GURU NANAK INSTITUTE OF TECHNOLOGY
 An Autonomous Institute under MAKAUT 2020-2021
 CIRCUIT THEORY \& NETWORKS(Backlog) EI303

TIME ALLOTTED: 3 Hours
FULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
GROUP - A
(Multiple Choice Type Questions)

1. Answer any ten from the following, choosing the correct alternative of each question:
(i) Marks CO No

1(i) The relation between resonant frequency $(\omega 0) \&$ half power frequencies $(\omega 1 \& \omega 2) \quad 1 \quad$ CO3 is
a) $\omega 0=\omega 1 \omega 2$
b) $\omega 0=\omega 1 / \omega 2$
c) $\omega 0=\sqrt{ }(\omega 1 \omega 2)$
d) $\omega 0=\omega 1+\omega 2$

1(ii) A two port network will be reciprocal if
a) $Y_{11}=Y_{22}$
b) $Y_{12}=Y_{21}$
c) $\mathrm{Y}_{1221}=\mathrm{Y}_{11} \mathrm{Y}_{22}$
d) $\mathrm{Y}^{2}{ }_{11}=\mathrm{Y}_{21} \mathrm{Y}_{22}$

1(iii) In a R-L series circuit, the phase angle difference between voltage and current is
$1 \quad \mathrm{CO} 4$
b) 90°
a) 30°
c) 180°
d) in between $0^{\circ} \& 90^{\circ}$

1(iv) In a network the Norton resistance is $\mathrm{R}_{\mathrm{N}} \&$ Thevenin's resistance is R_{TH}, then
a) $R_{N}=R_{T H}$
b) $\mathrm{R}_{\mathrm{N}} \neq \mathrm{R}_{\mathrm{TH}}$
c) $\mathrm{R}_{\mathrm{N}}=\mathrm{R}_{\mathrm{TH}} / 2$
d) $\mathrm{R}_{\mathrm{N}}=\mathrm{R}_{\mathrm{TH}} 2$

1(v) The order of incidence matrix of the graph, consists of n nos. of nodes and b nos. of branches is
a) $n \times b$
b) $n+b$
c) $n-b$
d) n / b

1(vi) Unit step function is first derivative of
b) impulse function
a) ramp function
d) parabolic function

1(vii) At resonance the nature of the R-L-C series circuit is
a)resistive
b) capacitive
c) inductive
d) all of these

1(viii) Superposition theorem is not valid for
a) voltage responses
b) current responses
c) power responses
d) either a) or b)

1(ix) In Superposition theorem, while considering a source, all other current sources
1 are?
a) short circuited
b) change its position
c) open circuited
d) removed from the circuit

1(x) The value of impulse function $K \partial(t)$ at $t=0$ is
a) K
b) 0
c) ∞
d) 1

1(xi) A low pass filter passes \qquad frequencies
$1 \quad$ CO 1
a)a band of
b) lower
c) higher
d) All the frequencies

1(xii) Laplace transform of Impulse signal is
a) $1 / \mathrm{S}$
b) $1 / \mathrm{S}^{2}$
c) 1
d)S

GROUP - B
(Short Answer Type Questions)
(Answer any three of the following)
2. Calculate the power dissipated in the resistor R

3. a) State \& prove the Maximum Power transfer theorem.
b) Show the efficiency for maximum power transfer transfer theorem is 50%.
4. Determine the Laplace Transform of the given signal

5. Determine the voltage V_{AB} of figure by node analysis

6. State Superposition Theorem. Using this theorem calculate the current through the R of the circuit shown in the figure below.

GROUP - C
 (Long Answer Type Questions)

(Answer any three of the following)
7. a) Find out the loop currents using super mesh analysis.

7. b) State Superposition Theorem. Using this theorem calculate the current through the $5 \quad$ CO 1 R of the circuit shown in the figure below..

7. c) Find the voltage across the Resistance R.

8.a) State \& prove Final value theorem.

CO 1

CO 1 transferred from the sources. Obtain the amount of maximum power.

8.c) Determine current through the resistance R using Millman's theorem. 5 CO 1
9.a) The circuit given initially at steady state with switch at position ' a '. If

5
CO 2 the switch position is changed from a to b at time $t=0$, find the current after switching.

9.b) Find the transient response of R-L series circuit due to step input signal.
9.c) Design a band pass filter with $f_{L}=200 \mathrm{~Hz} \& \mathrm{f}_{\mathrm{H}}=1 \mathrm{KHz}$ and a pass band gain=4. Also calculate Q of the filter.
10. a) Determine for a two port network the condition of reciprocity and condition of symmetry in terms of Z parameter.
10. b) Define ABCD parameters of a two port network. Where are they most $4+1$ CO 4 efficiently used?
10. c) Find the Y parameters of the following circuit.

CO 4

11.a) For the circuit shown in figure determine the value of inductance for CO 5 resonance if $\mathrm{Q}=50$ and $\mathrm{f} 0=175 \mathrm{kHz}$. Also find the circuit current and the band-width of the circuit.

11.b) What is selectivity of a resonant circuit? prove that the selectivity is the 4 CO 3 quality factor.
11.c) a) Prove that resonance frequency $f_{0}=1 / 2 \boldsymbol{\pi} \sqrt{ }$ LCfor a R-L-C series $2+3$ CO 3 network.
b) For a R-L-C network, prove bandwidth is the ratio of resonance frequency to the quality factor

