GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 Analog Electronics Circuit(BACKLOG) EI 301

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $0 \times 1=10$

1	i)	In typical circuits, the stabilization factor $S(A I_C / A I_{CO})$ is	Marks 01	CO No
1.	1)	a) < 1 b) >1 c) $=1$	01	CO1,CO3
	ii)	 d) <<1 Thermal runaway in a transistor is due to a) Heating of the transistor b) Changes in β which increases with temperature c) Increase in reverse voltage saturation current due to rise in temperature 	01	CO1,CO3
	iii)	 d) None of this In an amplifier a coupling capacitor is used to a) Match the impedance b) Control frequency c) Limit bandwidth 	01	CO1, CO2
	iv)	 d) Prevent DC mixing with the output A Zener voltage regulator will cease to act as a voltage regulator if Zener current becomes? a) less than the load current b) zero c) more than load current 	01	CO2
	v)	d) none of these The voltage gain of an emitter follower circuit is a. greater than 1 b. equal to 1 c. less than 1	01	CO1,CO3
	vi)	d. none of these The gain required for the sustained oscillation in Wien Bridge oscillator is a) 29 b) 1.5	01	CO1,CO3

c) 3

d) 1

vii)	A differential amplifier is used at input stage of any operational amplifier to ensure	01	CO1,CO3
	a) High CMRR		
	b) Wide Bandwidth c) High slew rate		
	d) High open loop gain		
viii)	A V-I converter is a / an	01	CO1
	a) Trans conductance amplifier b) Trans resistance Amplifier		
	c) Current Amplifier		
	d) Operational Amplifier		
ix)	output pulse width for a Monostable multivibrator using IC 555	01	CO1,CO4
	is		
	a) 2.1 s		
	b) 2.2ms		
	c) 2.5 s d) 2.2 us		
x)	An instrumentation amplifier is	01	CO1
	a) A differential amplifier		
	b) Has a gain less than 1 c) Has very high output impedance		
	d) Has low CMRR		
xi)	In VCO, the frequency is dependent on the value of	01	CO1,CO2
	a) Resistance		
	c)Voltage		
	d) None of these		
xii)	To avoid false triggering of the NE 555 timer, the RESET pin	01	CO1,CO2
	(pin 4) is generally connected to		
	a) Pin 8 b) pin 3		
	c)pin 1		
	d) no connection(NC)		
	GROUP – B		
	(Short Answer Type Questions)		
	Answer any <i>three</i> from the following: $3 \times 5 = 15$	Monka	
a)	What is ripple factor?	1 1	CO No CO4
b)	How ripple can be eliminated from the output using shunt capacitor filter?	4	CO4
a)	Define CMRR of Op-amp.	2	CO3
b)	Design a multiplier circuit using Op-amp.	3	CO3

2.

3.

4.	a)	Explain the operation of class A power amplifier and obtain its maximum efficiency	5	CO4
5.	a)	Draw the proper circuit diagram and explain the operation of	5	CO3
6.	a)	Design a circuit which will generate output with 50% duty cycle using 555 timer.	5	CO3
		GROUP – C		
		(Short Answer Type Questions)		
		Answer any <i>three</i> from the following: 3×15=45		60 N
7.	a)	Draw the circuit of shunt voltage regulator and Explain its operation	Marks 3	CO No CO4
	b)	Draw the circuit of a self-bias transistor and derive the expression for stability factor $S = \frac{\partial I_C}{\partial I_{CO}}$. Obtain the value of 'S'	8	CO1,CO2
		for the above mentioned circuit with following specification: Vcc= 22.5 volt, R_L = 5.6 K Ω , R_E = 1 K Ω , R_1 = 90 K Ω , R_2 = 10 K Ω , V_{RE} =0.7 volt and β =55 assuming I_{PP} > I_{PP}		
	c)	Draw and explain the circuit which uses a diode to compensate for changes	4	CO1
8.	a)	1) in V_{BE} , ii) in I_{CO} . With a proper circuit diagram explain the operation of wien Bridge oscillator circuit.	8	
	b)	In a phase shift oscillator $R_1=R_2=R_3=800K\Omega$, $C_1=C_2=C_3=100$ pF. Derive the expression for frequency of oscillation and calculate the value	5	CO1,CO4 CO2
	c)	What are Burkhouse criteria for the oscillation?	2	CO1
9.	a)	Draw the circuit diagram of an astablemultivibrator using 555 timer and derive the expression of its frequency of oscillation.	5	CO1,CO4
	b)	For an Astable multivibrator using 555 timer, $R_A = 6.8$ Kohm, $R_B = 3.3$ Kohm and C=0.1µF, Calculate i) T _{high} ii) T _{low} iii)Free running frequency	5	CO2,CO4
	c)	iv)Duty cycle D in % Draw explain the operation of voltage shunt regulator circuit?	5	CO1
10.	a)	What are the criteria of a good instrumentation amplifier? Describe the steps for building an instrumentation amplifier starting from the basic differential amplifier. Describe precision full wave rectifier. How it is advantageous than normal rectifier circuit?	5	CO1,CO4
	b)	For the Adder circuit shown in Fig.1 find the output voltage.	4	CO1,CO2

B. TECH/AEIE/ODD/SEM-III/EI301/R16/2020-2021

	c)	Obtain the expression for the output voltage of an integrator using Op-amp.	3	CO1,CO2
	d)	What do you mean by precision rectifier? Explain the operation of a half wave precision rectifier.	3	CO1
11.	a)	Answer any 3 :	3*5=15	C01
	b)	SMPS Crystal Oscillator	5	
	c)	Power amplifier	5	
	d)	Smith trigger	5	
	e)	Unbalanced and balance Differential Amplifier	5	