FULL MARKS: 70

GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 ANALOG ELECTRONIC CIRCUITS EI301

TIME ALLOTTED: 3 HOURS

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

			Marks	CO No
1.	(i)	An ideal op-amp has CMRR and slew rate respectively a) infinity and infinity b) zero and infinity	1	CO1
		c) zero and zero		
	(::)	d) infinity and zero.	1	CO1 CO2
	(11)	In an amplifier a coupling capacitor is used to	1	CO1, CO2
		a) Match the impedance		
		b) Control frequency		
		d) D ravent DC mixing with the output		
	(iji)	A differential amplifier is used at input stage of any	1	CO1 CO3
	(111)	operational amplifier to ensure	1	01,005
		a) High CMRR		
		b) Wide Bandwidth		
		c) High slew rate		
		d) High open loop gain		
	(iv)	A V-I converter is a / an	1	CO1, CO2
		a) Transconductance amplifier		,
		b) Transresistance Amplifier		
		c) Current Amplifier		
		d) Operational Amplifier		
	(v)	Output pulse width for a monostable multivibrator using	1	CO1,CO4
		IC 555 where external resistance and capacitance are 20		
		K Ω and 0.1 μ F is		
		a) 2.1 s		
		b) 2.2ms		
		c) 2.5 s		
		d) 2.2 µs		

B.TECH/AEIE /ODD/SEM-III/EI301/R18/2020-2021

(vi)	The gain required for the sustained oscillation in Wien Bridge oscillator is	1	CO1,CO3
	a) 29 b) 1.5 c) 3		
(vii)	d) 1 A differential amplifier has the differential gain of 100,If its CMRR=240,then the common mode gain is	1	CO1,CO2
	 a) 0.24 b) 24000 c) 0.417 		
<i></i>	d) 1		~ ~ ~
(V111)	Schmitt trigger is also known as	1	CO3
	a) squaring circuit b) blocking oscillator		
	c) sweep circuit		
	d) astable multivibrator.		
(ix)	For a wide range of oscillations in the audio range, the	1	CO2
	preferred oscillator is		
	a) Hartley b) Phase shift		
	c) Wien bridge		
	d) Hartley and Colpitt.		
(x)	In the figure below $v1 = 8$ V and $v2 = 4$ V. Which diode will conduct?	1	CO2
	$v_1 $		
	a) D2 only		
	b) D1 only		
	c) Both D1 and D2		
	d) Neither D1 nor D2		
(xi)	The voltage gain of an emitter follower circuit is	1	CO1 CO3
()	a) greater than 1	1	001,000
	b) equal to 1		
	c)less than 1		
	d) none of these		
	(Short Answer Type Ouestions)		
	Answer any <i>three</i> from the following: 3×5=15		
		Marks	CO No
(a)	Why a voltage divider bias circuit is known as self-bias	2	CO2
(1)	circuit?	-	

2.

B.TECH/AEIE /ODD/SEM-III/EI301/R18/2020-2021

(b)	A silicon transistor with $\beta = 50$, $V_{BE} = 0.6V$, VCC = 22.5	3	CO2,CO4
	V and $R_C = 5.6$ K is used for self-biasing circuit. It is		
	desired to establish a Q point at $V_{CE} = 12$ V. $I_C = 1.5$ mA		
	and stability factor $S \leq 3$. Find R_E , R_1 and R_2 (The		
	symbols have their usual meanings).		

3. (a) Explain how the bandwidth of an amplifier will be increased using negative feedback

(b) Prove that the gain of the amplifier used in a Wien bridge 3 oscillator must be greater than 3 for sustained oscillations

For the following circuit find the output voltage using the

- 4. (a) Why a voltage divider bias circuit is known as self-bias 2 circuit?
 - (b) A silicon transistor with $\beta = 50$, $V_{BE} = 0.6V$, $V_{CC} = 22.5$ V and $R_C = 5.6$ K is used for self-biasing circuit. It is desired to establish a Q point at $V_{CE} = 12$ V. $I_C = 1.5$ mA and stability factor $S \le 3$. Find R_E , R_1 and R_2 (The symbols have their usual meanings).

data given as following.

5.

(a)

6. (a) Find out the condition of an astable multivibrator so 5 CO3 that its duty cycle would be less than 50% and draw the circuit diagram

GROUP – C (Long Answer Type Questions)

Answer any *three* from the following: 3×15=45

			Marks	CO No
7.	(a)	Explain how it is possible to achieve better Q-point stabilization by using self-bias circuit.	4	CO2,CO3
	(b)	Consider a self bias circuit with an npn silicon transistor CE configuration. The circuit is designed in such a way that the $I_C = 1.5$ mA, $V_{CE} = 10$ V and the stability factor is less than equal to 6. If $V_{CC} = 20$ V, $V_{BE} = 0.7$ V, B = 100, RC = 5K, calculate the values of R _E , R ₁ , R ₂	7	CO2,CO3
	(c)	How the operating point of a transistor can shift ? How will you define the stability factors for a transistor ?	4	CO2,CO3
8.	(a)	What is free running oscillator? Derive the expression for time period.	4	CO2,CO3

Page 3 of 4

CO1,CO2,

CO3

CO1,CO2,

CO3

CO2,CO3

CO2,CO3

CO1,CO4

2

3

5

B.TECH/AEIE /ODD/SEM-III/EI301/R18/2020-2021

	(b)	How can the duty cycle be 50% by adding diode?	4	CO2,CO3
	(c)	For a astable multi-vibrator using 555 timer $R_A = 6.8 \text{ K}$, $R_B = 3.3 \text{ K}$ and $C = 0.1 \text{ F}$, calculate (i) t _{HIGH}	7	CO2,CO3
9.	(a)	(ii) t LOW (iii) free running frequency (iv) duty cycle, $v_2 \rightarrow + + + + + + + + + + + + + + + + + + $	5	CO1,CO4
		V_1		
	(b)	Calculate the output voltage for V ₁ =5V and V ₂ =2.5V Draw the output waveforms if input of a differentiator is i) Triangular wave ii) Square wave	5	CO2,CO4
	(c)	Explain the monostable operation of NE555 with proper circuit diagram and waveform	5	CO2,CO4
10.	(a)	What is crossover distortion in Class B amplifier and how can it be removed	4	CO3
	(b)	Draw the h-parameter equivalent circuit of low frequency CE mode transistor amplifier and hence calculate the current gain , Voltage gain,I/P impedance & O/P impedance in terms of h-parameters	7	CO2,CO3
	(c)	With a proper circuit diagram, explain the operation of phase shift oscillator circuit	4	CO4
11.	(a)	Design Schmitt trigger circuit using Op-amp which has a maximum output voltage +10V and -10V. The hysteresis $V_{\rm H}$ should be 0.4V.Explain the working of the circuit with the transfer characteristics .Use a reference voltage $V_{\rm P}=2V$	10	CO2,CO4
	(b)	With reference to Schmitt Trigger using Op-Amp, define UTP and LTP, Explain why hysteresis is introduced in Schmitt Trigger	5	CO2,CO4