GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 ADVANCE POWER SYSTEMS EE703A

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

		Marks	CO No
(i)	Lightning arrester should be located	1	CO4
	a) near the circuit breaker		
	b) away from the circuit breaker		
	c) near the transformer		
	d) away from the transformer.		
(ii)	Load compensation is used to improve	1	CO4
	a) voltage profile and power factor		
	b) voltage profile and reactive power		
	c) reactive power and power factor		
	d) none of these.		
(iii)	TCSC is	1	CO2
	a) shunt controller		
	b) series controller		
	c) both (a) and (b)		
	d) none of these.		
(iv)	Series compensation in transmission lines	1	CO4
	a) increases stability limit		
	b) decreases stability limit		
	c) has no effect on stability limit		
	d) none of these.		
(v)	The propagation constant is given by	1	CO4
	a) $\gamma = \sqrt{((Z/Y))}$		
	b) $\gamma = \sqrt{((ZY))}$		
	c) $\gamma = \sqrt{((Z+Y))}$		
	d) $\gamma = \sqrt{(Z-Y)}$		
(vi)	An uncompensated transmission line on open circuit leads to	1	CO4
	a) Ferranti effect		
	b) line charging current flowing into generators is more		
	c) both (a) & (b)		
	d) none of these		
(vii)	If penalty factor of a plant is unity. Its incremental	1	CO2
	transmission loss is		
	a) -1		
	b) 0.0		

	a) 1		
	c) 1 d) 2.0		
(viii)	The generating station suitable to operate as peak load plant	1	CO1
	is a) thermal nerver station		
	a) thermal power stationb) nuclear power station		
	c) pumped storage power station		
	d) none of these .		
(ix)	Unit of regulation of speed governor is	1	CO3
	a) Hz/MW		
	b) MW/Hz		
	c) Unit less		
	d) km/sec.		<i></i>
(x)	If a generating units is situated very near to the load center	1	CO1
	the penalty factor for this unit will be		
	a) about 1 b) zero		
	b) zeroc) infinity		
	d) none of these		
(xi)	The unit of transmission loss coefficient is	1	CO2
	a) MW		
	b) $(MW)^{-1}$		
	c) $(MW)^{-2}$		
· ···	d) Unit less.		G Q Q
(xii)	In central AGC of a given control area, the change in (error)	1	CO3
	a) area control error		
	b) volume control error		
	c) nonlinear Control error		
	d) optimal control error.		
	GROUP – B		
	(Short Answer Type Questions)		
	Answer any <i>three</i> from the following: $3 \times 5 = 15$		
		Marks	CO No
	A generating unit has 200 MW units whose input cost data	5	CO2
	is as under:		
	$F_1=0.004P_1^2+2.0P_1+80$ Rs/hr		
	$F_2=0.006 P_2^2+1.5 P_2+100 Rs/hr.$		
	For a total load of 250 MW find the load division between		
	the two units for economic operation.	5	CO^{2}
	A 100 MVA synchronous generator operates on full load at a frequency of 50 HZ. The load is suddenly reduced to 50	5	CO3
	MW. Due to time lag in governor system, the steam valve		
	begins to close after 0.4s. Determine the change in frequency		
	that occurs in this time.		
	Take H=5 KWs/KVA of generator capacity.		
	What is importance of restructure and deregulation	5	CO1
	environment in power system		

2.

3.

4.

5		Develop the condition of cooperation of a new or	5	CO2
5.		Develop the condition of economic operation of a power system with transmission line loss not being considered.	5	02
6.		What do you mean by ALFC? Derive the block diagram of	5	CO1
		primary ALFC loop. GROUP – C		
		(Long Answer Type Questions)		
		Answer any <i>three</i> from the following: 3×15=45	Marks	CO No
7.	(a)	What is the definition of FACTS as per IEEE?	3	CO4
	(b)	Give the classification diagram of FACTS controllers. Draw the symbols of all FACTS controllers	6	CO4
	(c)	Draw the VI characteristics of TCR. From the diagram show that under what condition TCR becomes a TSR?	6	CO4
8.	(a)	Derive the expression for reflection and refraction coefficients for voltage and current travelling waves.	7	CO3
	(b)	A 220 kV surge travels on a line of 400 Ω surge impedance and reaches a junction where two branch lines of surge impedances 550 Ω and 350 Ω , respectively are connected with the transmission line. Find the surge voltage and current transmitted into each branch line. Also find the reflected voltage and current.	8	CO3
9.	(a)	Draw and level the complete block diagram representation of a two-area control system.	7	CO4
	(b)	A 1000 MW control area (1) is interconnected with a 5000 MW control area (2). The 1000 MW area has the system parameters given below, $R = 2$ Hz/pu MW and $B = 0.01$ pu MW/HZ and increase in load, $\Delta P_{D1} = 0.01$ pu MW. Area 2 has the same parameters R and B but in terms of the 5000 MW base. Find the static frequency drop?	8	CO3
10.	(a)	Describe the solution methodology of economic load dispatch with transmission loss. What are penalty factor and incremental transmission loss?	8	CO2
	(b)	A two bus system, without generator limits, has been considered (shown in Fig. 1) where, $P_{loadA} = 400$ MW, $P_{loadB} = 100$ MW and $P_1 = 0.0008(P_{gB} - 100)^2$. (IFC) _A = 0.006P _{gA} + 4.0 unit of cost/MWhr and (IFC) _B = 0.007P _{gB} + 4.0 unit of cost/MWhr. Find optimal generation for each plant and the power loss in the line.	7	CO3
		$P_{g_{a}}$ Line $P_{g_{a}}$ $P_{load_{a}}$		

Fig. 1 A two-bus system

B.TECH/EE/ODD/SEM-VII/EE703A/R16/2020-2021

11.		Write short notes on any <i>three</i> of the following:		
	(a)	Static Var Compensator (SVC)	5	CO2
	(b)	Static Synchronous Compensator (STATCOM)	5	CO2
	(c)	FACTS	5	CO2
	(d)	Distributed and dispersed generation.	5	CO1
	(e)	Unit commitment	5	CO4