that a subset 𝐻 is a subgroup of 𝐺 if it is non-empty and                    ∀𝑥, 𝑦 ∈
𝐻: 𝑥𝑦−1 ∈ 𝐻. 

Note. Because 𝐻 is a subset, the set of properties we need to check are much less. 

Exercise Show that 𝑍𝑛  is cyclic under addition. Give some examples of cyclic subgroups and 

some examples of non-cyclic subgroups in 𝑍𝑛
+under multiplication. 

Exercise Show that all cyclic groups are commutative (abelian). 

Hint: Look for the obvious bijection between the group and Z. Show that it is an isomorphism. 

Exercise Find the order of every element of group 𝑍𝑛 where 𝑝 is a prime. 

Exercise Euler's theorem: For a number 𝑚, say (𝑚) is the number of positive elements coprime 

to 𝑚 and less than 𝑚. For any 𝑎 which is co-prime to 𝑚, 𝑎ɸ(𝑚) = 1 mod 𝑚. 

Prove this theorem. 

Exercise Show that there always exist a cyclic subgroup of any finite group 𝐺. 

Exercise Show that the subgroup of a cyclic group is cyclic. 

 

Lecture 35 A: Quotient Group, Normal subgroup 

    

We have seen that the cosets of a subgroup partition the entire group into disjoint parts. Every 

part has the same size and hence Lagrange's theorem follows. If you are not comfortable with 

cosets or Lagrange's theorem, please refer to earlier notes and refresh these concepts. 

So we have information about the size of the cosets and the number of them. But we lack the 

understanding of their structure and relations between them. In this lecture, the concept of 

normal subgroups will be introduced and we will form a group of cosets themselves!! 

35A.1 Normal subgroup 



 

Suppose we are given two elements 𝑔, 𝑛 from a group 𝐺. The conjugate of 𝑛 by 𝑔 is the group 

element 𝑔𝑛𝑔−1. 

Exercise When is the conjugate of 𝑛 equal to itself ? 

Clearly the conjugate of 𝑛 by 𝑔 is 𝑛 itself iff 𝑛 and 𝑔 commute. 

We can similarly define the conjugate of a set 𝑁⊆𝐺 by 𝑔, 

𝑔𝑁𝑔−1 ≔ {𝑔𝑛𝑔−1: 𝑛 ∈ 𝑁}. 

Definition Normal subgroup: A subgroup 𝑁 of 𝐺 is normal if for every element 𝑔 in 𝐺, the 

conjugate of 𝑁 is 𝑁 itself. 

𝑔𝑁𝑔−1  =  𝑁  ∀𝑔 ∈ 𝐺. 

We noticed that 𝑔𝑛𝑔−1 = 𝑛 iff 𝑔;  𝑛 commute with each other. 

Exercise When is 𝑔𝑁𝑔−1  =  𝑁 ? 

In this case the left and right cosets are the same for any element 𝑔 with respect to subgroup 

𝑁. Hence, a subgroup is normal if its left and right cosets coincide. 

Exercise Show that following are equivalent. So you need to show that each of them applies any 

other. 

1. 𝑁 is a normal subgroup. 

2. The set 𝑆 = {𝑔 ∶ 𝑔𝑁 = 𝑁𝑔} is 𝐺 itself. 

3. For all elements 𝑔 ∈ 𝐺, 𝑔𝑁𝑔−1 ⊆  𝑁. 

Hint: Instead of showing all 2 × (
3

2
) implications, you can show 1)  ⟹  2)  ⟹ 3) ⟹  1. 

35A.2 Quotient group 

We have introduced the concept of normal subgroups without really emphasizing why it is 

defined. Let’s move to our original question. What can be said about the set of cosets, do they 

form a group? 

Suppose 𝐺 is a group and 𝐻 is a subgroup. Denote by 𝑆, the set of cosets of 𝐺 with respect to 

𝐻. For 𝑆 to be a group it needs a law of composition. The most natural composition rule which 

comes to mind is, 

(𝑔𝐻)(𝑘𝐻)  =  (𝑔𝑘)𝐻. 

Here 𝑔𝐻 and 𝑘𝐻 represent two different cosets. The problem with this definition is that it 

might not be well-defined. It might happen that 𝑔′ ∈ 𝑔𝐻and 𝑘′ ∈ 𝑘𝐻 when multiplied give a 

totally different coset (𝑔′𝑘′)𝐻 then (𝑔𝑘)𝐻. 

Exercise Show that this operation is well-defined for commutative (abelian) groups. 



 

What about the general groups? Here comes the normal subgroup to the rescue. 

Theorem Suppose G is a group and H is its subgroup, the operation, 

(𝑔𝐻)(𝑘𝐻) =  (𝑔𝑘)𝐻, 

is well defined if and only if 𝐻 is a normal subgroup. 

Note Every subgroup of a commutative group is normal. 

Proof: We need to show that if the operation is well defined then 𝑔ℎ𝑔−1 ∈ 𝐻 for every 𝑔 ∈
𝐺, ℎ ∈ 𝐻. Consider the multiplication of 𝐻 with 𝑔−1𝐻. Since 𝑒, ℎ ∈ 𝐻, we know 𝑒𝐻 =  ℎ𝐻. 

Since the multiplication is well defined, 

(𝑒𝑔−1)𝐻 = (𝑒𝐻)(𝑔−1𝐻) = (ℎ𝐻)(𝑔−1𝐻) = (ℎ𝑔−1)𝐻 ⟹ 𝑔−1𝐻 = (ℎ𝑔−1)𝐻. 

Again using the fact that 𝑒 ∈ 𝐻, ℎ𝑔−1 ∈ 𝑔−1𝐻. This implies ℎ𝑔−1 = 𝑔−1ℎ′ ⟹ 𝑔ℎ𝑔−1 = ℎ′ 

for some ℎ′ ∈ 𝐻. 

 Suppose 𝑁 is a normal subgroup. Given 𝑔′  =  𝑔𝑛 and 𝑘′  =  𝑘𝑛′, where 𝑔, 𝑔′, 𝑘, 𝑘′ ∈ 𝐺 and 

𝑛, 𝑛′ ∈ 𝑁 we need to show that (𝑔𝑘)𝑁 =  (𝑔′𝑘′)𝑁. 

 (𝑔′𝑘′)𝑁 = (𝑔𝑛𝑘𝑛′)𝑁. 

Definition Given a group 𝐺 and a normal subgroup 𝑁, the group of cosets formed is known as 

the quotient group and is denoted by 
𝐺

𝑁
 . 

Using Lagrange's theorem, 

Theorem Given a group 𝐺 and a normal subgroup 𝑁, 

|𝐺|  = |𝑁| |
𝐺

𝑁
|  

35A.3 Relationship between quotient group and homomorphisms 

Let us revisit the concept of homomorphisms between groups. The homomorphism between two 

groups 𝐺 and 𝐻 is a mapping ɸ: 𝐺 →  𝐻 that preserves composition. 

ɸ(𝑔𝑔′) =  ɸ(𝑔)ɸ(𝑔′). 

For every homomorphism we can define two important 

sets. 

Image: The set of all elements ℎ of 𝐻, s.t., there exists 𝑔 ∈ 𝐺 for which ɸ(𝑔)  =  ℎ. 

𝐼𝑚𝑔(ɸ) = {ℎ ∈ 𝐻 ∶ ∃𝑔 ∈ 𝐺 ɸ(𝑔)  =  ℎ} 

Generally, you can restrict your attention to 𝐼𝑚𝑔(ɸ) instead of the 

entire 𝐻. Kernel: The set of all elements of 𝐺 which are mapped to 

identity in 𝐻. 



 

𝐾𝑒𝑟(ɸ) = {𝑔 ∈ 𝐺: ɸ(𝑔)  =  𝑒𝐻}. 

Notice how we have used the subscript to differentiate between the identity of 𝐺 and 𝐻. 

Note 𝐼𝑚𝑔(ɸ) is a subset of 𝐻 and 𝐾𝑒𝑟(ɸ) is a subset of 𝐺. 

Exercise Prove that 𝐼𝑚𝑔(ɸ) and 𝐾𝑒𝑟(ɸ)form a group under composition with respect to 𝐻and 

𝐺 respectively. 

Exercise Show that 𝐾𝑒𝑟(ɸ) is a normal subgroup. 

There is a beautiful relation between the quotient groups and homomorphisms. We know that 

𝐾𝑒𝑟(ɸ)is the set of elements of 𝐺 which map to identity. What do the cosets of 𝐾𝑒𝑟(ɸ) 

represent? Lets take two elements 𝑔, ℎ of a coset 𝑔𝐾𝑒𝑟(ɸ). Hence ℎ =  𝑔𝑘 where ɸ(𝑘)  =  𝑒𝐻. 

Then by the composition rule of homomorphism ɸ(𝑔)  =  ɸ(ℎ). 

Exercise Prove that ɸ(𝑔)  =  ɸ(ℎ) if and only if 𝑔 and ℎ belong to the same coset with respect 

to 𝐾𝑒𝑟(ɸ). 

The set of elements of 𝐺 which map to the same element in 𝐻 are called the fibers of ɸ. The 

previous exercise tell us that fibers are essentially the cosets with respect to 𝐾𝑒𝑟(ɸ) (the quotient 

group). 

The fibers are mapped to some element in 𝐼𝑚𝑔(ɸ)by ɸ. Hence there is a one to one 

relationship between the quotient group  
𝐺

𝐾𝑒𝑟(ɸ)
 and 𝐼𝑚𝑔(ɸ). Actually the relation is much 

stronger. 

It is an easy exercise to show that the mapping between quotient group  
𝐺

𝐾𝑒𝑟(ɸ)
 and 𝐼𝑚𝑔(ɸ). is 

an isomorphism. 

We have shown that 𝐾𝑒𝑟(ɸ)is normal. It can also be shown that any normal subgroup 𝑁 is a 

kernel of some homomorphism (exercise). 

Assignment 

Exercise Given a group 𝐺 and a normal subgroup 𝑁. Say the set of cosets is called 𝑆 and has 

composition operation (𝑔𝐻)(𝑘𝐻)  =  (𝑔𝑘)𝐻. Show that, 

 Identity exists in this set.  

 Inverses exist in this set.  

 Associativity is satisfied. 

Since Closure is obvious we get that 𝑆 is a group with respect to the above mentioned 

composition rule. 

Exercise Suppose 𝐺 is an abelian group and 𝐻 is a subgroup. Show that  
𝐺

𝐻
 is abelian. 

Exercise Given 𝑁 is a normal subgroup, prove that 𝑔𝑘(𝑁)  =  (𝑔𝑁)𝑘. 



 

Exercise Suppose 𝑁 is normal in 𝐺, show that for a subgroup 𝐻, 𝐻 ∩ 𝑁 is a normal subgroup in 

𝐻. 

Exercise Show that a subgroup 𝑁 is normal in 𝐺 iff it is the kernel of a homomorphism from 𝐺 

to some group 𝐻. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Lecture 36: Ring, Field, Integral Domain 

 

We have shown that 𝑍𝑛 is a group under addition and 𝑍𝑛
+ is a group under multiplication (set of 

all numbers co-prime to 𝑛 in 𝑍𝑛). Till now, the two operations + and have been treated 

differently. But from our experience with integers and even matrices, these operations satisfy 

properties like “distribution”  𝑎(𝑏 +  𝑐) = (𝑎𝑏 +  𝑎𝑐). 

Hence, after success in defining an abstract structure with one operation (group), now we define 

another abstract structure with 2 operations. The first question is, what should be the defining 

properties of this new abstract structure. We will be inspired by integers again and define the 

concept of Rings. 

36.1 Rings 

Consider two operations + and  × in a set 𝑅. 

Definition The set 𝑅 with the two operations + and  × is a ring, if, 

 𝑅 is a commutative group under +. 

 𝑅 is associative, closed and has an identity with respect to the operation ×.  

 The two operations + and × follow the distributive law, i.e., 

𝑎 × (𝑏 +  𝑐) =  𝑎 × 𝑏 +  𝑎 × 𝑐 𝑎𝑛𝑑 (𝑎 +  𝑏) × 𝑐 =  𝑎 × 𝑐 +  𝑏 × 𝑐. 

Note. We will always assume that the multiplicative identity is different from additive identity. 

The additive identity will be denoted by 0 and multiplicative identity by 1. For brevity, we will 

denote 𝑎 × 𝑏 as 𝑎𝑏. 

Exercise Are the two conditions under the distributive law same? 

Exercise Why did we assume commutativity under addition for a ring? 

There are many examples of rings, many of these sets we have encountered before. 

 The sets 𝑍, 𝑄, 𝑅, 𝐶 are rings with addition and multiplication. 

 The set of integers modulo 𝑚, 𝑍𝑚, is a ring with addition and multiplication. 

 The set of 2 × 2 matrices with integer entries is a ring. Actually if 𝑅 is a ring then set of 

2 × 2 matrices with entries in 𝑅 is also a ring. 

Another ring which will be of our particular interest is the ring of polynomials. The set 𝑅[𝑥] 
is the set of all polynomials with coefficients from ring 𝑅. If the multiplication in 𝑅 is 

commutative then 𝑅[𝑥] is also a commutative ring. 

Note The addition and multiplication of polynomials is defined in the same way as in regular 

polynomials. 

Exercise Check that you can define these operations on polynomials with entries from a ring 𝑅. 

Why do we need that multiplication is commutative in the original ring? 



 

Hence we have polynomial rings 𝑍[𝑥], 𝑄[𝑥], 𝑅[𝑥], 𝐶[𝑥] having commutative multiplication. 

36.2 Units of a ring 

The ring is not a group with respect to multiplication. That is because inverses need not exist in a 

ring (e.g., integers). The elements of rings which have inverses inside the ring with respect to 

multiplication are called units or invertible elements. 

The set of units for 𝑍 are just ±1. 

Exercise Prove that the set of units form a group under multiplication. 

36.3 Characteristic of a ring 

Rings have two identities 𝑒× and 𝑒+ (we will denote them by 1 and 0 respectively). For a ring an 

important criteria is the additive group generated by 1. The elements of that group are 1, 1 +
 1, 1 +  1 +  1 and so on. The smallest number of times we need to sum 1 to get 0 is called the 

characteristic of the ring. 

For some cases, like reals, the sum never reaches the additive identity 0. In these cases we say 

that the characteristic is zero. 

Exercise Prove that 1×0 = 0 in a ring. 

36.4 Homomorphism for a ring 

We have already defined the homomorphism for a group. How should we define the 

homomorphism for a ring? 

Exercise Try to come up with a definition of ring homomorphism. Remember that the mapping 

should be well behaved with respect to both the operators. 

When not clear from the context, we specify if it is a group homomorphism or a ring 

isomorphism. 

We can define the kernel of a homomorphism ɸ: 𝑅 → 𝑆 from a ring 𝑅 to ring 𝑆 as the set of 

elements of 𝑅 which map to the additive identity 0 of 𝑆. A bijective homomorphism is called an 

isomorphism. 

We showed in previous lectures that the kernel of a group homomorphism is a normal 

subgroup. What about the kernel of a ring homomorphism? For this, the concept of ideals will be 

defined. 

36.5 Ideal 

The ring 𝑅 is a group under addition. A subgroup 𝐼 of 𝑅 under addition is called an ideal if 

∀𝑥 ∈ 𝐼, 𝑟 ∈ 𝑅: 𝑥𝑟, 𝑟𝑥 ∈ 𝐼 

For example, the set of all elements divisible by 𝑛 is an ideal in 𝑍. 



 

Exercise Show that 𝑛𝑍 is an ideal of 𝑍. 

Ideal is similar to the normal subgroup, but belongs to a ring. Suppose 𝐼 is an ideal. Then we 

can define the set of cosets of 𝐼 with respect to 𝑅 as  
𝑅

𝐼
 . We denote the elements of the set by 

𝑟 +  𝐼. 

We know that 
𝑅

𝐼
 is a group (why?), but it can be shown that it is a ring under the following 

operations too. 

(𝑟 +  𝐼) +  (𝑆 +  𝐼) =  (𝑟 +  𝑠) +  𝐼                            (𝑟 +  𝐼)(𝑠 +  𝐼)  =  (𝑟𝑠)  +  𝐼 

Exercise Show that the kernel of a ring homomorphism is an ideal. 

Kernel of any ring homomorphism is an ideal and every ideal can be viewed this way. We can 

define quotient ring using ideals as we defined quotient group using normal subgroup. It turns 

out, 

Theorem Given a homomorphism ɸ: 𝑅 →  𝑆, 

𝑅

𝐾𝑒𝑟(ɸ)
≅ 𝐼𝑚𝑔(ɸ) 

Given a set 𝑆 ⊆  𝐼, we can always come up with the ideal generated by the set. Suppose the 

multiplication is commutative, then 

𝐼 = { 𝑟1𝑥1 + 𝑟2𝑥2  + ⋯ . . +𝑟𝑛𝑥𝑛1: ∀𝑖 𝑟𝑖 ∈ 𝑅, 𝑥𝑖 ∈ 𝑆}, 

is the ideal generated by 𝑆. 

Exercise Prove that it is an ideal. 

36.6 Integral domain 

Our main motivation was to study integers. We know that integers are rings but they are not 

fields. We also saw (through exercise) that integers are more special than rings. The next abstract 

structure is very close to integers and is called integral domain. 

An integral domain is a commutative ring (multiplication is commutative) where product of 

two non-zero elements is also non-zero. In other words, if 𝑎𝑏 =  0 then either 𝑎 =  0 or 𝑏 =  0 

or both. 

Exercise Give some examples of an integral domain. Give some examples of rings which are 

not integral domains. 

We said that integral domain is closer to integers than rings. The first thing to notice is that 

integral domains have cancellation property. 

Exercise If 𝑎𝑏 =  𝑎𝑐 in an integral domain, then either 𝑎 =  0 or 𝑏 =  𝑐. 



 

Now we will see that the properties of divisibility, primes etc. can be defined for integral 

domains. Given two elements 𝑎, 𝑏 ∈  𝑅, we say that 𝑎 divides 𝑏 (𝑏 is a multiple of 𝑎) if there 

exist an 𝑥 ∈ 𝑅, s.t., 𝑎𝑥 = 𝑏. 

Exercise If 𝑎 divides 𝑏 and 𝑏 divides 𝑎 then they are called associates. Show, 

 Being associates is an equivalence relation. 

 𝑎 and 𝑏 are associates iff  𝑎 =  𝑢𝑏 where 𝑢 is a unit. 

You can guess (from the example of integers), the numbers 0 and units (±1) are not relevant 

for divisibility. A non-zero non-unit 𝑥 is irreducible if it can't be expressed as a product of two 

non-zero non-units. A non-zero non-unit 𝑥 is prime if whenever 𝑥 divides 𝑎𝑏, it divides either 𝑎 

or 𝑏. 

Notice that for integers the definition of irreducible and prime is the same. But this need not 

be true in general for integral domain. For examples, look at any standard text. 

Exercise What is the problem with defining divisibility in ring? 

36.7 Fields 

If you look at the definition of rings, it seems we were a bit unfair towards multiplication. 𝑅 was 

a commutative group under addition but for multiplication the properties were very relaxed (no 

inverses, no commutativity). Field is the abstract structure where the set is almost a commutative 

group under multiplication. 

Definition The set 𝐹 with the two operations + and × is a field, if, 

 𝐹 is a commutative group under +. 

 𝐹 − {0} is a commutative group under × (it has inverses).  

 The two operations + and × follow the distributive law, i.e., 

𝑎 × (𝑏 +  𝑐) =  𝑎 × 𝑏 +  𝑎 × 𝑐 𝑎𝑛𝑑 (𝑎 +  𝑏) × 𝑐 =  𝑎 × 𝑐 +  𝑏 × 𝑐. 

Exercise Why are we excluding the identity of addition when the multiplicative group is 

defined? 

As you can see Field has the strongest structure (most properties) among the things (groups, 

rings etc..) we have studied. Hence many theorems can be proven using Fields. Fields is one of 

the most important abstract structure for computer scientists. 

Note The notion of divisibility etc. are trivial in fields. 

Let us look at some of the examples of fields. 

 𝑍 is NOT a  field. 

 𝑄, 𝑅 and 𝐶 are fields. 

  Zm is a field iff 𝑚 is a ________. (Fill in the blank ) 



 

The last example is of fields which have finite size. These fields are called finite fields and will 

be of great interest to us. 

Assignment 

Exercise Give a rule that is satisfied by Integers but need not be satisfied by rings in general. 

Exercise Find the set of units in the ring 𝑍8. 

Exercise If all the ideals in the ring can be generated by a single element then it is called a 

principal ideal domain. Show that 𝑍 is a principal ideal domain. 

Exercise Show that if 𝑎𝑏 =  0 for 𝑎, 𝑏 in a  field 𝐹 then show that either 𝑎 =  0 or 𝑏 =  0. 

Exercise What are the units of a field? 

Exercise Show that a finite integral domain is a field. 

Exercise Find a number 𝑛 which leaves remainder 23 with 31, 2 with 37 and 61 with 73. 

Exercise Find a number 𝑛 which leaves remainder 3 when divided by 33 and 62 when divided 

by 81. 

_______ 

Thanks to the Rajat Mittal, IIT kanpur for his kind cooperation. 
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LECTURE 37:Advance Graph Theory 

37.1. PLANAR GRAPHS 

Basic definitions: 

Isomorphic graphs 

Two graphs G1(V1,E1) and G2(V2,E2) are isomorphic if there is a one-to-one correspondence F 

of their vertices such that the following holds: 

For all u,v∈ V1,uv ∈ E1 implies F(u)F(v) ∈E2 

For all x,y ∈V1,x,y∉E1 implies F(x)F(y) ∉E2 

Plane graph (or embedded graph) 

A graph that is drawn on the plane without edge crossing, is called a Plane graph 

Planar graph 

A graph is called Planar, if it is isomorphic with a Plane graph 

Phases 

 A planar representation of a graph divides the plane in to a number of connected regions, called 

faces, each bounded by edges of the graph. 

For every graph G, we denote n(G) the number of vertices , e(G) the number of edges, f(G) the 

number of faces 

Degree 

 We define the degree of a face d(f), to be the number of edges bounding the face f. 

 

Examples: The following graphs are isomorphic to 4 (the complete graph with 4 vertices)

 

 

2nd and3rd graph is planer but 1st is not.1st graph is planar as it is isomorphic to 2nd and 3rd graph. 



 

LECTURE 38: 

38.1 Theorem 1 

 A graph is embeddable in the sphere if and only if it is embeddable in the plane. 

Proof 

We show this by using a mapping known as stereographic projection. Consider a spherical 

surface S touching a plane P at the point SP (called south pole). The point NP (called the point of 

projection or north pole) is on S and diametrically opposite SP. Any point z on P can be 

projected uniquely onto S at z' by making NP, z and z' collinear. In this way any graph embedded 

in P can be projected onto S. Conversely, we can project any graph embedded in s onto P , 

choosing NP so as not to lie an any vertex or edge of the graph. 

 

 

 

 

 

38.2 Theorem 2 

 A planar embedding G' of a graph G can be transformed in to another embedding such that any 

specified face becomes the exterior face. 

 

Proof 

 Any face of G' is defined by the path which forms its boundary. Any such path, T, identified in a 

particular planar representation P of G, may be made to define the exterior face of a different 



 

planar representation P' as follows. We form a spherical embedding P'' of P. P' is then formed by 

projecting P'' onto the plane in such a way that the point of projection lies in the face defined by 

the image of T on the sphere. 

Example 

 

 

 

 

 

38.3 Theorem 3 (Euler's formula) 

 If G is a connected planar graph, for any embedding G' the following formula holds: 

n(G)+f(g)=e(G)+2 

Proof. 

By induction on f 

· For f(G) = 1, G is a tree. For every tree, e(G) = n(G)-1, so n(G)+1= e(G) + 2 implies 

n(G)+f(G) =e(G) +2 and the formula holds. 

· Suppose it holds for all planar graphs with less than f faces and suppose that G' has f ≥2 faces. 

· Let (u,v) be an edge of G which is not a cut-edge. Such an edge must exists because G' has 

more than one face. The removal of (u.v) will cause the two faces separated by (u,v) to combine, 

forming a single face.  

Hence (G-(u,v))' is a planar embedding of a connected graph with one less face than G' , hence: 

f(G - (u,v)) = f(G) - 1  

n(G - (u,v) = n(G)  

e(G = (u,v)) = e(G) – 1 

But by the induction hypothesis: 

 n(G- (u,v)) + f(G - (u,v)) = e(G - (u,v)) + 2 



 

 and so, by substitution: n(G) + f(G) = e(G) + 2 

Hence, by induction, Euler's formula holds for all connected planar graphs. 

Lemma 1  

For any embedding G' of any simple connected planar graph G,∑ 𝑑(𝑓) =2e(G). 

Proof. 

 Each edge contributes 1 to each face it is a bound, so it contributes 2 to the total sum. So the 

e(G) edges contributes 2e(G) to the total sum. 

 

38.4 Theorem 4(GenerelisedEuler”s formula) 

A planar graph G with n vertices,e number of edges and knumber of connected components 

determines  f=e-n+k+1. 

Proof 

Let the connected components of G be G1,G2,……,Gk.Let Gi hasni number of vertices,ei number 

of edges and fi number of regions(i=1,2,…n).Then by the previous theorem fi=ei-ni+2 for 

i=1,2,,….k.Now  the exterior region is same for all components.If the exterior regions are not 

considered then number of interior regions for each components is given by g i=fi-1. 

Thus the total number of interior regions of G is 

=(f1-1)+(f2-1)+……+(fk-1) 

=∑ 𝑓i − k𝑘
𝑖=1  

=∑ (𝑒𝑖 − 𝑛𝑖 + 2)𝑘
𝑖=1  

=∑ 𝑒𝑖𝑘
𝑖=1 -∑ 𝑛𝑖𝑘

𝑖=1 +∑ 2𝑘
𝑖=1   -k 

=e-n+2k-k 

=e-n+k 

So the total number of interior regions are f=e-n+k+1. 

38.5 Theorem 5 

Let G be a simple connected planar graph with n vertices,e edges and f regions.Then  

(a)e≥3f/2 

(b)e≤3n-6. 

 

Proof 



 

If n=3 then G may have 2 or 3 edges.If G has 3 edges then G has 2 faces otherwise G has 1 

region.Thus if e=3,f=2 and if e=2,then f=1.In any case( a) is true. 

So we assume n=4 or n>4.If G is tree then e=n-1; and f=1 as there is no circuit to enclose a finite 

region.In that case e=n-1≥4-1=
3

2
2>3/2=3/2.f  proving the result (a).If G is not a tree then it must 

contain  a circuit and at least one circuit  all of whose edges are boundary of infinite region of 

G.Now since G has no loop or parallel so number of boundary edges≥3,So sum of boundary 

edges≥3f. 

Now the left side of the above inequality each edge is counted either once or twice. 

Thus LHS of  the inequality≤2e. 

Therefore 2e≥3f 

i.e. e≥
3𝑓

2
 

(b) Now from a previous theorem we have f=e-n+2.Then from result (a) we have  

e≥
3(𝑒−𝑛+2)

2
 

or,2e≥3e-3n+6 

or,e≤ 3n-6 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 39: 

39.1 Kuratowski First Graph 

A complete graph with five vertices is Kuratowski First graph. It is denoted by K5.It is shown in 

the following graph. 

 

39.2 Kuratowski Second Graph 

A regular connected  graph with six vertices and nine edges is Kuratowski Second Graph.It is 

denoted by K3,3..It  is shown as follows 

 

 

39.3 Homeomorphic Graph 

Let e be an edge joining  the  two vertices u and v in a graph G.Let a new graph H be formed by 

deleting the edge e and introducing a new vertex w and two edges ,one joining  u and w and the 

other joining v and w. This operation of replacement of an edge by two edges and a new vertex is 

called  edge subdivision.A graph is obtained from a graph G by a sequence of subdivision is 

called aHomeomorph.Two graph are said to beHomeomorphicof each is a homeomorph of 

same graph. 

 

EXAMPLE 



 

H 

 

 

 

Note1: Kurtatowskifirst graph is not planar. 

Note 2:Kuratowski second graph is not planar. 

Note-3:Removal of one edge of both Kuratowski graph make them planar. 

Note-4:A graph G is planar if and only of G does not contain either of the Kuratowski two 

graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 40: 

40.1 Detection of Planarity 

Given any graph G we reduce it to a simple form through the following simplifying steps.Then it 

becomes easy to detect whether the graph is planar or not. 

Step 1:  If G has several components,consider only one component at a time(since G is planar iff 

each component of its be planar). 

Step 2: If any component is separable it would have several blocks.Consider only one block at a 

time(since component is planar iff each block of its be planar). 

Step 3: Remove all self-loops from G addition or deletion of self-loops does not affect the 

planarity. 

Step 4: Keep only one edge between any two vertices by removing all parallel edges between 

them, since this does not affect the planarity. 

Step 5:If G has two edges having exactly one vertex in common and if this vertex is of degree 2 

thenelimination of such vertex does not affect the planarity of G.So remove all such vertex from 

G. 

Step 6:  Repeat the above steps so long as we can.After going through the above steps  a block or 

component of G would be look like (1) a single edge,(2)a complete graph with four vertices or 

(3) a graph with number of vertices ≥5 and number of edges ≥7. 

  If it looks like (1) or (2) then it would be planar and if it be look like (3) then it is non-planar. 

 

EXAMPLE 

Check whether graph is planar or not 

 

We see the vertex v10 in G is a cut vertex.So G is separable.so the two blocks are 



 

 

In G1 the vertices v1,v3 ,v5 has degree 2 each.These are also common vertices of edges v1v3 and 

v1v6etc.So in G1 we remove the vertices v1,v3,v5 and G1 is converted to 

 

This graph is planar since every edge of this subgraph is drawn without any cross over.Similarly 

other block G2 is also planar. 

Thus the given graph is planar.  

 

 

 

 

 

 

 

 

 

 



 

LECTURE 41: 

41.1 Dual graphs 

Introdution 

Let G be a plane graph. The dual of G is defined to be the graph G ∗ constructed as follows. To 

each region f of G there is a corresponding vertex f ∗ of G ∗ and to each edge e of G there is 

corresponding edge e ∗ in G ∗ such that if the edge e occurs on the boundary of the two regions f 

and g, then the edge e ∗ joins the corresponding vertices f∗and g∗in G∗. If the edge e is a bridge, 

i.e., the edge e lies entirely in one region f , then the corresponding edge e ∗ is a loop incident 

with the vertex f ∗ in G∗. For example, consider the graph shown in Figure 

 

41.2 Theorem 

The dual G∗ of a plane graph is planar. 

Proof 

Let G be a plane graph and let G ∗ be the dual of G. The following construction of G ∗ shows that 

G ∗ is planar. 

Place each vertex f ∗
k of G ∗ inside its corresponding region fi . If the edge ei lies on the boundary 

of two regions f j and fk of G, join the two vertices f ∗
 j and f ∗

 k by the edge e ∗
i , drawing so that 

it crosses the edge e exactly once and crosses no other edge of G 



 

 

 

 

Remarks 

 Clearly, there is one-one correspondence between the edges of plane graph G and its dual G ∗ 

with one edge of G ∗ intersecting one edge of G. 

41.3 Relation between Planar and Dual graph 

Let G be a graph and G* be its dual. The relation between them are as follows: 

1. An edge forming a self-loop in G gives a pendant edge in G ∗ (An edge incident on a pendant 

vertex is called a pendant edge). 

2. A pendant edge in G gives a self-loop in G ∗ . 

3. Edges that are in series in G produce parallel edges in G ∗. 

4. Parallel edges in G produce edges in series in G ∗ . 

5. The number of edges forming the boundary of a region fi in G is equal to the degree of the 

corresponding vertex f ∗
i in G ∗ . 

6. Considering the process of drawing a dual G ∗ from G, it is evident that G is a dual of G ∗ . 

Therefore, instead of calling G ∗a dual of G, we usually say that G and G ∗are dual graphs. 

7. a)No. of vertices in G* =No. of regions in G 

    b) No. of regions in G* =No. of vertices in G 



 

    c) No. of regions in G* =No. of regions in G. 

8. G* is always connected,even when G is disconnected. 

Example 

A disconnected graph G is given below.Construct its dual and show that the dual is connected. 

Solution 

Let us consider the following graph 

 

F1,F2,F3 are three regions determined by G.v1,v2,v3 are three points taken in F1,F2,F3 respectively 

 

.They are joined accordingly and dual of the given graph G*  is formed. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 42: 

42.1 Graph colouring 

Colouring is one of the important branches of graph theory and has attracted the attention of 

almost all graph theorists, mainly because of the four colour theorem, the details of which can be 

seen in  this Chapter. 

42.2 Vertex colouring 

A vertex colouring (or simply colouring) of a graph G is a labelling f : V(G) → {1, 2, ...}; the 

labels called colours, such that no two adjacent vertices get the same colour and each vertex gets 

one colour. A k-colouring of a graph G consists of k different colours and G is then called k-

colourable. . A 2-colourable and a 3-colourable graph are shown in Figure. It follows from this 

definition that the k-colouring of a graph G(V, E) partitions the vertex set V into k independent 

sets V1, V2, ..., Vk such that V = V1∪V2∪...∪Vk . The independent sets V1, V2, ..., Vk are called 

the colour classes and the functionf : V(G) → {1, 2, ..., k}   such that f(v) = i for v ∈ Vi , 1 ≤ i ≤ 

k, is called the colour function.   

 

number (chromatic index) of G and is denoted by χ(G). If χ(G) = k, the graph G is said to be k- 

chromatic. The minimum number k for which there is a k-colouring of the graph is called the 

chromatic 

We observe that colouring any one of the components in a disconnected graph does not affect the 

colouring of its other components. Also, parallel edges can be replaced by single edges, since it 

does not affect the adjacencies of the vertices. Thus, for colouring considerations, we opt only 

for simple connected graphs. 



 

The following observations are the immediate consequences of the definitions introduced above. 

1. A graph is 1-chromatic if and only if it is totally disconnected. 

 2. A graph having at least one edge is at least 2-chromatic (bichromatic).  

3. A graph G having n vertices has χ(G) ≤ n 

. 4. If H is subgraph of a graph G, then χ(H) ≤ χ(G). 

5. A complete graph with n vertices is n-chromatic, because all its vertices are adjacent. So, 

χ(Kn) = n and χ(Kn) = 1. Therefore we see that a graph containing a complete graph of r vertices 

is at least r-chromatic. For example, every graph containing a triangle is at least 3-chromatic. 

6. A cycle of length n ≥ 3 is 2-chromatic if n is even and 3-chromatic if n is odd. To see this, let 

the vertices of the cycle be labelled 1, 2, ..., n, and assign one colour to odd vertices and another 

to even. If n is even, no adjacent vertices get the same colour, if n is odd, the nth vertex and the 

first vertex are adjacent and have the same colour, therefore need the third colour for colouring. 

7. If G1,G2,...,Gr are the components of a disconnected graph G, then 

χ(G) = max 1≤i≤r χ(Gi). 

We note that trees with greater or equal to two vertices are bichromatic as is seen in the 

following result. 

 

 

 

 

 

 

 

 



 

LECTURE 43: 

43.1 Theorem 1 

 Every tree with n ≥ 2 vertices is 2-chromatic. 

Proof 

Let T be a tree with n ≥ 2 vertices. Consider any vertex v of T and assume T to be rooted at 

vertex v. Assign colour 1 to v. Then assign colour 2 to all vertices  which are adjacent to v. Let 

v1, v2,..., vr be the vertices which have been assigned colour 2. Now assign colour 1 to all the 

vertices which are adjacent to v1, v2,..., vr . Continue this process till every vertex in T has been 

assigned the colour. . We observe that in T all vertices at odd distances from v have colour 2, and 

v and vertices at even distances from v have colour 1. Therefore along any path in T , the 

vertices are of alternating colours. Since there is one and only one path between any two vertices 

in a tree, no two adjacent vertices have the same colour. Thus T is coloured with two colours. 

Hence T is 2-chromatic.  

 

The converse of the above theorem is not true, i. e., every 2-chromatic graph need not be a tree. 

To see this, consider the graph shown in Figure 7. Clearly, G is 2-chromatic, but is not a tree. 



 

 

43.2 Theorem 2(Konig) 

 A graph is bicolourable (2-chromatic) if and only if it has no odd cycles. 

Proof 

Let G be a connected graph with cycles of only even length and let T be a spanning tree in G. 

Then, by Theorem 1, T can be coloured with two colours. . Now add the chords to T one by one. 

As G contains cycles of even length only, the end vertices of every chord get different colours of 

T . Thus G is coloured with two colours and hence is 2-chromatic. Conversely, let G be 

bicolourable, that is, 2-chromatic. We prove G has even cycles only. Assume to the contrary that 

G has an odd cycle. Then by observation (6), G is 3-chromatic, a contradiction. Hence G has no 

odd cycles.  

Corollary 

For a graph G, χ(G) ≥ 3 if and only if G has an odd cycle. The following result is yet another 

characterization of 2-chromatic graphs. 

43.3 Theorem 3 

A nonempty graph G is bicolourable if and only if G is bipartite. 

Proof 

Let G be a bipartite graph. Then its vertex set V can be partitioned into two nonempty disjoint 

sets V1 and V2 such that V = V1∪V2. Now assigning colour 1 to all vertices in V1 and colour 2 

to all vertices in V2 gives a 2-colouring of G. Since G is nonempty, χ(G) = 2. 



 

Conversely, let G be bicolourable, that is, G has a 2-colouring. Denote by V1 the set of all those 

vertices coloured 1 and by V2 the set of all those vertices coloured 2. Then no two vertices in V1 

are adjacent and no two vertices in V2 are adjacent. Thus any edge in G joins a vertex in V1 and 

a vertex in V2. Hence G is bipartite with bipartition V = V1∪V2.   

43.4  Theorem 4 

 For any graph G, χ(G) ≤ 4(G) +1. 

Proof 

Let G be any graph with n vertices. To prove the result, we induct on n. For n = 1,G = K1 and 

χ(G) = 1 and ∆(G) = 0. Therefore the result is true for n = 1. 

Assume that the result is true for all graphs with n−1 vertices and therefore by induction 

hypothesis, χ(G) ≤ ∆(G−v)+1. This shows that G−v can be coloured by using ∆(G−v)+1 colours. 

Since ∆(G) is the maximum degree of a vertex in G, vertex v has at most ∆(G) neighbours in G. 

Thus these neighbours use up at most ∆(G) colours in the colouring of G−v. 

If ∆(G) = ∆(G−v), then there is at least one colour not used by v’s neighbours and that  can be 

used to colour v giving a ∆(G) +1 colouring for G. 

In case∆ (G) 6=∆ (G − v), then∆ (G − v) <∆ (G). Therefore, using a new colour for v, we have 

a∆ (G−v) +2 colouring of G and clearly∆(G−v) +2 ≤ ∆(G) +1. Hence in both cases, it follows 

that χ(G) ≤∆ (G) +1. 

43.5 Theorem 5-Brook’s Theorem- 

If G is a connected graph which is neither complete nor an odd cycle, then χ(G) ≤ ∆(G). 

 

 

 

 



 

LECTURE 44: 

44.1 Chromatic Polynomials(Chromials) 

Let f(G,x) be the number of different colourings of a graph G with x or fewer colours.Then it can 

be shown that f(G,x) will be a polynomial of x.This f(G,x) is called chromatic polynomial of G. 

Consider the following graph G 

 

And the x number of colours C1,C2,C3,…..Cx.Since A,B,C are pairwise adjacent to each to each 

other,each should them should be assigned with distinct colour.Now A can be assigned with x 

number of colour.Therefore G may be colored in x(x-1)(x-2) way or fewer colours.Thus f(G,x)= 

x(x-1)(x-2)=x3-3x2+2x is the chromatic polynomial of G. 

44.2 Theorem-5 

Chromatic polynomial for complete graph with n vertices (Kn) is f(Kn,x)=x(x-1)(x-2)….(x-n+1). 

Proof 

Let the vertices of Kn be v1,v2,v3,…..vn and we have x number of colours 

C1,C2,C3,….Cx.Obviouslyx≥n.Since the vertices are pairwise adjacent to each other of them 

should be assigned with distinct colours.Now v1 can be assigned with x number of colours;v2 can 

be assigned with x-1 number of colours.Similarly,v3 can be assigned x-2 number of 

colours.Continuing this way vn can be assigned with x-n+1 number of colours. 

So,by principle of counting ,Kn can be coloured in x(x-1)(x-2)….(x-n+1) ways or fewer. 

44.3 Theorem-6 



 

The chromatic polynomial of a tree with vertices is x(x-1)n-1. 

Proof 

Let  G be a tree wuth n vertices. We shall prove its chromatic polynomial is x(x-1)n-1.We prove 

that by the method of induction.For n=1 the result is obvious.For n=2 G has two vertices v1 and 

v2.v1 may assigned with x number of colours from a collection of x colours.Since,v2  is adjacent 

to v1,v2 can be assigned with x-1 colours 

Therefore, f(G,x)=x(x-1) proving the result for n=2.Let the result hold for n=m.We shall prove 

that it hold for n=m+1.Since G is a tree it must have at least once pendant vertex say v.Then the 

graph  G-v  is also a tree with m vertex.Then by hypothesis its f(G-V,x)=x(x-1)m-1.Since v is 

pendant so its adjacent to only one vertex  say v1.Since v cannot be  assigned with the colour of 

v1  so v can be assigned with x-1 number colours.So by the principle of counting  

f(G,x) =x(x-1)m-1(x-1)=x(x-1)m. 

 

44.4 Theorem -7 

The chromatic polynomial is a polynomial. 

Proof 

Let G be graph with n vertices.Let G be coloured with i number of  ofcolours in ci different 

ways.Since i colours  can be choosen from x number of colours  in xCi ways ,there are  xCiways 

of colouring  with i number of colours taken  from x number of colours.Since  G has n vertices 

so  it is not possible  to  use  more than x colours for colouring of G.Therefore i=1,2,….n. 

Thus the chromatic polynomial is 

f(G,x)=c1
 xC1 +c2

 xC2 +…..+cn
xCn 

each ci ha sto be evaluated individually for the given graph  but it can be mentioned that each c i 

is positive integer.AgainxCi=x(x-1)(x-2)0….(x-i+1)/i! is a polynomial of x.So f(G,x) is a 

polynomial of degree at most n. 

44.5 Decomposition Theorem 



 

Let v1 andv2 be two non-empty adjacent vertices of a simple graph  G.Let G׳be a graph  obtained 

by adding an edge between v1 and v2. Let G״ be a graph obtained from G merging   v1 and v2 

together.Then  f(G,x)= f(G׳,x)+ f(G״,x). 

44.6 Four Colour Theorem 

Every planar graph has  a chromatic number four or less. 

44.7 Five Colour Theorem 

A planar graph can be  coloured with five colours. 

EXAMPLEFind the chromatic number of the following graph   

 

SOLUTION 

Since the vertices A,B,C form a triangle so three colours are must for them.Say Red to A,Blue to 

B,Green to C. 

D is adjacent to B and C.Therefore D is assigned to D and C so F is asssigned with 

Blue.Similarly E is assigned with Green.Finally G is assigned with Red. 

Thus the graph is 3 vertex colourable but not 2.So chromatic number of this graph is 3. 
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