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Module I: Numerical Method I 

 

Total Number of Lectures: 20L 

 LECTURE: 1. Approximation in Numerical Computation 

Introduction 

The ultimate goal of the field of numerical analysis is to offersuitableapproaches for findingbeneficial 

solutions to mathematical problems and for removing useful information from available solutions which are 

not expressed in manageable forms. Such problems may be expressed, for example, in terms of an algebraic 

or transcendental equation, an ordinary or partial differential equation, or an integral equation, or in terms of 

a set of such equations etc. 

Significant Figures: 

The numbers 1,2,3,4,5,6,7,8,9 are all significant figures. But 0 is not constantly a significant figure. It is 

significant except when it is used to fix decimal point or to fill the place of unknown or discarded digits. As 

for example in the numbers 2407, 3500, 21780, 5.2307,zeros are significant. But in the numbers 

0027,0.00057,0.12, 0.7800 zeros are not significant figures. 

Errors: 

In numerical calculation, sometimes methods are approximated and data are also inexact and in most cases 

result in numerical calculation will have some blunders. The errors are basically of two types of error are 

known as truncating error and other is computational error. 

Truncation Error: 

The truncation error is the error which is inherent in numerical data itself. Truncation error is also observed 

when initial data are not exact. In this case also we cannot be removed the error from the given data if the 

problem is solved correctly. 

 

Computational Error: 

The computational error arises during arithmetic calculation mainly due to the approximation of numbers. In 

arithmetic calculation, most numbers are used by taking finite number of digits. Again in the case of 

subtraction of nearly two equal numbers, multiplication or division of very small numbers, sometimes lack 

of significant digits are observed. Accordingly computational error is again characterized into two types –
first one is significant error and other is rounding off error. 

Rounding off Error:  

These types of error occur in arithmetic calculation when we round off numbers. When the given data are 

not exact , the data are used in calculation by taking their approximation only, then some errors occur and 

they propagate in arithmetic calculation these errors are known as rounding off error. 

The general rule for rounding-off a number to n-significant figures are: Discard all digit to the right of the 

nth place, if the discarded number is less than half a unit in the nth place, leave the nth digit is unchanged;  if 

the discarded number is greater than half a unit in the nth place, add 1(one) to the nth digit. If the discarded 



digit is exactly half a unit in the (n+1)th place, leave the nth digit unaltered if it is an even number, but 

increase it by 1 (one) if it is an odd number. 

Example: Correct up to six significant figures: 

(i) 24.564932 becomes 24.5649 (ii)24.564962 becomes  24.5650  (iii) 24.564652  becomes 24.5646  

(iv) 24.564752 becomes 24.5648  

Significant Error:  

Significant error arises due to lack of significant digits when we subtraction of nearly two equal numbers, 

multiplication or division of small number by a second smaller number. As for example in the subtraction of 

two numbers 0.87251527 and 0.87251526123, if we take the values up to five decimal places, then serious 

error may be observed when the result is zero. Hence, significant error arises due to the loss of significant 

digits and not from the data. 

Approximate Error: 

Approximate error is defined as the difference between true value and approximate value. Let xT and xa 

denotes the true value and absolute value of any quantity or number then approximate error is denoted by EA 

and is given by  

ATA xxE   

Absolute error: 

The absolute value of the approximate error is known as absolute error. Hence absolute error is given by  

|||| ATA xxE   

Relative error:  

The ratio of absolute error and true value of a quantity is known as relative error. The relative error is given 

by  

T

A

x

E ||
and denoted by ER. 

Percentage error:  

Percentage error is the error which is 100 times the relative error. If EP is the percentage error then 
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Theorem: 

 If a number which is correct upto n significant figures and the first significant digit is k, then the relative 

error ER≤
110.

1
n

k
. 

 

 

 



LECTURE 2 

Fixed and floating-point arithmetic: 

 

Any rounded number can be written in the standard form:  
n

mbbb 10.......0 21   

Where n is an integer, positive, negative or zero and m is a positive integer and .01 b  Then the rounded 

number is said to have m significant digits or figures. The above form of a rounded number is called the 
floating point representation of the given number. 

 
Propagation of error: 

We are alert that our given original data are exaggerated with round-off error which lies within the limit 
2

1
  

in the last significant figure. Let us see how these original round-off errors move the successive differences 

in a difference table. If iy denotes the exact value of )( ixf , then its entered (by mistake or any how) value is 

iiy  , where i is the analogous round-off error and the difference table continues as shown in the table 

below: 
 
 
 

ix  iy  iy  iy
2  iy

3   

0x  00 y      

  
010  y     

1x  11 y   
0120

2 2   y    

  
121  y   

01230
3 33   y   

2x  22 y   
1231

2 2   y   …………… 

  
232  y   

12341
3 33   y   

3x  33 y   
2342

2 2   y   …………… 

  
343  y   

23452
3 33   y   

4x  44 y   
3453

2 2   y    

  
454  y     

5x  55 y      

 
 

Ex1. Write down the approximate representation of 2/3 correct to four significant figures and then find  
(a) Absolute error (b) relative error (c) relative percentage error. 

Solution: The approximate representation of 2/3 correct up to four significant figures is 0.6667. 
Therefore XT= 2/3 and XA=0.6667 
Absolute error |EA|=|XT  - XT |= |2/3 – 0.6667 | = 0.000033 
Relative error ER = EA/XT = 0.000033/(2/3) = 0.0000495 ≈ 0.00005 
Relative percentage error EP = ER x 100 = 0.005% 

 
LECTURE 3:Interpolation: 

 

Introduction: 

Consider a single valued continuous function y = f (x) defined over [a,b] wheref (x) is known explicitly. It is 
easy to find the values of ‘y’ for a given set of values of ‘x’ in [a,b]. i.e., it is possible to get information of 

b.But the converse is not so easy. That is, using only the points  (x0 , y0 ) ,  



(x1 , y1 ) ,…,  b i =, 0,1,2,..., n , it is not so easy to find the relation between x and y in 
the form y = f (x) explicitly. That is one of the problems we face in numerical 
differentiation or integration .Now we have first to find a simpler function, say g(x) , such that f (x) and g(x) 
agree at the given set of points and accept the value of g(x) as the required value of f (x) at some point x in 
between a and b. Such a process is called interpolation. 

 
In linear interpolation, we are given with two pivotal values f0 = f (x0 ) and  f1 = f (x1 ), 
and we approximate the curve of  by a chord (straight line) P1 passing through the points (x0 , f0 ) and  (x1 , 
f1) . Hence the approximate value off(x) at the intermediate point x = x0 + rh is given by the linear 
interpolation formula 

 
f (x) ≈ P1 (x) = f0 + r( f1 - f0) = f0 + r∆f0 

 

Where   r=
x−x0h and 0 ≤ r ≤ 1. 

 
 

Forward Differences: 

Let us consider a function y=f(x) defined for (n+1) distinct arguments of x say x0, x1 = x0+h, x2 = 
x0+2h,……, xn= x0+nh in [a,b] and the corresponding functional values arey0 = f(x0), y1 = f(x1) = f(x0+h), y2 
= f(x2) = f(x0+2h),…….., yn = f(xn) = f(x0+nh). The values of x i.e. x0, x1 = x0+h, x2 = x0+2h,……, xn= 
x0+nhare called the arguments or nodes and the values of the function corresponding to the function are 
called entries. 

 
The forward difference of y=f(x) is denoted by 

 
∆f(x) = f(x+h)-f(x), i.e. 

 
∆f(x0) = f(x0+h)-f(x0)=y1-y0=∆y0 

∆f(x0+h) = f(x0+2h)-f(x0+h)=y2-y1=∆y1 

∆f(x0+2h) = f(x0+3h)-f(x0+2h)=y3-y2=∆y2 

……………………………………………….. 

 

The back ward difference of y=f(x) is given by  ∇f(x) = f(x + h) − f(x) i.e ∇f(𝑥0 + ℎ) = f(𝑥0 + h) − f(𝑥0) = 𝑦1 − 𝑦0=∇𝑦1 ∇f(𝑥0 + 2ℎ) = f(𝑥0 + 2h) − f(𝑥0 + ℎ) = 𝑦2 − 𝑦1 = ∇𝑦2 ∇f(𝑥0 + 3ℎ) = f(𝑥0 + 3h) − f(𝑥0 + 2ℎ) = 𝑦3 − 𝑦2 = ∇𝑦3and so on 
…………………………. 
 
Example :Evaluate f (15), given that f(10) = 46, f(20) = 66. 

 
Here x0 = 10 , x1 = 20, h = x1 - x0 =20 - 10 = 10, 
f0= f(x0) = 46 and f1 = f(x1) = 66. 

Now to calculate f(15), take x = 15, so that where  r=
x−x0h  

and hence 
f (15) ≈ P1 (15) = f0 + r( f1 - f0 ) = 46 + 0.5 (66 - 46) = 56 

 
 

LECTURE 4: 
 

Newton’s Forward Difference Interpolation Formula: 

 

Using Newton’s forward difference interpolation formula we find the n degreepolynomial Pn  which 
approximates the function f(x) in such a way that Pnand f agrees at n+1 equally spaced arguments, so that 



Pn(x0) = f0,Pn(x1) = f1 … … . . Pn(xn) = fn, where f1 = f(x1), … … … , fn = f(xn) are the values of f in the 
table. 

 
Newton’s forward difference interpolation formula is 

 f(x) ≈ Pn(x) = f0 + r∆f0 + r(r − 1)2! ∆2f0 + ⋯ … … + r(r − 1) … … (r − n + 1)n! ∆nf0 

 where x = x0 + rh, r = x − x0h     ,0 ≤ r ≤ n. 
 

Example Using Newton’s forward difference interpolation formula and the following 
table evaluate f(15) . 

 
X f(x) ∆ f0 ∆2f0 ∆3f0 ∆4f0 

 
10                           46    
20 
 
20                           66   -5 
152 
 
30                           81   -3-3 
12-1                     
40                           93  -4 
8 
50                           101                  
 
 

Here x = 15, x0 = 10,  
x1 = 20, h = x1 - x0 = 20 - 10 = 10, 
 r = (x - x0)/h = (15–10)/10 = 0.5,  
 f0 =-46, ∆f0 = 20,  ∆2f0= -5,   ∆3f0= 2,    ∆4f0= -3. 
Substituting these values in the Newton’s forward difference interpolation formula for 

n = 4, we obtain  f(x) ≈ Pn(x) = f0 + r∆f0 + r(r−1)2! ∆2f0 + ⋯ … … + r(r−1)……(r−n+1)n! ∆nf0 

so that 
f(15)= 56.8672, correct to 4 decimal places. 
 
LECTURE 5: 

 
Newton’s Backward Difference Interpolation Formula: 

 

Newton’s backward difference interpolation formula is f(x) ≈ Pn(x) = fn + r∇fn + r(r + 1)2! ∇2fn + ⋯ … … + r(r + 1) … … (r + n − 1)n! ∇nfn 

 

where x=xn + rh, r=x−xnh and -n £ r £0 . 

 
 
 
 
 
 
 
 



 
 
 
 
Problem: For the following table of values, estimate f(7.5), using Newton’s backward difference 
interpolation formula. 

 
X F 𝛁𝐟𝐧 𝛁𝟐𝐟𝐧 𝛁𝟑𝒇𝒏 𝛁𝟒𝒇𝒏 

1                       1 
7 
28     12 
196 
327     180 
376 
4    64 24                                            0 
616 
5125 30      0 
916 
6 216 36      0 
1276 
7  343   42 
169 
8   512                                                          
 
 

Since the fourth and higher order derivatives are zero,so f(x) ≈ Pn(x) = fn + r∇fn + r(r + 1)2! ∇2fn + r(r + 1)(r + 2)3! ∇3fn 

where x=xn + rh, r=x−xnh and -n ≤ r ≤0   

f(7.5)=512+(-0.5)(169)+
(−0.5)(−0.5+1)2! (42) + (−0.5)(−0.5+1)(−0.5+2)3! 6 

=421.875 

LECTURE 6: 

Stirling’sand  Bessel’s Interpolation Formula:  

Stirling’s Interpolation Formula: 

This formula gives the average of the values obtained by Gauss forward and backward interpolation 

formulae. It is an interpolation formula for (2n + 1) equispaced argument. For using this formula we should 

have – ½ < u< ½. We can get very good estimates if - ¼ < u < ¼. The formula is: 

y=𝑦0 + 𝑢 (∆𝑦0+∆𝑦−12 ) + 𝑢22! ∆2𝑦−1 + 𝑢(𝑢2−12)3! (∆3𝑦−2+∆3𝑦−12 ) + 𝑢2(𝑢2−12)4! ∆4𝑦−2 + 𝑢(𝑢2−12)(𝑢2−22)5! (∆5𝑦−3+∆5𝑦−22 ) … … … … … … … … … … … … … + 𝑢2(𝑢2−12)…….(𝑢2−(𝑛−1)2)(2𝑛)! ∆2𝑛𝑦−𝑛 

Bessel’s Interpolation formula: 

It is also an central difference interpolation formula for even number of equispaced arguments. This formula 

is the average of Gauss forward and backward interpolation formulae. 

The formula is: 

 



y = 𝑦0+𝑦12 + 𝑣∆𝑦0 + (𝑣2−14)2! ∆2𝑦−1+∆2𝑦02 + 𝑣(𝑣2−14)3! . ∆3𝑦−1 + (𝑣2−14)(𝑣2−94)4! ∆4𝑦−2+∆4𝑦−12 +   … … … … … … … … … … … … … … … … … + 𝑣(𝑣2−14)………….(𝑣2−(2𝑛−3)24 )(2𝑛−1)! . ∆2𝑛−1𝑦−𝑛+1 

Example: Use Stirling’s or Bessel’s interpolation,compute(i) f(1.315)  (ii) f(1.362) from the following table :  

X 1.0 1.1 1.2 1.3 1.4 1.5 1.6 

F(x) 1.54308 1.66852 1.81066 1.97091 2.15090 2.35241 2.57746 

 

 

Solution:The difference table 

X Y=f(x) ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

X-31.0                     1.54308      

                                                0.1254                          

X-21.1                      1.66852                                            0.01670                     

                                                        0.14214                                             0.00141 

X-11.2                      1.81066                                             0.01811                                      0.00022 

                                                        0.16025                                             0.00163 

X01.3                      1.97091                                            0.01974                                          0.00015 

                                                       0.17999                                              0.00178 

X11.4                      2.15090                                             0.02152                                          0.00024 

                                                       0.20151                                              0.00202 

X21.5                      2.35241                                               0.02354 

                                                        0.22505 

X31.6     2.57746    

(i) To compute f(1.315) we may use the Stirling’s  formula  

    X0=1.3      𝑢 = 1.315−1.30.1 = 0.15 

y=𝑦0 + 𝑢 (∆𝑦0+∆𝑦−12 ) + 𝑢22! ∆2𝑦−1 + ⋯ … … … … … … … … … … … … + 𝑢2(𝑢2−12)…….(𝑢2−(𝑛−1)22𝑛! ∆2𝑦−𝑛 

f(1.315)=1.97091+0.15×
0.16025+0.179992 + (0.15)22 × (0.01974) + (0.15)((0.15)2−1)6 0.00163+0.001782 +(0.15)2((0.15)2−1)24 × 0.00015=1.9966083 

(ii) To compute f(1.362) we may use Bessel’s formula  



𝑢 = 1.362 − 1.30.1 = 0.62 

y=
𝑦0+𝑦12 + 𝑣∆𝑦0 + ⋯ … … … … … … … … … … … … … … … … + 𝑣(𝑣2−14)………….(𝑣2−(2𝑛−3)24(2𝑛−1)!  

𝑓(1.3620) = 1.97091 + 2.150902 + 0.12 × 0.17999 + (0.12)2 − 0.252 × 0.01974 + 0.021512+ (0.12)((0.12)2 − 0.25)6 × 0.00178 + ((0.12)2 − 0.25)((0.12)2 − 0.25)24× 0.00015 + 0.000242 = 2.080069466 

 
 

LECTURE 7: 
 

Lagrange’s Interpolation Formula: 

If the function f(x) is known for (n+1) distinct values of x say x0, x1, . . .,xn which are not equispaced then 
we used Lagrange’s interpolation formula.   

 
The Lagrange’s interpolation formula is given by 𝑓(𝑥) ≈ L(𝑥) = w(x) ∑ f(𝑥𝑟)(𝑥 − 𝑥𝑟)𝑤′(𝑥𝑟)𝑛

𝑟=0  w(x) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2) … … … … … (𝑥 − 𝑥𝑛) w′(𝑥𝑟) = (𝑥𝑟 − 𝑥0)(𝑥𝑟 − 𝑥1) … … . (𝑥𝑟 − 𝑥r−1)(𝑥𝑟 − 𝑥r+1) … … (𝑥𝑟 − 𝑥n) 
 

Example: Certain corresponding values of x and log10 x are 
(300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871).Find  log10301. 

 
 

 log10 301=
(−3)(−4)(−6)(−4)(−5)(−7) (2.4771) + (1)(−4)(−6)(4)(−1)(−3) (2.4829) + (1)(−3)(−6)(5)(1)(−2) (2.4843) + (1)(−3)(−4)(7)(3)(2) (2.4871) 

 
= 1.2739 + 4.9658 - 4.4717 + 0.7106 
= 2.4786. 
 
 
LECTURE 8: 

Newton’s Divided Difference Interpolation Formula: 

 

If x0, x1, . . . ,xn  are arbitrarily spaced (i.e. if the difference between x0 and x1, x1 and x2 etc. may not be 
equal), then the polynomial of degree n through (x0 , f0), (x1, f1),……(xn ,fn) where fj =f(xj)  is given by 
the Newton’s divided difference interpolation formula (alsoknown as Newton’s general interpolation 
formula) given by 
f (x) ≈ f 0 + (x - x0) f [x0 , x1]+ (x - x0)(x - x1) f [x0 , x1, x2]+ . . .+( x - x0 ). . . (x - xn-1)f[ x0 , . . . , xn ], 
with the remainder term after (n +1) terms is given by 
( x - x0 ). . . (x - xn)f[ x0 , . . . , xn ], 
where  f [x0 , x1 ],f[ x0 , x1, x2] ,.....      are the divided differences given by 

 f[x0, x1] = f(x1) − f(x0)x1 − x0  

 



f[x0, 𝑥1, x2] = f[x1, x2] − f[x0,x1]x2 − x0  

 𝑓[𝑥0, … … , 𝑥𝑘] = 𝑓[𝑥1, … … … , 𝑥𝑘] − 𝑓[𝑥0,………….,𝑥𝑘−1]𝑥𝑘 − 𝑥0  

 

Therefore f[x0, … … , xn] = f[x1,………,xn]−f[x0,………….,xn−1]xn−x0  

 
LECTURE 9: 

 
Example: Using the following table find f (x) as a polynomial in x 

x F(x) 
-1 3 
0 -6 
3 39 
6 822 
7 1611 
 
 
The divided difference table is 
 
    x F(x) 1st 2nd 3rd 4th 
    -1 3     
   1   -9    
  4  0 -6  6   
 7  3   15  5  
8  6  3 39  41  1 
 7  3   261  13  
  4  6 822  132   
   1   789    
    7 1611     
 

Newton’s Divided Difference Interpolation Formula is 
 

f(x)= f(x0)+ (x-x0)f(x0, x1)+ (x-x0) (x-x1)f(x0, x1 , x2)+ (x-x0) (x-x1) (x-x2)f(x0, x1 , x2, x3) 
          + (x-x0) (x-x1) (x-x2) (x-x3)f(x0, x1 , x2, x3 , x4) 

 
 

Therefore  
f(x)=3+(x+1)(-9)+x(x+1)(6)+x(x+1)(x-3)(5)+x(x+1)(x-3)(x-6) 

 =x4 -3x3+5x2-6 
 
 
 

LECTURE 10: 
 
Numerical Integration 

 

It is, well known to us that, though f(x) is completely known, it is not always easy, or rather, not always 

possible to evaluate a definite integral off(x) by the known analytical methods of integration. For example 

f(x)=𝑒−𝑥5
,

𝑒𝑥|𝑥+5| etc. further, there are a number of situations where a table of values is known,viz., a table of 

population in different years etc. in these cases also, the known analytical integration methods fail to find a 

definite integral and the only numerical integration methods are suitable to evaluate a definite integral. 



In this chapter we derive and analyses numerical methods to evaluate definite integrals of the form 

                                                                          I= ∫ 𝑓(𝑥)𝑑𝑥𝑏𝑎  

The principle of integration is: Fit up a suitable interpolation polynomial to the given set of values of f(x) 

and then integrate it within the desired limits. For any interval [a,b] by replacing the function f(x) with a 

suitable polynomial p(x) such that ∫ 𝑝(𝑥)𝑑𝑥𝑏𝑎  is taken to be an approximation of the integral I. The 

approximation of  I is usually known as “Numerical integration or Quadrature”. 

Let y=f(x) be a real valued function defined in [a,b] such that the values of f(x) are known for 

x=xi ( i= 0,1,2,…..n) whose all xi lies in [a,b] and yi=f(xi), (I =0,1,2……n). Also let p(x) be the 
interpolating polynomial of degree at most n such that p(xi) = f(xi)=yi 

Thus, p(x)≈f(x) and so I = ∫ 𝑓(𝑥)𝑑𝑥𝑏𝑎  ≈ ∫ 𝑝(𝑥)𝑑𝑥𝑏𝑎  

Then the expression E(x) = ∫ 𝑓(𝑥)𝑑𝑥𝑏𝑎  - ∫ 𝑝(𝑥)𝑑𝑥𝑏𝑎  is known as the error of integration. 

 

 

Degree of Precision. 

A quadrature is said to have a degree of precision M(>0) if it is exact but there is atleast one polynomial of 

degree M+1 for which it is not exact. 

Composite rule 

Sometimes it is more convenient to divide the interval [a,b], of integration into finite number of sub-

intervals, say m(<n), [ai-1,ai], i=1,2,…..m. Then we apply a quadrature formula separately to each of these 

sub-intervals and add the results. This formula is thus obtained is called composite rule corresponding to that 

Quadrature formula. 

 

Newton-Cotes formula (Closed type) 

In this formula, we shall consider the (n+1) interpolating points or nodes xi (i=0,1,2……..n) be equispaced 
and such that a=x0 , xi=x0+ih, xn=b (i=0,1,2……..n) and h=(b-a)/n. we have,  ∫ 𝑓(𝑥)𝑑𝑥𝑏𝑎  ≈I= ∑ 𝑓(𝑥𝑖  𝑛𝑖=0 ) 𝐵𝑖(𝑛)

 

Where, 𝐵𝑖(𝑛)
=∫ 𝑤(𝑥)𝑑𝑥(𝑥−𝑥𝑖)𝑤′(𝑥𝑖)𝑏𝑎 =∫ 𝑤(𝑥)𝑑𝑥(𝑥−𝑥𝑖)𝑤′(𝑥𝑖)𝑥0+𝑛ℎ𝑥0  

To evaluate 𝐵𝑖(𝑛)
, we set x=𝑥0 + ℎ𝑡 

So, ∫ 𝑓(𝑥)𝑑𝑥𝑏𝑎  ≈ I= (b-a)∑ 𝑓(𝑥𝑖  𝑛𝑖=0 ) 𝐾𝑖(𝑛)
 Where 𝐾𝑖(𝑛) = (−1)𝑛−𝑖𝑛.𝑖!(𝑛−𝑖)! ∫ 𝑡(𝑡−1)(𝑡−2)…..(𝑡−𝑛)(𝑡−𝑖)𝑛0 𝑑𝑡…(1) 

The error committed in newton-cotes formula is  

𝑛+1 = ℎ ∫ ℎ𝑛+1(𝑡 − 1)(𝑡 − 2) … . . (𝑡 − 𝑛)(𝑛 + 1)!𝑛
0 𝑓𝑛+1(€)𝑑𝑡 



LECTURE 11:  

Trapezoidal Rule 

It is two points closed-typed Newton-Cotes quadrature formula in the interval [a,b]. Here n=1, and h=b-a. 

Thus, from (1) we get, replacing I by IT  

IT= (b-a)∑ 𝑓(𝑥𝑖)1𝑖=0 𝐾𝑖(1)
=(b-a)[𝐾0(1)𝑓(𝑥0) + 𝐾1(1)𝑓(𝑥1)] 

                                           = (b-a) [
12y0+

12y1] 

                       = 
(𝑏−𝑎)2  [y0+ y1] 

The error is given by  

ET=2=ℎ3 ∫ 𝑡(𝑡−1)2!10 𝑓′′(€)𝑑𝑡 = - 
ℎ312 𝑓′′(€) = - 

(𝑏−𝑎)312 𝑓′′(€) , (a<€<b) 

The degree of precision in trapezoidal rule is 1. 

 

Simpson’s one-third rule 

It is three points newton cotes quadrature formula in the interval [a,b].  

Here, n=2 and h=(b-a)/2, replacing I by Is, we get from (1) 

IS= (b-a) ∑ 𝑓(𝑥𝑖)2𝑖=0 𝐾𝑖(2)
=(b-a) [𝐾0(2)𝑓(𝑥0) + 𝐾1(2)𝑓(𝑥1) + 𝐾2(2)𝑓(𝑥2)] 

                        =
(𝑏−𝑎)6  [y0+ 4y1+ y2] 

                                             =h/3 [y0+ 4y1+ y2] 

The error is given by ES =3= - 
ℎ590 𝑓′′′′(€)  , (a<€<b)  

The degree of precision in Simpson’s 1/3 rule is 3. 

PROBLEM 1 

Evaluate ∫ 𝒅𝒙𝟏+𝒙𝟐𝟏𝟎  by Trapezoidal and Simpson’s 1/3 rule taking n=6.  

Solution: 

Let f(x)=
11+𝑥2 since n=6, so h=(1-0)/6=1/6. 

The tabulated values of f(x) for different values of x are given below 

xi 

i=0 to 6 

Yi=f(xi) 
i=0, 6 

Yi=f(xi) 
i=1,3,5 

Yi=f(xi) 
i=2,4 

0 1 - - 
1/6 - 0.973 - 
2/6 - - 0.9 
3/6 - 0.8 - 
4/6 - - 0.6923 



5/6 - 0.5902 - 
1 0.5 - - 
 ∑=1.5 ∑=2.3632 ∑=1.5923 
 

i) We have by composite Trapezoidal rule ∫ 𝑑𝑥1+𝑥210  ≈ h/2[y0+yn+2(y1+y2+……. +yn-1)] 

              =1/12[1.5+2(2.3632+1.5923)] 

              = 0.7842 

ii) We have by composite Simpson’s one third rule ∫ 𝑑𝑥1+𝑥210  ≈h/3[y0+yn+4(y1+y3+……)+2(y2+y4+……)] 

              =1/18[1.5+4(2.3632)+2(1.5923)] 

              = 0.7854 

 

LECTURE 12: 

PROBLEM 2 

Evaluate ∫ √𝒔𝒊𝒏𝒙 𝒅𝒙𝜫/𝟐𝟎  by Trapezoidal and Simpson’s 1/3 rule taking n=6.  

 

Solution- here a=0, b=Π/2, n=6   h= Π/12 

X 0 Π/12 Π/6 3Π/12 4Π/12 5Π/12 Π/2 

Y 0 0.5087 0.7071 0.8409 0.9306 0.9828 1.000 

 

iii) We have by composite trapezoidal rule ∫ 𝑑𝑥1+𝑥210  ≈ h/2[y0+yn+2(y1+y2+……. +yn-1)] 

= Π/24[1.0000+2(2.3324+1.6377)] 

                  = 1.17027 

ii) We have by composite Simpson’s one third rule ∫ 𝑑𝑥1+𝑥210  ≈h/3[y0+yn+4(y1+y3+……) +2(y2+y4+……)] 

                  =Π/36[1.0000+4(2.3324) +2(1.6377)] 

                  =1.18726 

LECTURE 13: 



Weddle’s Rule 

Let the values of a function f(x) be tabulated at points xi equally spaced by h = xi+1 – xi, so f1 = f(x1), f2 = 

f(x2), .... Then Weddle's rule approximating the integral of f(x) is given by the Newton-cotes -like formula  

∫ 𝑦𝑑𝑥 = (3ℎ10) [𝑦0 + 2(𝑥𝑛𝑥0 𝑦6 + 𝑦12 + ⋯ 𝑦𝑛−6) + 5(𝑦1 + 𝑦7 + ⋯ ) + 6(𝑦3 + 𝑦9 + ⋯ + 𝑦𝑛−3) + 𝑦𝑛] 
Problem 

Evaluate  ∫ 2𝑥𝑑𝑥60  up to three decimal places, by Weddle’s rule? 

Solution: 

Let h= 1.0. The tabulated values of x and y are given below 

X 0 1 2 3 4 5 6 

Y 0 2 4 6 8 10 12 

 

From Weddle’s rule, we have 

∫ 𝑦𝑑𝑥 = (3ℎ10) [𝑦0 +𝑥𝑛𝑥0 5(𝑦1 + 𝑦5) + 6(𝑦3) + (𝑦2 + 𝑦4) + 𝑦6] 
                                              = 36 

PROBLEM 2 

Evaluate ∫ 𝒅𝒙𝟏+𝒙𝟐𝟐𝟎  by Weddle’s rule taking 12-intervals, correct upto 4 significant figures. 

Solution: 

Let f(x)=
11+𝑥2 since n=12, so h=(2-0)/12=1/6. 

The tabulated values of f(x) for different values of x are given below 

X y 
0 1.00000 
1/6 0.97297 
2/6 0.90000 
3/6 0.80000 
4/6 0.69231 

5/6 0.59016 

6/6 0.50000 

7/6 0.42353 

8/6 0.36000 

9/6 0.30769 

10/6 0.26470 

11/6 0.22930 



12/6 0.20000 

 

From Weddle’s rule, we have 

I ≈ (3h/10) [y0+y12+5(y1+y5+y7+y11) + (y2+y4+y8+y10) +6(y3+y9) +2y6] 

   = (3/60) × 22.14295 

  = 1.071475 

  = 1.1071(correct up to 4 D.p) 

LECTURE 14: 

Romberg Integration 

Richardson extrapolation is not only used to compute more accurate approximations of derivatives, but is 

also used as the foundation of a numerical integration scheme called Romberg integration. In this scheme, 

the integral 

I(f) =∫ 𝑓(𝑥)𝑑𝑥𝑏𝑎  

is approximated using the Composite Trapezoidal Rule with step sizes hk = (b-a)2-K , where k is a 

nonnegative integer. Then, for each k, Richardson extrapolation is used k-1 times to previously computed 

approximations in order to improve the order of accuracy as much as possible. 

More precisely, suppose that we compute approximations T1;1 and T2;1 to the integral, using the Composite 

Trapezoidal Rule with one and two subintervals, respectively. 

 That is, T1:1= ((b-a)/2)[f(a)+f(b)] 

 T2:1= ((b-a)/4)[f(a)+f(b)+2f{(a+b)/2}] 

Suppose that f has continuous derivatives of all orders on [a,b]. Then, the Composite Trapezoidal Rule, for a 

general number of subintervals n, satisfies 

∫ 𝑓(𝑥)𝑑𝑥 = ℎ2 [𝑓(𝑎) + 𝑓(𝑏) + 2 ∑ 𝑓(𝑥𝑗)] + ∑ 𝐾𝑖ℎ2𝑖∞
𝑖=1

𝑛−1
𝑗=1

𝑏
𝑎  

where, h =(b a)/n, xj = a + jh, It follows that we can use Richardson Extrapolation to compute an 

approximation with a higher order of accuracy. If we denote the exact value of the integral by I(f) then we 

have 

T
1:1 = I(f) + K1h

2 + O(h4) 

T
2:1 = I(f) + K1(h/2)2 + O(h4) 

Neglecting the O(h4) terms, we have a system of equations that we can solve for K1 and I(f). The value of 

I(f), which we denote by T2;2, is an improved approximation given by 

                                                     T2:2= T2:1+[ (T2:1- T1:1)/3] 

It follows from the representation of the error in the Composite Trapezoidal Rule that I(f) = T2;2 + 

O(h4).Suppose that we compute another approximation T3;1 using the Composite Trapezoidal Rule with 4 



subintervals. Then, as before, we can use Richardson Extrapolation with T2:1 and T3:1 to obtain a new 

approximation T3;2 that is fourth-order accurate. Now, however, we have two approximations, T2:2 and T3:2 

that satisfy 

                                                     T2:2= I(f)+K2h
4+O(h6) 

T3:2= I(f)+K2(h/2)4+O(h6) 

 It follows that we can apply Richardson Extrapolation to these approximations to obtain a new 

approximation T3:3 that is sixth-order accurate. We can continue this process to obtain as high an 

order of accuracy as we wish. 

Problem 

We will use Romberg integration to obtain a sixth-order accurate approximation to ∫ 𝑒−𝑥2𝑑𝑥10  

an integral that cannot be computed using the Fundamental Theorem of Calculus. We begin by 

using the Trapezoidal Rule, or, equivalently, the Composite Trapezoidal Rule ∫ 𝑓(𝑥)𝑑𝑥 = ℎ2 [𝑓(𝑎) + 𝑓(𝑏) + 2 ∑ 𝑓(𝑥𝑗)]𝑛−1𝑗=1𝑏𝑎  ,where h=(b-a)/n 

With n-1 subintervals. Since h = (b-a)/n = (1-0)/1 = 1; we have  

R1;1 = 1/2[f(0) + f(1)] = 0:68393972058572 

which has an absolute error of 6.3×10-2. 

If we bisect the interval [0,1] into two subintervals of equal width, and approximate the area 

under 𝑒−𝑥2
using two trapezoids, then we are applying the Composite Trapezoidal Rule with n = 2 

and h =(1-0)/2 =1/2, which yields 

R2:1 = (0.5/2) [f (0) + 2f (0.5) + f (1)] = 0:73137025182856. 

which has an absolute error of 1.5×10-2. As expected, the error is reduced by a factor of 4 when 

the step size is halved, since the error in the Composite Trapezoidal Rule is of O(h2). 

Now, we can use Richardson Extrapolation to obtain a more accurate approximation, 

R2:2 = R2:1 ++[ (R2:1- R1:1)/3] = 0.74718042890951 

which has an absolute error of 3.6×10-4. Because the error in the Composite Trapezoidal Rule 

satisfies 

∫ 𝑓(𝑥)𝑑𝑥 = ℎ2 [𝑓(𝑎) + 𝑓(𝑏) + 2 ∑ 𝑓(𝑥𝑗)]𝑛−1
𝑗=1

𝑏
𝑎 + K1h2  + K2h4 + K3h3 + O(h8) 

where the constants K1, K2 and K3 depend on the derivatives of f(x) on [a,b] and are independent 

of h, we can conclude that R2:1 has fourth-order accuracy. 

 

We can obtain a second approximation of fourth-order accuracy by using the Composite 

Trapezoidal Rule with n = 4 to obtain a third approximation of second-order accuracy.  



We set h = (1-0)/4 =1/4, and then compute 

R3:1= (0.25/2)[f(0)+2[f(0.25)+f(0.5)+f(0.75)+f(1)] 

     = 0.74298409780038 

 

LECTURE 15: 

Numerical Solution of system of linear equations 

Introduction 

A system of linear algebraic equations in n unknowns xi(i=1,2,……n) can be expressed as follows 

a11x1+a12x2+…….+a1nxn=b1 

a21x1+a22x2+……..+a2nxn=b2          ……………………………………………….(1) 

……………………………………………………….. 

an1x1+an2x2+………..+annxn=bn 

 

Here, coefficients aij and the constants bi are given. A solution of (1) is a set of values xi which satisfy (1). 

System of equation (1) is said to be homogeneous if all bi are equal or zero,otherwise the system is called 

non-homogeneous. 

The system can be written as AX=B where A is the (nxn) coefficient matrix,where we assume that A is non-

singular. 

If the diagonal element of the co-efficient matrix A satisfy the following conditions 

|𝑎𝑖𝑖| > ∑|𝑎𝑖𝑗|𝑛
𝑗=1𝑖≠𝑗

(𝑖 = 1,2,3, … 𝑛) 

𝑖. 𝑒|𝑎11| > |𝑎12| + |𝑎13| + |𝑎14| + ⋯ |𝑎1𝑛| |𝑎22| > |𝑎21| + |𝑎23| + |𝑎24| + ⋯ |𝑎2𝑛| |𝑎33| > |𝑎31| + |𝑎32| + |𝑎34| + ⋯ |𝑎3𝑛| 
-------------------------------- |𝑎𝑛𝑛| > |𝑎𝑛1| + |𝑎𝑛2| + |𝑎𝑛3| + ⋯ |𝑎𝑛,𝑛−1| 

then the system of linear equations are called strictly diagonally dominant.  

The system of equations can be solved in two ways  

1) Direct method and 2) Iterative method.  

Through finite steps of elementary arithmetic operations we obtain the solution in direct method where as in 

iterative method we assume an initial approximation and improve the solution by iteration.In this chapter we 

will discuss the methods in many ways.In direct method the following will be described 



1)Gauss Elimination 

2)LU factorization method. 

And in iterative method Gauss-Seidel will be described. 

 

LECTURE: 16 

Gauss-Elimination Method 

In this method, the system is converted to an equivalent upper triangular system by a systematic elimination 

procedure. 

To discuss about the method let us consider the following system 

a11x1+a12x2+……+a1nxn=b1 

a21x1+a22x2+…….+a2nxn=b2 

……………………………………. 
an1x1+an2x2+……..+annxn=bn                             ……….(2) 
 

Let us take a11≠0.Now multiplying the 1st equation of (2) by ai1/a11 and subtract from i th equations 

we obtain 

 

a11x1+a12x2+…………+a1nxn=b1 

a22
(1)x2+…………+a2n

(1)xn=b2
(1)

 

……………………………………. 

an2
(1)x2+………………. + ann

(1)xn=bn
(1)     ………..(3) 

whereaij
(1) =aij-a1j.ai1/ a11 

bi
(1)  =   bi-b1 ai1/ a11    where(i,j=2,…n) 

the numbers  ai1/ a11 are called row multipliers,the first equation of the system (3) contain x1 while the other  

(n-1) equations are independentof x1. 

In the next step we take a22
(1)  ≠0.Multiplying the 2nd equation of (3) by ai2

(1)/a(1)
22(where i=3,4,….n) we 

obtain  

a11x1+a12x2+……+a1nxn=b1 

a22
(1)x2+…….+an2

(1)xn=b2
(1) 

a33
(2)x3+…..+a3n

(2)=b3
(2) 

……………………………………. 
                   an3

(2)x3+…….      + ann
(2)xn=bn

(2)     ………..(4) 

whereaij
(2) =aij

(1)-a2j
(1).ai2

(1)/ai2
(1) 

bi
(2)  =   bi

(1)-b2
(1) ai2

(1)/ai2
(1)    where(i,j=3,…n) 

Here, ai2
(1)/ai2

(1)  is also row multiplier.Proceeding as above we can reduce the given system to an upper 

triangular system as follows     

 a11x1+a12x2+……+a1nxn=b1 

a22
(1)x2+…….+an2

(1)xn=b2
(1) 



a33
(2)x3+…..+a3n

(2)=b3
(2) 

……………………………………. 

ann
(n-1)xn=bn

(n-1)        …………(5) 

The co-efficient of leading terms in (5) i.e. a11,a22
(1),…is called pivotal elements and corresponding 

equations are pivotal equations.At the last stage by back substitution the solution occurs. 

 

LECTURE: 17 

EXAMPLE  

Solve the following system of equations by Gauss Elimination method 

X+2y+z=0 

2x+2y+3z=3 

-x-3y     =2 

ANSWER 

In order to eliminate x from the last two equations we multiply the first equation successively by 2 and-1  

andsubtract from the 2nd and 3rd equation we obtain 

-2y+z=3……….(1) 

-y+z=2…………(2) 

In the next step,we eliminate y from (2) by multiplying the equation (1) by ½  and subtract we obtain 𝑧2 =12 

Thus the given system of equations reduces to the following upper triangular system as 

X+2y+z=0 

2y+z=3 𝑧2=
12 

By back substitution we obtain the required solution as x=1,y=-1,z=1. 

 

LU FACTORIZATION METHOD 

This method is also said as triangular decomposition method.The method based on the fact that every square 

matrix can be expressed as the product of a lower and upper triangular matrix provided all the principal 

minors  of the given square matrixA=(aij) are nonsingular i.e a11≠0,|𝑎11 𝑎12𝑎21 𝑎22|≠0,……detA≠0. 

Moreover,if the matrix can be factorized,then it is unique.Assume that it is possible to decompose the 

coefficient matrix A of the given system of equation (2) and is expressible as the product of a lower 

triangular matrix L and an upper triangular matrix U so that 



A=LU                                                    …….(6) 

Where 

 

                                                                                                                ……….(7) 

Hence the system of equations AX=b become LUX=b                ……..(8) 

Putting UX=Y in (8) we get  

LY=b                                              …….(9) 

where Y=(y1,y2,……..,yn)
T 

Thus using forward substitution ,the unknowns y1,y2,……..,ynare determined from (9) and then the 

unknowns x1,x2,……,xn are obtained from (8) by backward substitution. 

Now we consider a system of three equations with three unknowns 

a11x1+a12x2+a13x3=b1 

a21x1+a22x2+a23x3=b2  

a31x1+a32x2+a33x3=b3                  ……(10) 

Here the coefficient matrix is A=[𝑎11 𝑎12 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33] can be written as 

A=LU 

where L=[𝑙11 0 0𝑙21 𝑙22 0𝑙31 𝑙32 𝑙33] and U=[1 𝑢12 𝑢130 1 𝑢230 0 1 ] 

Thus, we have  [𝑙11 0 0𝑙21 𝑙22 0𝑙31 𝑙32 𝑙33] [1 𝑢12 𝑢130 1 𝑢230 0 1 ]=[𝑎11 𝑎12 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33] 

Leading to 

l11=a11,l21=a21,l31=a31 

l11u12=a12,l11u13=a13 which implies u12=a12/l11,u13=a13/l11, 

l21u12+u22=a22 which implies l22=a22-l21u12=a22-a21.a12/a11 

l31u12+l32=a32 which implies l32=a32-a31.a12/a11 

l21u13+l22u23=a23 which implies u23=a23-l21u13/l22 



and l31u13+l32u23+l33=a33 which implies l33=a33-l31u13-l32u23. 

Thus, we obtained values of l11,l21,……and u12,u13,…..gives the matrices L and U. 
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EXAMPLE 

Solve the following system 

3x1+2x2-4x3=12 

-x1+5x2+2x3=1 

2x1-3x2+4x3=-3 

By LU Factorization method. 

ANSWER 

Let, 

[𝑙11 0 0𝑙21 𝑙22 0𝑙31 𝑙32 𝑙33] [1 𝑢12 𝑢130 1 𝑢230 0 1 ]=[ 3 2 −4−1 5 22 −3 4 ] 

Or,[𝑙11 𝑙11. 𝑢12 𝑙11. 𝑢13𝑙21 𝑙21. 𝑢12 + 𝑙22 𝑙21. 𝑢13 + 𝑙22. 𝑢23𝑙31 𝑙31. 𝑢12 + 𝑙32 𝑙31. 𝑢13 + 𝑙32. 𝑢23 + 𝑙33]=[ 3 2 −4−1 5 22 −3 4 ] 

Therefore l11=3 

l11u12=2 →u12=2/3 

l11.u12=-4→u13=-4/3 

l21=-1 

l21u21+l22=5→l22=17/3 

l21u13+l22u23=2→u23=2/17 

l31=2 

l31u12+l32=-3→l32=-13/3 

l31u13+l32u23+l33=4→l33=366/51 

Thus [ 3 0 0−1 17/3 02 −13/3 366/51] [1 2/3 −4/30 1 2/170 0 1 ]=[ 3 2 −4−1 5 22 −3 4 ] 

From (9), we get  

 

[ 3 0 0−1 17/3 02 −13/3 366/51] [𝑦1𝑦2𝑦3]=
121−3 



Solving we obtain  

y1=4 

y2=15/17 

y3=-1 

Again from (6) we get 

[1 2/3 −4/30 1 2/170 0 1 ] [𝑥1𝑥2𝑥3]=
415/17−1  

Solving we get x1=2,x2=1 and x3=-1. 

Gauss-Seidel Method 

This method is an improvised form of Gauss Jacobi method since the improved values of xi are used here in 

each iteration rather than the values of the previous iteration and thus this method is also called Method of 

Successive Displacements. 

To discuss the method,we rewrite the system of equations (1) as 

x1=(b1-a12x2-a13x3-……….-a1nxn)/a11 

x2=(b2-a21x1-a23x3-…………….- a2nxn)/a22 

……. 

xn=(bn-an1x1-an2x2…………….- ann-1xn-1)/ann             …….(11) 

Provided a11≠0(i=1,2,…..n)  

To solve the equation (11) suppose x1
(0),……xn

(0) be the initial approximation  of the equation (1).Now 

substituting those initial values in the RHS of the first equation of (11) and get the first approximation of x1 

as 

x1
(1) =(b1-a12x2

(0)-a13x3
(0)-……….-a1nxn

(0))/a11 

In the second equation of (11) we substitute the improved value x1
(1) and initial values x3

(0),x4
(0),….,xn

(0) and 

obtain the first approximation of x2 as 

x2
(1)=(b2-a21x1

(1)-a23x3
(1)-…………….- a2nxn

(1))/a22 

Next we substitute in the third equation of (11) the improved values of x1
(1),x2

(1) and the initial values of 

x4
(0),x5

(0),…..,xn
(0) to obtain the first approximation of x3 as 

X
3

(1)=(b3-a31x1
(1)-a32x2

(1)-a34x4
(0)-…..-a3nxn

(0))/a33 

Proceeding in such manner we finally obtain 

Xn
(1)=(bn-an1x1

(1)-an2x2
(1)…………….- ann-1xn-1

(1))/ann 

Thus the end of the first stage of iteration,we get first approximation x1
(0),x2

(0)……,xn
(1) to the solution 

x1,x2,….,xn. 



Now if xi
(k)(k=0,1,2,…n) be the k th approximation to the solutions of xi(i=1,2,…n) then the (k=1+ th 

approximation xi
k+1 of xi are given by  

 

X1
(k+1)=(b1-a12x2

(k)-a13x3
(k)-……….-a1n

(k)xn
k)/a11 

x2
(k+1)=(b2-a21x1

(k+1)-a23x3
(k

)-…………….- a2nxn
(k)))/a22 

……. 

Xn
(k+1)=(bn-an1x1

(k+1)-an2x2
(k+1)…………….- ann-1xn-1

(k+1))/ann             …….(11) 

The process is continued until we obtain the solution x1,x2,…,xn with sufficient degree of accuracy. 

The sequence {xi
(n)} generated from(11) can be shown to be convergent to the solution {xi

*} if  |𝑎ii|>∑ |𝑎𝑖𝑗|𝑛𝑗=1𝑗≠𝑖 ,(i=1,2,……,n)                                         ………(12) 

Hence the Gauss-Seidel iteration is convergent if the system of equations (1) is strictly diagonally dominant. 

 

LECTURE 19: 

EXAMPLE 

Solve the following system of equation by Gauss-Seidel method 

20x1+5x2-2x3=14 

3x1+10x2+x3=17 

X1-4x2+10x31=23 

Correct upto 4 decimal places. 

ANSWER 

The system is obviously diagonally dominant. 

We write the corresponding iteration formulae as: 

x1
(k+1)=

120[14-5x2
(k)+2x3

(k)] 

x2
(k+1)= 110[17-3x1

(k+1)-x3
(k)] 

x3
(k+1)=

110[23-x1
(k+1)+4x2

(k+1)] 

Computation table is given below 

K x1
(k) x2

(k) x3
(k) 

0 0 0 0 
1 0.7 1.5 3.5 



2 0.68 1.15 2.69 
3 0.682 1.226 2.722 
4 0.6667 1.2278 2.7244 
5 0.6665 1.2279 2.7246 
6 0.6655 1.2279 2.7246 
 

Thus, x1=0.6655,x2=1.2279,x3=2.7246 correct upto 4 decimal places. 

 

LECTURE 20: 

Successive Over Relaxation Method 

  Any second order Elliptic Equation e.g. Laplace Equation, while solving by FD method, always reduces to 

a equation containing ui,j ,ui1, j , ui1, j and ui, j1which for different values of (i, j) may be converted to a 

system of equations. Rewriting equation again: 

Ui+1,j+ui-1,j+ui,j-1+ui,j+1-4ui,j=(∆x)2f(i∆x , j∆y) 

Putting j =1, i =1,2,-------,N, then j =2, i =1,2,--------,N and in the same manner j = M, i =1,2,----- ,N, thus 

finally we obtain a system of M  N equations which are solved by any convenient method to get ui, j at all 

nodes. This is one of the implicit scheme but however sometimes the size of the system becomes so large 

that it is unmanageable. Hence, this method is not an efficient way for solving Elliptic PDE. 

 One of the techniques used for this purpose is the Successive over relaxation (SOR) method. 

To explain its implementation, we can write 

Ui,j
n+1=ui,j

n+
𝑤4[(∆x)2 fi,j –ui-1,j

n+1–ui,j-1
n+1–ui,j+1

n –ui+1,j
n-4ui,j

n] 

Thus Ui,j
n+1=w(R.H.S of Gauss-Seidel method)-(w-a)ui,j

n 

w is called as a relaxation parameter. It is verified that for over relaxation method,1<w<2. 

For a rectangular domain, a reasonable estimate of  can be taken as the small root of the equation 

(𝑐𝑜𝑠 𝑀 + cos 𝜋𝑁)2w2-16w+16=0 

where M and N are number of sub-domain in each side. 

Therefore w=
42+4−𝑘^2 

where k= (𝑐𝑜𝑠 𝑀 + cos 𝜋𝑁) 

The following table shows the value of for different M & N 

M=N W2 
2 1.000 



3 1.072 
5 1.260 
10 1.528 
20 1.729 
∞ 2.000 

 

It is observed that usually Wopt=1.5 

For large M and N, one can approximate w by 

Wopt=2-2(
1𝑚^2+

1𝑛^2)0.5≈2(1-
𝑀),M=N. 

EXAMPLE 

Solve 2u=0 subject to Dirichlet conditions in the domain 0  x  0.75 , 0  y  0.75 with  ∆x=∆y=0.25                     
subject to the boundary conditions: u(0,y) =0, u(0.75,y) =10 and u(x,0) =0, u(x,0.75) =10    by  SOR 

Method. 

SOLUTION 

k= (𝑐𝑜𝑠 𝑀 + cos 𝜋𝑁), M, N  no. of sub  divisions. Here M  3, N  3. 

The equations in the iterative form can be written as follows:  

W=
4 2+4−𝑘^2 

Therefore w=1.072. 

(Start with assumed values ui,j
0=0) 

U1,1
n+1=1.072[

12(u2,1
n+5)]-0.072u1,1

n 

U2,1
n+1=1.072[

14(u21
n+u2,2

n+10)]-0.072u2,1
n 

U2, 2
n+1=1.072[

12(u2,1
n+1+10)]-0.072u2,2

n 

 

The values so computed are given in the following table: 

 U1,1 U2,1 U2,2 

n=0 0 2.68 6.70 
n=1 1.4365 4.6676 7.3794 
n=2 2.3984 4.9644 7.4896 
n=3 2.4882 4.9844 7.4817 
n=4 2.4988 4.9914 7.4917 
 

Hence solution correct to 2d is: u1,1=2.50 ; u 2,1=5.00 ; u 3,1=7.50 

Thus SOR Method gives faster convergence. 

 

 

 

 



 

 

Module II: Numerical Method II 

Total Number of Lectures: 13L 

 LECTURE: 21:  Solution of polynomial and transcendental equations: 

Bisection Method:  

The bisection method in mathematics is a root-searching method that constantly bisects an interval and then 

chooses a subinterval in which a root must lie for further handling. It is a very easy and lengthy method. 

Because of this, it is often used to get a rough estimate to a solution which is then used as a preliminary 

point for more fast converging approaches. The method is also called the interval splitting method, 

 the binary searchmethodor the dichotomy method. 

If we want to find the solution to the equation 0)( xf , where f  is well behaved.      

 Given a function )(xf continuous on an interval  ],[ 00 ba  and satisfying  0)()( 00 bfaf  

For n = 0, 1, 2, … until the desired step, 

We Compute       
2

nn

n

ba
x


  

 If 0)( nxf  accept nx  as a solution and stophere. 

Else we continue the procedure, 

If 0)()( nn xfaf
,
 a root lies in the interval ),( nn xa  .  

The we Set nnnn xbaa   11 & . 

 If 0)()( nn xfaf   a root lies in the interval ),( nn bx .  

Then we Set nnnn bbxa   11 &   . 

Then, 0)( xf   for some x in ],[ 11  nn ba . 

 Then we can stop our searching procedure. 

Advantage of bisection method: 

 a) The iteration using bisection method always creates a root, since the method stays the root between two 

values. 

 b) As iterations for finding the root are directed, the size of the interval becomessplit. So, one can ensure the 

convergence in case of the solution of the equation.  

c) The Bisection Method is modest to program in a computer. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Root-finding_method
https://en.wikipedia.org/wiki/Bisection
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Root_of_a_function


Disadvantage of bisection method:  

a) The convergence of the bisection method is quite slow even sloth as it is simply grounded on splitting the 

interval. 

 b) Bisection method cannot be applied over an interval where the function is discontinuous. 

c) Bisection method cannot be applied over an interval where the function takes the value which has same 

sign.  

d) The method unable to find complex roots.  

LECTURE: 22 

Ex1: Compute, correct to 4-significant figures, the smallest positive root of the equation 0124  xx by 

method of bisection. 

Solution:   

Let, 1)( 24  xxxf . 

Here, 1)0( f , 69.0)5.0( f , 05.0)8.0( f , 27.0)7.0( f . 

Therefore 0)8.0()7.0( ff  

Therefore, the positive root of 0)( xf lies between 0.7 and 0.8. 

Computations: 

n 
na  nb  

2
1

nn

n

ba
x


  )( 1nxf  

0 0.7 0.8 0.75 -0.12 
1 0.75 0.8 0.77 -0.06 
2 0.77 0.8 0.78 -0.02 
3 0.78 0.8 0.79 0.01 
4 0.78 0.79 0.785 -0.004 
5 0.785 0.79 0.787 0.003 
6 0.785 0.787 0.786 -0.00053 
7 0.786 0.787 0.7865 0.0012 
8 0.786 0.7865 0.7862 0.00017 
9 0.786 0.7862 0.7861 -0.00018 
10 0.7861 0.7862 0.78615 -0.0000048 
Therefore the desired root of the given equation is 0.7861 

 

RegulaFalsi method or Method of False Position: 

 This method is also built on the intermediate value theorem of a continuous function as like bisection 

method was. In this method also, as in bisection method, we select two points na and nb such that )( naf  

and )( nbf  are of opposite signs (i.e., 0)()( nn bfaf ) .  

Then, intermediate value theorem recommends that a zero of )(xf   lies in between na and nb ,  if  f is a 

continuous function. 



Given a function )(xf  continuous on an interval ],[ 00 ba  and satisfying 0)()( 00 bfaf . 

 For n = 0, 1, 2, … until desired step:  

Calculate
)()(

))((

00

000
01

afbf

abaf
ax




 . Then,calculate )( 1xf .  

If 0)()( 10 xfaf , then we fixed 1101 & xbaa  and calculate
2x and hence )( 2xf . 

If 0)()( 10 xfaf , then we fixed 0111 & bbxa  and calculate
2x and hence )( 2xf . 

Continuing the same technique,we get, 

)()(

))((
1

nn

nnn

nn
afbf

abaf
ax




 .  

If 0)( 1 nxf ,           then, 1nx is the root of the specified equation. 

Advantage and disadvantage of RegulaFalsi Method: 

1. The formula is easy for calculation. 
2. The method does not need the derivatives or the value of the derivatives to be limited for the 

convergence. 
3. The method is obviously convergent as well as very slow to converge. 
4. The interval in which the root lies essential be very small. 

 

 

Problem: Find the root of 85.1cos32  xx by RegulaFalsi Method, correct to six significant figures. 

Solutions:  

Let    85.1cos32)(  xxxf  

Therefore     47.1)1( f , 40.3)2( f  

Therefore the positive root of 0)( xf lies between 1  and 2.  

We take 2&1 00  ba  

n )( vean   )( vebn   )( naf  )( nbf  

)()(

)(

nn

nnn

n
bfaf

abaf
h




  

nnn hxx 1  )( 1nxf  

0 1 2 -1.47 3.40 0.30 1.3 -0.05 <0 

1 1.3 2 -0.0525 3.40 0.01 1.31 -0.00355 <0 

2 1.31 2 -0.00355 3.40 0.00072 1.31072 -0.000023 <0 

3 1.31072 2 -
0.00002293 

3.40 0.0000046 1.3107246 -0.00000041 
<0 

4 1.3107246 2 -
0.00000041 

3.40 0.00000008 1.31072468 -0.00000001 
<0 

 



Therefore the required root of the given equation is 1.31072 

 

 

LECTURE: 23 

Newton-Raphson Method: 

 This technique is called Newton’s method. This method is also a chord method in which we approximate 

the curve closer to a root, by a straight line. Let 0x  be an initial approximation to the root of 0)( xf . 

Then, ),( 00 fxP , where 000 )( fxf  , is a point on the curve. Draw the tangent to the curve at P.  We 

estimated the curve in the neighborhood of the root by the tangent to the curve at the point P. The point of 

intersection of the tangent with the x-axis is engaged as the next estimate to the desired root. The process  

repeats until the required exactness is gained. The equation of the tangent to the curve )(xfy   at the point 

),( 00 fxP  is given by  

)()()( 0
'

00 xfxxxfy  where )( 0
'

xf  is the slope of the tangent to the curve at P.  

We set y = 0 and solving for x, we get 
)(

)(

0
'

0
0

xf

xf
xx   , 0)( 0

' xf . 

 The next estimation to the root is given by 

)(

)(

0
'

0
01

xf

xf
xx   , 0)( 0

' xf . 

 We repeat the process. The iteration method is defined as 

)(

)(
'1

k

k

kk
xf

xf
xx   , 0)(' kxf  

 This method is called the Newton-Raphson method or simply the Newton’s method. The method is also 

called the tangent method. 

Advantages: 

Since the rate of Convergence of the method is quadratic the method converges more fast. 

If the function is approximately vertical when it crosses the x-axis, the exact value of the root can be found 

with great rapidity and very slight effort. 

Disadvantage:  

It is evident from the formula that larger derivative )(' xf  the lesser is the correction which must be applied 

to get the correct value of the root.  

If )(' xf  is very small in the neighborhood of the root the values of 
)(

)(
'

k

k

xf

xf
h  would be enormous and 

the computation of the root by this method would be a slow procedure or might even fails to converge. 



The sequence converges if , the initial guess is chosen adequately close to the root else the sequence may 

diverge. 

 

 

LECTURE: 24 

Ex2. Solve equation 0410  x
x correct to six significant figures by Newton-Raphson method. 

Solution: 

We note that  

3)0( f , 34.0)5.0( f , 7)1( f  

So the desired root lies between ]5.0,0[  

Now                     410)(  xxf
x

 and 110ln10)('  x
xf  

Here we take 5.00 x is the initial point. 

N 
nx  )( nxf  )( nxf   

)(

)(

n

n

n
xf

xf
h


  nnn hxx 1  

0 0.5 -0.3377 8.281 0.04 0.54 
1 0.54 0.007369 8.984 -0.000820 0.539180 
2 0.539180 0.000007874 8.969 -0.000000878 0.5391791 
3 0.5391791 -0.000000198 8.969 0.000000022 0.539179122 
 

Therefore, the root of the given equation is 0.539179. 

LECTURE: 25 

Secant Method: 

The Newton-Raphson method needs the estimate of two functions (the function and its 

derivative) for each iteration. If they are complex expressions, it will take large amount of effort 

to handle the calculations. Hence it is necessary to have a method that converges as fast as 

Newton's method yet involves only the estimate of the function. Let x0 and x1 are two initial 

approximations for the roots of f(x) = 0 and f(x0) & f(x1) respectively, are their function values. 

If x 2 is the point of intersection of x-axis and the line-joining the points (x0, f(x0)) and (x1, f(x1)) 

then x2 is closer to the desired root i.e. the root of the given equation, than x0 and x1. The 

equation relating x0, x1 and x2 is found by considering the slope 'm' of the line. 

12

1

12

12

01

01 )(0)()()()(

xx

xf

xx

xfxf

xx

xfxf
m













 



 )()(

)(*)(

01

011
12

xfxf

xxxf
xx





 

 )()(

)(*)(

01

011
12

xfxf

xxxf
xx





 

or in general the iterative procedure can be written as  
 
 

)()(

)(*)(

1

1
1




 




ii

iii
ii

xfxf

xxxf
xx .,.........3,2,1i  

Ex. Solve equation 0410)(  xxf
x correct to six significant figures by the secant method. 

Solution:  

Take   
5.00 x

, 

6.01 x

 and 
given 

10)(  xxf
x

. 

Compution: 

 

 

 

 

 

 

Therefore required root of the given equation is   0.539179 

 

LECTURE: 26:  Numerical Solution of Ordinary Differential Equation: 

Taylor series method 

It is a simple and useful numerical method for solving an ordinary differential equation 

y' = f(x, y),   y(x0) = y0 

n 
nx  )( nn xfy   

)()(

)(*)(

1

1









ii

iii
n

xfxf

xxxf
h  nnn hxx 1  

0 0.5 -0.3377   
1 0.6 0.5811 -0.6 0.54 
2 0.54 0.007369 -0.008 0.5392 
3 0.5392 0.0001873 -0.000021 0.539179 
4 0.539179 -0.000001095 0.000000122 0.5391791 
5 0.5391791 -0.000000198 0.000000022 0.539179122 



where f is a function of two variables x and y and (x0 , y0) is a known point on the solution curve. 

The existence of all higher order partial derivatives is assumed for y at x = x0, then by Taylor series the 

value of y at any neibhouring point x+h can be written as  

y(x0+h) = y(x0) + h y'(x0) + h
2
 /2 y''(x0) + h

3
/3! y'''(x0) +  .  .  .  .  .  . 

where ' represents the derivative with respect to x.  Since at x0, y0 is known, y' at x0 can be found by 

computing f(x0,y0).  Similarly higher derivatives of y at x0 also can be computed by making use of the 

relation  

 y'  = f(x,y)  

 y''  = fx + fyy'  

  y''' = fxx + 2fxyy' + fyy y'
2 + fyy''  

and so on. 

Then y(x0+h) = y(x0) + h f + h
2 

 ( fx + fyy' ) / 2! + h
3
 ( fxx + 2fxyy' + fyy y'

2 + fyy'' ) / 3! + o(h
4
) 

Hence the value of  y  at any neighboring point  x0+ h  can be obtained by summing  the above infinite 

series.   However,  in any practical computation, the summation has to be terminated after some finite 

number of terms.  If the series has been terminated after thep
thderivative term then the approximated 

formula is called the Taylor series approximation toy of order p and the error is of order p+1.  The same can 

be repeated to obtain y at other points of x in the interval [x0, xn] in a marching process.   

 

Error in the approximation : 

The Taylor series method of order p has the property that the final global error is of 

order O(h
p+1

); hence p can be chosen as large as necessary to make the error is as small as desired.  If the 

order p is fixed, it is theoretically possible to a priori determine the size of h so that the final global error 

will be as small as desired.  Since  

Ep= 
1(𝑝+1)! ℎ𝑝+1𝑦𝑝+1(𝑥 + 𝜃ℎ),  0< θ <1 

Making use of finite differences, the (p+1)
th derivative of y at x+θh can be approximated as  

𝐸𝑝 = ℎ𝑝(𝑦𝑝(𝑥 + 𝜃ℎ) − 𝑦𝑝(𝑥))(𝑝 + 1)!  

However, in practice one usually computes two sets of approximations using step sizes h and h/2 and 

compares the solutions. 

For p = 4, E4 = c * h
4 and the same with step size h/2,   E4 = c * (h/2)

4, that is if the step size is halved the 

error is reduced by an order of 1/16. 

EXAMPLE 

Using Taylor series method, find y(0.1) for y' = x - y
2
 ,  y(0) = 1 correct upto four decimal places. 

Solution: 

Given y' = f(x,y) = x - y
2 



⇒y''   = 1 - 2yy',     y''' = -2yy'' - 2y'2,     yiv  = -2yy''' - 6y'y'',    yv  =  -2yyiv -8y'y''' -6y''2 

Since at x = 0, y = 1; 

y' = -1,     y'' = 3,     y''' = -8,     yiv  = 34    and    yv  = -186 

The forth order Taylor's formula is 

y(x) = y(x0) + (x-x0) y'(x0, y0) + (x-x0)
2 y''(x0, y0)/2! + (x-x0)

3 y'''(x0, y0)/3!   
                                                                       + (x-x0)

4 yiv(x0, y0)/4! + h5yv(x0, y0)/5! +. . . 

       = 1 - x + 3 x2/2! - 8 x3/3! + 34 x4/4! - 186 x5/5!                         (since x0 = 0) 

       = 1 - x + 3 x2/2 - 4 x3/3 + 17 x4/12 - 31 x5/20  
 Now  
y(0.1) = 1 - (0.1) + 3 (0.1)2/2 - 4 (0.1)3/3 + 17 (0.1)4/12 - 31 (0.1)5/20  
          = 0.9 + 3 (0.1)2/2 - 4 (0.1)3/3 + 17 (0.1)4/12 - 31 (0.1)5/20  
          = 0.915  - 4 (0.1)3/3 + 17 (0.1)4/12 - 31 (0.1)5/20  
          = 0.9137 + 17 (0.1)4/12 - 31 (0.1)5/20  
          = 0.9138 - 31 (0.1)5/20  
          = 0.9138 

Since the value of the last term does not add upto first four decimal places, the Taylor series formula of 
order four is sufficient to find y(0.1) accurate upto four decimal places. 

 

LECTURE: 27 

Euler’s Method: 

Working formula for the ODE  0 0( , ) ( )
dy

f x y with y x y
dx

  , where  x0 is the initial value of x and  y0is 

the initial value of y.  
 
x1=x0+h, where h is the step length , now approximate value of y at x=x1(=x0+h) written as 

1 1 0 0 0( ) ( , )y x y y hf x y    . 

Again the approximate value of y at x=x2(=x1+h) written as 

2 2 1 1 1( ) ( , )y x y y hf x y    . 

Then the general formula we written as  

1 1( ) ( , ) ( 0,1,2,3,.....)n n nn n
y x y y hf x y n                                    …   …  ….       (  .1) 

Where                0x x nhn    

Example.1. Find y(0.2) for the ordinary differential equation (ODE)  
dy

x y
dx

  ,with the initial 

condition y=1 when x=0, correct up to 4 decimal places, taking step length h=0.05 by Euler’s Method.  

Solution: Here x0 = 0, y0 = 1, h=0.05 and ( , )
dy

f x y x y
dx

    

 
Using the Euler’s successive approximations formula, we get,  
 
x1= x0 + h = 0 + 0.05 = 0.05 
y1 = y(x1) = y(0.05) = y(0) + 0.05[0 + 1] = 1 + 0.05 = 1.05 
 
x2= x1 + h = 0.05 + 0.05 = 0.10 



y2 = y(x2) = y(0.1)  = y(0.05) +0.05[x1 + y1] = 1.05 + 0.05[0.05 + 1.05]  
                                = 1.05 + 0.05(1.1) = 1.05 + 0.0550 = 1.1050  
 
x3= x2 + h = 0.10 + 0.05 = 0.15 
y3 = y(x3) = y(0.15)   = y(0.10) +0.05[x2 + y2] = 1.1050 + 0.05[0.10 + 1.1050]  
                                   = 1.1050 + 0.05(1.2050) = 1.1050 + 0.0603= 1.1653 
 
x4= x3 + h = 0.15 + 0.05 = 0.20 
y4 = y(x4) = y(0.20)   = y(0.15) +0.05[x3 + y3] = 1.1653 + 0.05[0.15 + 1.1653]  
                                   = 1.1653 + 0.05(1.3153) = 1.1653 + 0.0658= 1.2311  
 
Hence y(0.2) = 1.2311 correct to four(4) decimal places. 
 
Table of Example 1: 
---------------------------------------------------------------------------------- 
 NI         x0               y0              f(x0,y0)             y1      x1= x0+h 
---------------------------------------------------------------------------------- 
  0      0.0000      1.000000      +1.000000      1.050000      0.0500 
  1      0.0500      1.050000      +1.100000      1.105000      0.1000 
  2      0.1000      1.105000      +1.205000      1.165250      0.1500 
  3      0.1500      1.165250      +1.315250      1.231013      0.2000 
---------------------------------------------------------------------------------- 
 Hence the value of y(0.20) = 1.2310 
 
 

Example 2.. Find y(4.4) for the ordinary differential equation (ODE)  
22

5

dy y

dx x


 , with the initial condition 

y=1 when x=4, correct up to 4 decimal places, taking step length h=0.2, by Euler’s Method.  
 

Solution : Here x0 = 4, y0 = 1, h=0.2  and  
22

( , )
5

dy y
f x y

dx x


   

Using the Euler’s successive approximations formula, we get, x1 = x0 + h = 4 + 0.2 = 4.2 
y1 = y(x1) = y(4.2) = y(4) + 0.2[(2.0 – 1x1)/(5x4)] = 1 + 0.2(0.05000)= 1.0100 
 
x2= x1 + h = 4.2 + 0.2 = 4.4 
y2= y(x2) = y(4.4) = y(4.2) + 0.2[(2.0 - 1.01x1.01)/(5x4.2)] = 1.01 +0.2(0.0467)= 1.0193 
 
Hence y(4.4) = 1.0193  correct to four(4) decimal places. 
 
Table of Example 2: 
------------------------------------------------------------------------------ 
NI         x0               y0              f(x0,y0)             y1         x1= x0+h 
------------------------------------------------------------------------------ 
0  4.0000  1.000000  +0.050000  1.010000  4.2000 
1  4.2000  1.010000  +0.046662  1.019332  4.4000 
------------------------------------------------------------------------------ 
 Hence the value of y(4.40) = 1.0193 
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Euler’s Modified Method: 



Working formula for the ODE  0 0( , ) ( )
dy

f x y with y x y
dx

  , where  x0 is the initial value of x and  y0is 

the initial value of y. To minimize the error we use Euler’s Modified Method instead of Euler’s Method. To 
get the value of y at x1=x0+h, where h is the step length.Here we are using two formulas:  
 
1) One is Euler’s Method (as we learn earlier is known as Predictor formula), approximate value of y at 
x=x1(=x0+h) written as 

(0)
1 1 0 0 0( ) ( , )y x y y hf x y   … … … … ( .2) 

 
 

and to get the second approximation for y1 we replace 0 0( , )f x y  by average of 0 0( , )f x y  and 
(0)

1 1( , )f x y  

 
2) Another one is second approximation for y1(is known as Corrector formula)at x=x1(=x0+h) written as 

(1) (0)
1 0 0 0 1 1[ ( , ) ( , )]

2

h
y y f x y f x y     …  …  …  … (  .3) 

Similarly, we get the third approximation for y1 as  

(2) (1)
1 0 0 0 1 1[ ( , ) ( , )]

2

h
y y f x y f x y     …  …  … … (  .4) 

In general we can write 2nd. , 3rd. , 4th. …… as  
( 1)

1 11 [ ( , ) ( , )] [( 1,2,3,.....); ( 1,2,3....)]
2

k k

n n n n nn

h
y y f x y f x y n for particular n k


       

is used to approximate yn.   
 

Example 3: Evaluate y(1.2) for the ODE 
2

1dy y

dx x x
   with y(1) = 1 by Euler’s Modified Method correct up 

to 4 decimal places.  

Solution: Here x0 = 1, y0 = 1, and 2

1dy y

dx x x
  , therefore 2 2

1 1
( , )

dy y xy
f x y

dx x x x


     

Let h=0.1, so that x1 = x0 + h = 1+0.1 = 1.1 
(0)
1 0 0 0( , )y y hf x y  = 1 + 0.1[(1 – 1)/(1x1)] = 1 + 0 = 1 

Now from ( .3) we get  

(1) (0)
1 0 0 0 1 1[ ( , ) ( , )]

2

h
y y f x y f x y    = 1 + 0.1[ (1-1)/(1x1) + (1-1.1x1)/(1.1x1.1)]/2 

        = 1 + 0.1[0 - 0.082645]/2 = 1 - 0.0041322 = 0.99587 

(2) (1)
1 0 0 0 1 1[ ( , ) ( , )]

2

h
y y f x y f x y    = 1 + 0.1[ 0 + (1-1.1x0.99587)/(1.1x1.1)]/2  

= 1 + 0.05(-0.07889) = 0.99606 
(3)
1y = 1 + 0.1[ 0 + (1-1.1x0.99606)/(1.1x1.1)]/2 = 1 + 0.05(-0.079063) = 0.99605 
(4)
1y   = 1 + 0.1[ 0 + (1-1.1x0.99605)/(1.1x1.1)]/2 = 1 + 0.05(-0.079054) = 0.99605 

 
Hence y1 = y(1.1) = 0.99605 =0.9961 (Approximately correct to 4 decimal places) 
 
Now x2 = x1 + h = 1.1 + 0.1 = 1.2 and f(x1,y1) = (1 – 1.1 x 0.9961)/(1.1 x 1.1) = -0.07910 

(0)
2y  = y1+ hf(x1,y1) = 0.9961 + 0.1(-0.07910) = 0.98819 

(1) (0)
2 1 1 1 2 2[ ( , ) ( , )]

2

h
y y f x y f x y   = 0.9961 + 0.05[-0.07910 + (1 – 1.2 x 0.98819)/(1.2 x 1.2)] 

                                                          = 0.9961 + 0.05( - 0.07910 - 0.12905) = 0.98569 



(2) (1)
2 1 1 1 2 2[ ( , ) ( , )]

2

h
y y f x y f x y   = 0.9961 + 0.05[-0.07910 + (1 – 1.2 x 0.98569)/(1.2 x 1.2)] 

= 0.9961 + 0.05( -0.07910 -0.12696) = 0.9858 

(3) (2)
2 1 1 1 2 2[ ( , ) ( , )]

2

h
y y f x y f x y   = 0.9961 + 0.05[-0.07910 + (1 – 1.2 x 0.9858)/(1.2 x 1.2)] 

= 0.9961 + 0.05( -0.07910 -0.12706) = 0.98579 
 
Hence,𝑦2 ≈0.9858 (correct to 4 decimal places) ∴ 𝑦(1.2) =0.9858 
 
 
--------------------------------------------------------- 
 NI    x0        y0         y1          y2x1=x0+h 
--------------------------------------------------------- 
 
 0   1.0000    1.00000    1.00000                1.1000 
                          1.00000     0.99587    1.1000 
                          0.99587     0.99606    1.1000 
                          0.99606     0.99605    1.1000 
                          0.99605     0.99605    1.1000 
 
 1   1.1000    0.99605    0.98814                1.2000 
                          0.98814     0.98564    1.2000 
                          0.98564     0.98575    1.2000 
                          0.98575     0.98574    1.2000 
                          0.98574     0.98574    1.2000 
--------------------------------------------------------- 
Hence y(1.20)=0.98574 
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Example 4: Evaluate y(0.02) for the ODE 
2dy

x y
dx

   with y(1) = 0 by Euler’s Modified Method correct up 

to 4 decimal places, by taking step length h=0.01.  
 

Solution: Here x0 = 0, y0 = 1  and
2dy

x y
dx

  , therefore 
2( , )

dy
f x y x y

dx
    

h=0.01, so that x1 = x0 + h = 0+0.01 = 0.01 
(0)
1 0 0 0( , )y y hf x y  = 1 + 0.01(0x0  + 1) = 1 + 0.01 = 1.01 

Now from ( .3) we get  

(1) (0)
1 0 0 0 1 1[ ( , ) ( , )]

2

h
y y f x y f x y    = 1 + 0.01[ (0x0 + 1) + (0.01x0.01 + 1.01)]/2 

        = 1 + 0.005[1 + 0.001 + 1.01 ] = 1 + 0.010055 = 1.010055 

(2) (1)
1 0 0 0 1 1[ ( , ) ( , )]

2

h
y y f x y f x y    = 1 + 0.005[ (0x0 + 1) + (0.01x0.01 + 1.010055)]  

= 1 + 0.005(1 + 1.010155) = 1.010051 
(3)
1y =  1 + 0.005[ (0x0 + 1) + (0.01x0.01 + 1.010051)] = 1 + 0.005(1+1.010151) =  1.010051 

Hence y1 = y(0.01) = 1.010051 
 
Now x2 = x1 + h = 0.01 + 0.1 = 0.02 and f(x1,y1) = (0.01x0.01+ 1.010051) = 1.010151 

(0)
2y  = y1+ hf(x1,y1) = 1.010051 + 0.01x1.010151 = 1.0201525 1.02015 



(1) (0)
2 1 1 1 2 2[ ( , ) ( , )]

2

h
y y f x y f x y   = 1.010051 + 0.005[1.010151 + (0.02x0.02 + 1.020150)] 

                                                          = 1.010051 + 0.010153505  1.020205 

(2) (1)
2 1 1 1 2 2[ ( , ) ( , )]

2

h
y y f x y f x y   = 1.010051 + 0.005[1.010151 + (0.02x0.02 + 1.020205)] 

                                                          = 1.010051 + 0.01015378  1.02025 
Hence, y2 = 1.02025 (correct to 5 decimal places) 
       So,       Y(0.02) = 1.02025

 

 
 
--------------------------------------------------------- 
NI    x0        y0         y1          y2x1=x0+h 
--------------------------------------------------------- 
 0   0.0000    1.00000    1.01000                0.0100 
                          1.01000     1.01005    0.0100 
                          1.01005     1.01005    0.0100 
 
 1   0.0100    1.01005    1.02015                0.0200 
                          1.02015     1.02020    0.0200 
                          1.02020     1.02020    0.0200 
--------------------------------------------------------- 
Hence y(0.02)=1.02020 
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Runge-Kutta Method: 

Runge-Kutta Method is used to find numerical solution of an ordinary differential equation. Rumge-Kutta 
Method gives us more accurate result than Euler’s and Euler’s Modified Method. Here we discussed two 
methods as: 
a) Second Order Runge-Kutta Method: 
b) Fourth Order Runge-Kutta Method: 
 

Second Order Runge-Kutta Method: 

Computational formula for an ordinary differential equation 0 0' ( , ) ( )
dy

y f x y with y x y
dx

   is 

y1 = y0 + k  where k = (k1 + k2)/2  and  k1 = h.f(x0,y0) ; k2 = h.f(x0+h,y0+k1).  
 
The error in this formula is O(h3). 
 
Forth Order Runge-Kutta Method: 

 

Computational formula for Forth-Order Runge-Kutta Method can be given as 
y(x0 +h) = y0 + k 
where k = (k1 + 2k2+2k3+k4)/6 
 
and k1= h f(x0, y0) 
       k2= h f[x0 + (h/2), y0+ (k1/2)] 
       k3= h f[x0 + (h/2), y0+ (k2/2)] 
       k4= h f[x0 +h, y0+k3] 
 

 

Example 1:Compute y(0.2) for the ordinary differential equation (0) 1,
dy

x y with y
dx

    taking h = 0.1, by 

Runge-Kutta Method of order 4, correct to six decimal places. 



Solution: For the given problem Here x0 = 0, y0 = 1, and  
dy

x y
dx

  , therefore ( , )f x y x y  and h=0.1.  

Now, for y(0.1) 
                k1 = hf(x0,y0) = 0.1(0-1) = -0.1  
                k2 = hf(x0+h/2, y0+k1/2) = 0.1[(0+0.05) –(1-0.05)] = 0.1(-0.9) = -0.09   
                k3 = hf(x0+h/2, y0+k2/2) = 0.1[(0+0.05) –(1-0.045)] = 0.1(1-0.095) = 0.1(-0.9050) = -0.0905   
                k4 = hf(x0+h, y0+k3) = 0.1[(0+0.1) –(1-0.0905)] = 0.1(1-0.1905) = 0.1(-0.8095) = -0.08095   
                k   = (k1 + 2k2 + 2k3 + k4)/6 = [-0.1 +2(-0.09 ) +2(-0.0905 ) -0.08095 ] = (-0.54195)/ 6           
                                                             = -0.090325 
                y1 = y0 + k = 1 -0.090325    = 0.909675 

(0.1) 0.909675
1

y y    

 
Now for y(0.2) : x1 = 0.1 and y1 = 0.909675 
               k1 = hf(x1,y1) = 0.1f(0.1,0.909675) = 0.1( 0.1-0.909675) = -0.0809675 
 
                k2 = hf(x1+h/2, y1+k1/2) = 0.1f[(0.1+0.05),( 0.909675-0.04048375)] = 0.1f(0.15,0.86919125) 
                    = 0.1(0.15 - 0.86919125) =   -0.0719191 
                k3 = hf(x1+h/2, y1+k2/2) = 0.1f[(0.1+0.05),(0.909675-0.03595955)] = 0.1f(0.15,0.87371545) 
                    = 0.1(0.15 - 0.87371545) = -0.0723715 
                k4 = hf(x1+h, y1+k3) = 0.1f(0.1+0.1,0.909675-0.0723715)  = 0.1f(0.2,0.8373035)  
                    = 0.1(0.2 -0.8373035) = -0.0637303 
                k   = (k1 + 2k2 + 2k3 + k4)/6 = [-0.0809675+2(-0.0719191) +2(-0.0723715 )-0.0637303 ]  
                     = (-0.433279)/ 6  = -0.07221317         
                y2 = y1 + k = 0.909675 -0.07221317 = 0.837462 (correct to 6 decimal places) 

(0.2) 0.837462
2

y y    
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Predictor Corrector Method 

In order to solve the differential equation (1),by this method, we first obtain the approximate value of 

yn+1=y(xn+1) by predictor formula and then improve this value by means of a corrector formula. It may be 

noted that the corrector formula is more accurate than the predictor one although it requires a comparison of 

predictor formula and knowledge of the initial set of values y0,y1,…..,yn. 

The simplest formula of this type is Euler’s formula and modified Euler is given by 

Yn+1
(p)=yn+hf(xn,yn) 

Yn+1
(c)=yn+

ℎ2 [f(xn,yn)+ f(xn+1,yn+1
(p))] 

This is an open formula which can be used for predicting yn+1 and this value can be used for predicting 

f(xn+1,yn+1) to obtain a corrector formula which can be used in an iterative manner. 

Milne’s Method 

This multi-step method due to Milne is obtained by integration over more than one step.Integration of the 

differential equation 𝑑𝑦𝑑𝑥  =f(x,y) 

Over the range [xn-3,xn+1] gives 



Yn+1=yn-3+∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑥𝑛+1𝑥𝑛−3  

Evaluating the integral by 3 point Newton _Cotes quadrature rule and neglecting error term,we get 

Yn+1=yn-3+
4ℎ3 (2fn-2-fn-1+2fn)                         …..(3) 

which is the 4 step explicit recursion formula of order 4,known as Milne’s predictor formula of order 4. 

On the other hand,if we integrate the differential equation 
𝑑𝑦𝑑𝑥 = 𝑓(x,y) over the range [xn-3,xn+1] we get 

Yn+1=yn-1+∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑥𝑛+1𝑥𝑛−1  

Evaluating this integral by Sipmson’s one third rule with interpolating xn-1,xn,xn+1 

 And neglecting error term we obtain  

Yn+1=yn-1+h/3(fn-1+4fn+fn+1)                      ……(4) 

which is the 2-step implicit recursion formula of order 4, called Milne’s corrector formula of order 4. 

EXAMPLE 

Compute y(0.4) by Milne’s Predictor Corrector method from the equation  𝑑𝑦𝑑𝑥 = 𝑥𝑦 + 𝑦2, 

Given that y(0)=1,y(0.1)=1.1169,y(90.2)1.2773,y(90.30)=1.5040. 

SOLUTION  

We have x0=0,x1=0.1,x2=0.2,x3=0.3,h=0.1 and y0=1,y1=1.1169,y2=1.2773,y3=1.5040. 

Also, f(x, y) = 𝑥𝑦 + 𝑦2  

Therefore,f0=f(x0,y0)=1 

f1=f(x1,y1)=1.3591 

f2=f(x2,y2)=1.8869 

f3=f(x3,y3)=2.7132 

Now putting n=3 in (3) and (4), we get 

Y4
(p)=y0+

4ℎ3 (2f1-f2+2f3)                               …….(5) 

Y4
(c)=y2+h/3(f2+4f3+f4)                                …..(6) 

Form the above two equations we obtain  

Y4
p(1)=1+4X0.1X(2X1.3591-1.8869+2X2.7132)/3 

         =1.8344 

and hence f4
p(1)=f(x4,y4

p(1))=4.0988 

Now y4
c(1)=1.2773+0.1X(1.8869+4X2.7132+4.0988)/c 



=1.8386 

And so f4
c(1)=f(x4,y4

c(1))=4.1159 

Hence from  (6), we get  

Y4
c(2)=1.2773+0.1(1.8869+4X2.7132+4.1159)/3 

     =1.8391 

Hence f4
c(2)=f(x4,y4

c( 2))=4.1182 

Y4
c(3)=1.2773+0.1(1.8869+4X2.7132+4.1182)/3 

     =1.8392 

Thus,y4
c(2=y4

c(3)=1.839 correct upto 3 decimal places. 

Hence,y(0.4)≈1.839   .                  
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Numerical Solution of Partial Differential Equation: 

Consider a general second order linear partial differential equation 

A 
∂2u∂x2 + B 

∂2u∂x ∂y + C 
∂2u∂y2 + D 

𝜕𝑢𝜕𝑥 + E 
𝜕𝑢𝜕𝑦 + F(u) = G 

where A, B, C, D, E, F, G are all functions of x,y. This equation can be classified with respect to the 

sign of the discriminant.  

∆s = B2 – 4AC 

(i) If ∆s < 0, at a point (x,y) in XY plane, the equation is said to be of Elliptic-type. 

(ii) If ∆s > 0, then Hyperbolic-type. 

(iii) If ∆s = 0, then the parabolic-type. 

Here, we consider the following partial differential equations ∂2u∂x2 + 
∂2u∂y2 = 0    (Laplace’s Equation) 

∂2u∂x2 = 
𝑖𝑐2 ∂2u∂t2                               (Waves Equation)   

and
∂2u∂x2 = 

𝜕𝑢𝜕𝑡                      (Heat Conduction Equation) 

where (x, y) are the space coordinates and ‘t’ be the time coordinate. 

In (1), we have A = 1, B = 0, C = 1 ∴ ∆s = B2 – 4AC = 0 – 4 (1) (1) = - 4 < 0 

Hence, Laplace equation (1) is of Elliptic – type. 



In (II)   A = 1,  B = 0,  C = 
1𝑐2 ∴ ∆s = 0 – 4 (1) (- 

1c2 ) = 
4c2> 0 

Hence Wave equation (II) is of Hyperbolic type finally in (III) equation ∆s= 0 (∵ B = 0,  C = 0). Hence the 

Heat equation is of Parabolic type. 

To obtain finite-difference approximations of partial derivatives 

 

Let the x-y plane be divided into a network of rectangles of sides parallel to X and Y axes are ∆x=h and 
∆y=k by drawing the set of lines x=ih (i=0,1 , 2, ..) and jk (j=0,1 , 2, ..). The points of intersection of these 
lines are called greed points of mesh points or lattice points. Those are 

(x, y), (x+h, y), (x+2h, y), ............., (x-h, y), (x-2h, y),............ 

If (xi, yi) is any grid point, 

xi= x0 + ih, yi= y0 + jk 

If we take one corner as origin, 

xi= ih, yi= jk, i,j = 0, 1, 2, .... 

 

 Y          

           

     
 

     

     
 

(x-h, 2y)     

  
 

 

 

 

(x, y + 
k)) 
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j) 
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(i = 1,  
j) 
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Now, proceeding as in Boundary-value problems one may obtain 

∂u∂x = 
𝑢𝑖+1,   𝑗  −𝑢𝑖,𝑗ℎ  (By Forward difference) 

= 
𝑢𝑖,𝑗  −𝑢𝑖−1,𝑗ℎ  (By Forward difference) 

=   
𝑢𝑖+1,   𝑗  −𝑢𝑖−1,𝑗ℎ  (By Central difference) 

and
∂∂x (𝜕𝑢𝜕𝑥) = 

∂2u∂x2  = 
𝑢𝑖−1,𝑗 −2𝑢𝑖𝑗   +𝑢𝑖+1,𝑗ℎ2  

where,  ui,j  = u(ih, jk) = uxy 

Similarly,     
∂u∂x  = 

𝑢𝑖,𝑗+1−𝑢𝑖𝑗𝑘  

= 
𝑢𝑖,𝑗−𝑢𝑖𝑗−1𝑘  

 = 
𝑢𝑖,𝑗+1−𝑢𝑖𝑗−12𝑘  

and
∂∂y (𝜕𝑢𝜕𝑦) = 

∂2u∂x2  = 
𝑢𝑖,𝑗−1 −2𝑢𝑖𝑗   +𝑢𝑖,𝑗+1𝑘2  

Example 1: Solve the boundary value problem ∇2u = 0 for the square of sides three units. 

   50            100        100      50  

 

   0  0          0                     0  ∇2u = 0 i.e. 
∂2u∂x2 + 

∂2u∂y2 = 0   ..... (1) (Laplace equation) 

Let the interior values of u at the four grid points u1, u2, u3, u4  

u1 = 
14 [0 + 100 + u2 + u3]  ⇒ 4u1 = 100 + u2 + u3  …(2) 

 

U1 

 
 
U2 

 

U3 U4 

 

   

0 

0 0 

0 



u2 = 
14 [u1 + 100 + 0+ u4]  ⇒ 4u2= 100 + u1+ u4  …(3) 

u3 = 
14 [0 + u1 + u4+ 0 ]  ⇒ 4u3 = u1 + u4   …(4) 

u4 = 
14 [u3 + u2 + 0 + 0]  ⇒ 4u4 = u2 + u3   …(5) 

Taking (3) – (4), we get  

u2 - u3 = 25         …(6) 

Putting from (5), u4 = 
14 (u2 + u3) in (3), 

4u2 = 100 + u1 + 
14 (u2 + u3)    ⇒ 15 u2 – u3 = 400 + 4u1       ….(7) 

Put from (2) 

4u1 = 100 + u2 + u3 in (7), we have 

 

15 u2 – u3 = 400 + 100+ u2 + u3 

or 14 u2 – 2u3 = 500 

or 7u2 – u3 = 250  …(8) 

Solving this with equation (6) 

7u2 – u3 = 250 

   u2 – u3 = 25 

   -       +       -  

6u2= 225 ⇒ u2 = 225/6 = 37.5 

Putting  u2 = 37.5  in (6), we get 

U3 = 37.5 – 25 = 12.5 

Putting these in (4), we get 

U4 = 
14  [37.5 +12.5] 

    = 50/4  = 12.5 

From equation (2)   

u1 = 
14 [100 + 37.5 + 12.5] 

 = 150/4  =  37.5 

Hence the solution   



u1 = 37.5  u2 = 37.5  u3 = 12.5  u4 = 12.5 

 

LECTURE: 33  

CRANK – NICHOLSON DIFFERENCE METHOD 

Let us solve the parabolic equation 

∂2u∂x2 = a 
𝜕𝑢𝜕𝑡          ---- (1) 

With boundary conditions 

  u(0,t) = To 

  u (l,t) = Tl 

and the initial condition u(x, 0) = f(x) 

 

At ui,j   uxx = 
ui+1,j − 2ui,j+ ui−1,jh2  

 

and at  𝑢𝑖,𝑗+1  uxx = 
ui+1,j+1 − 2ui,j+1+ ui−1,j+1h2  

 

Taking the average of these two values 

uxx = 
ui+1,j+1 − 2ui,j+1+ ui−1,j+1  + ui+1,j − 2ui,j + ui−1,j2h2  

Using   ut = 
ui,j+1 −  ui,jk  

Equation (1) reduces to ui+1,j+1 − 2ui,j+1+ ui−1,j+1 +ui+1,j − 2ui,j +ui−1,j2h2 =  a
ui,j+1 −  ui,jk   

Setting   
𝑘𝑎ℎ2= 𝜆, the above reduces as 

½ 𝜆 ui+1,uj+1 +½ 𝜆 ui-1, j+1 – (𝜆 +1)ui,j+1 =  ½ 𝜆 ui+1,j - ½ 𝜆 ui-1, j + (𝜆 -1)ui,j 

or,   𝜆 (ui+1, ui- j,j+1) – 2(𝜆 + 1)ui,j+1  =  2(𝜆 - 1) ui,j – 𝜆 (ui+1,j + ui-1,j )  ---- (2) 

Useful notes 

 

(1) The six points in the above formula are shown below 

ui-1,j   ui,j  ui+1,j   

 



 

 

 

 

ui-1, j+1  ui,j+1  ui+1, j+1 

j – the root ‘t’  (1st  row) 

j+1 – the root of ‘t’ (3rd row)  

(2) A convenient choice of 1 makes the formula (2) simple. Setting  𝜆 = 1 i.e. (k = ah2, 

the Crank – Nicholson formula reduces as 

 

Ui,j+1 = ¼[ui-1,j+1 + ui+1,j+1 + ui-1,j + ui+1,j]   ---- (3) 

 

In examples, we will use this simplified formula (3) subject to k = ah2 

 

 

 ui-1,j           ui+1,j    D  

              E 

 

 

 

                                                      B                                     A   C 

 ui-1, j+1  ui,j+1  ui+1, j+1 

 The value of u at A = average of the values at B, C, D, E 

 

(3) The Crank-Nicholson scheme converges for all values of 𝜆. 

 

 

 

 

 

Example 1: Using Crank-Nicholson’s method, solve 

  Uxx = 16 ut,  0 < x < 1, t > 0,  given 

  U(x,0) = 0,  u(0,t) = 0, u(1,t) = 100t 

  Compute ‘u’ for one step in ‘t’ direction taking h = ¼ 

   

Solution: Here, a =16,  h = ¼ 

  K = ah2= 16.(1/4)2   

 

By Crank – Nicholson’s formula     

   



  ui,j+1 = ¼ [ ui+j, j+1 + ui-j, j+1 + ui+1,j  +   ui-1,j]                        …….(1) 

   

  

 i 
0 0.25 0.50 0.75 1 

j  

0 0 0 0 0 0 

1 0 u1 u2 u3 100 

 

 Using equation (1), we get, 

  u1 = ¼ (0 + 0 + 0+ u2) 

 ⟹ u1 = ¼ u2       ………(2) 

  u2 = ¼ (u3 +u1 + 0 + 0) 

 ⟹ u2 = ¼ (u1 + u3)    …………(3) 

 

  u3 = ¼ (100 + u2 + 0 +0) 

 ⟹ u3 = ¼ (u2 + 100)    …………(4) 

 

Solving (2), (3) and (4), we get 

 u1 = 1.7857,  u2 = 7.1429  u3 = 26.7857 
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