GURU NANAK INSTITUTE OF TECHNOLOGY
 An Autonomous Institute under MAKAUT 2020-2021
 ANALOG AND DIGITAL ELECTRONICS IT302

TIME ALLOTTED: 3 Hours

FULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
GROUP - A
(Multiple Choice Type Questions)
Answer any ten from the following, choosing the correct alternative of each question: $\mathbf{1 0} \times \mathbf{1}=\mathbf{1 0}$
Marks CO No
1 (i) The circuits of NOR based S-R latch classified as 1 asynchronous sequential circuits, why?
a) Because of inverted outputs
b) Because of triggering functionality
c) Because of cross-coupled connection
d) Because of inverted outputs \& triggering functionality
(ii) Gray code representation of 14 is

1
CO2
1010
a) 1100
b) 1001
c) 1110
d) 1111
(iii) One example of the use of an S-R flip-flop is as

1 CO 4
a)
b) Transition pulse generator
c) Racer
d) Switch debouncer

Astable oscillator
(iv) The octal number (651.124)8 is equivalent to \qquad CO4
a) $(1 \mathrm{~A} 9.2 \mathrm{~A}) 16$
b) $(1 \mathrm{~B} 0.10) 16$
c) $(1 \mathrm{~A} 8 . \mathrm{A} 3) 16$
d) $(1 \mathrm{~B} 0 . \mathrm{B} 0) 16$
(v) A decoder with an enable input can be used as

1 CO 4
a) Encoder
b) Parity generator
c) Multiplexer
d) De-Multiplexer
(vi) In ECL the fanout capability is \qquad 1 CO 3
a) High
b) Low
c) Zero
d) Sometimes high and sometimes low
(vii)

D/A converters are generally
1
a) Weighted resistor network
b) Binary ladder network
c) Either (a) or (b)
d) Neither (a) nor (b)
(viii) One multiplexer can take the place of \qquad 1 CO 4
a) Several SSI logic gates
b) Combinational logic circuits
c) Several Ex-NOR gates
d) Several SSI logic gates or combinational logic circuits 3 bits full adder contains \qquad 1 CO4
a) 3 combinational inputs
b) 4 combinational inputs
c) 6 combinational inputs
d) 8 combinational inputs Transformer
a) RC
b Direct
c) Impedance
d)
(xi) The power amplifier with highest collector efficiency
a) C
b) A
c) B
d) AB
(xii) Low efficiency of a power amplifier results in
a) Low forward bias
b) Less battery consumption
c) More battery consumption
d) None of the above

> GROUP - B
(Short Answer Type Questions)
Answer any threefrom the following: $\mathbf{3 \times 5 = 1 5}$
2. a) Subtract : (10101)2 from (11110)2 using 2 's complement

CO2 method.
b) \quad Subtract (3270) 10 from (72552) 10 using 10 's complement

2 method.
3. Simplify the Boolean function with K-Map: 5 CO 2 $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}{ }^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$
4.

Convert SR Flip Flop to JK Flip Flop 5

CO4
5.

Implement the Boolean function with a multiplexer:
5
CO1

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(1,3,5,6)
$$

6. (a) Explain operation of Astable multivibrator using 555 timer $5 \quad \mathrm{CO} 3$ IC.

GROUP - C
 (Long Answer Type Questions)

Answer any threefrom the following: $\mathbf{3} \times \mathbf{1 5}=\mathbf{4 5}$
7. (a) Simplify the following Boolean function by using the tabulation method:
$\mathrm{F}=\sum(0,1,2,8,10,11,14,15)$
(b) Design a 16:1 MUX using 4:1 MUX 5
8. (a) Design a Mod-8 asynchronous up-down counter 10
$10 \quad \mathrm{CO} 4$
(b) Design a 4 bit Self-Correcting Ring Counter 5
9. (a) Realize the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=$

$$
\sum(0,1,3,6,7,9,10,11,14) \text { using } 8 \text { to } 1 \text { MUX. }
$$

(b) Draw and explain Master Slave flip flop
10. (a) A class A power amplifier with a direct coupled load has a collector efficiency of 30% and delivers a power input of 10 W. Find
(i)The DC power input
(ii) The power dissipation of full output
(iii) The desirable power dissipation rating of the BJT
(b) Compute the efficiency of a class B amplifier \quad CO1
(c) Determine the maximum and minimum frequency of 5 CO1 oscillations of a Wein Bridge Oscillator circuit having a resistor of 10 K ? and a variable capacitor od 1 nF to 1000 nF
11. Write Short Notes on any three
(a) Explain operation of 4 bit Parallel Adder 5
(b) R-2R ladder type DAC 5
(c) Explain AND, OR, NOR logic by TTL
(d) Schmitt Trigger Circuit
(e) 4 bit comparator

