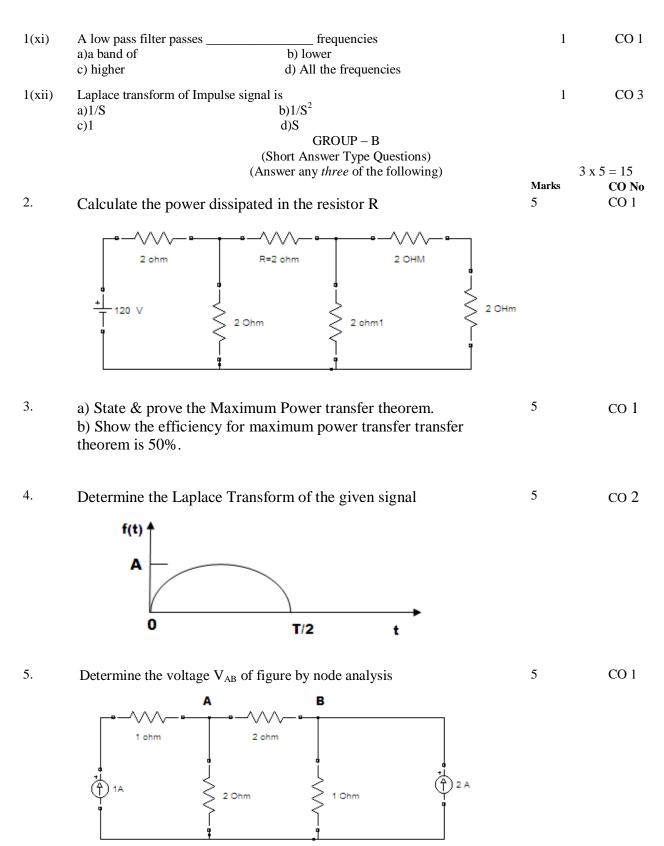
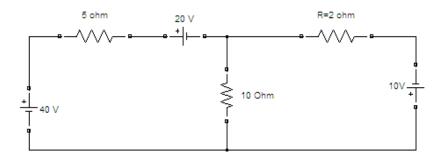
GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 CIRCUIT THEORY & NETWORKS(Backlog) EI303

TIME ALLOTTED: 3 Hours


FULL MARKS: 70

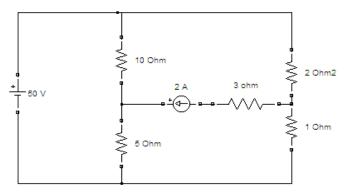
The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

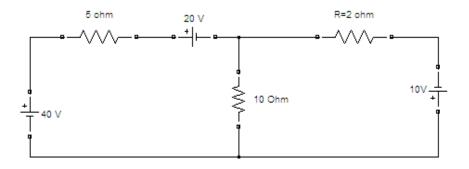
GROUP – A (Multiple Choice Type Questions)


1. Answer any <i>ten</i> from the following, choosing the correct alternative of each question: $10 \times 1=10$						
1. 1 115 0				CO No		
1(i)	The relation between resonant frequency($(\omega 0)$ & half power frequencies ($(\omega 1 \& \omega 2)$)	Marks 1	CO3		
	is					
	a) $\omega 0 = \omega 1 \omega 2$	b) $\omega 0 = \omega 1 / \omega 2$				
	c) $\omega 0 = \sqrt{(\omega 1 \ \omega 2)}$	d) $\omega 0 = \omega 1 + \omega 2$				
1(ii)	A two port network will be reciprocal if		1	CO 4		
	a) $Y_{11} = Y_{22}$	b) $Y_{12} = Y_{21}$				
	c) $Y_{1221} = Y_{11}Y_{22}$	d) $Y_{11}^2 = Y_{21}Y_{22}$				
1(iii)	In a R-L series circuit, the phase angle difference between voltage and current is		1	CO 1		
	a) 30°	b) 90°				
	c) 180°	d) in between 0° & 90°				
1(iv)	In a network the Norton resistance is R $_{N}$ & Thevenin's resistance is R $_{TH}$, then		1	CO 1		
	a) $R_N = R_{TH}$	b) R _N \neq R _{TH}				
	c) $R_{\rm N} = R_{\rm TH}/2$	d) R _N = R _{TH} 2				
1(v)	The order of incidence matrix of the graph, consists of n nos. of nodes and b nos.		1	CO 5		
	of branches is					
	a) n x b	b) n + b				
	c) n - b	d) n/b				
1(vi)	Unit step function is first derivative of		1	CO 1		
	a) ramp function	b) impulse function				
	c) gate function	d) parabolic function				
1(vii)	At resonance the nature of the R-L-C series circuit is		1	CO 2		
	a)resistive	b) capacitive				
	c) inductive	d) all of these		~~ •		
1(viii)	Superposition theorem is not valid for		1	CO 2		
	a) voltage responses	b) current responses				
	c) power responses	d) either a) or b)				
1(ix)	In Superposition theorem, while considering a source, all other current sources are?		1	CO 1		
	a) short circuited	b) change its position				
	c) open circuited	d) removed from the circuit				
1(x)				CO 2		
	a) K	b) 0				
	c) ∞	d) 1				

B. TECH/AEIE/ODD/SEM-III/EI303/R16/2020-2021

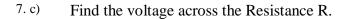
6. State Superposition Theorem. Using this theorem calculate the 5 current through the R of the circuit shown in the figure below.

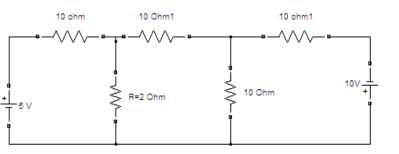

CO 1

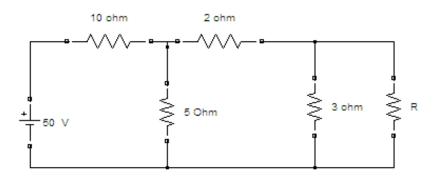

GROUP – C (Long Answer Type Questions) (Answer any *three* of the following)

3 :	x 15 = 45
Marks	CO No
5	CO 1

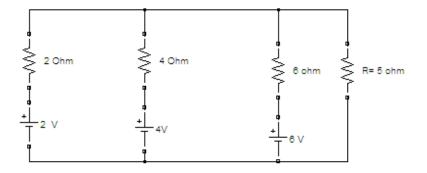
7. a) Find out the loop currents using super mesh analysis.




7. b) State Superposition Theorem. Using this theorem calculate the current through the 5 CO 1 R of the circuit shown in the figure below..

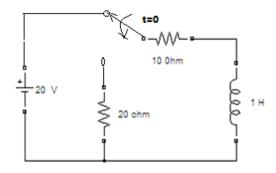

5

4



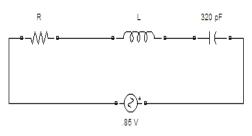
- 8.a) State & prove Final value theorem.
- 8.b) What should be the value of impedance R for maximum power to be 6 CO 1 transferred from the sources. Obtain the amount of maximum power.

8.c) Determine current through the resistance R using Millman's theorem. 5 CO 1



CO 1

CO 1


B. TECH/AEIE/ODD/SEM-III/EI303/R16/2020-2021

9.a) The circuit given initially at steady state with switch at position 'a'. If 5 CO 2 the switch position is changed from a to b at time t=0, find the current after switching.

9.b)	Find the transient response of R-L series circuit due to step input signal.		CO 2
9.c)	Design a band pass filter with $f_L=200$ Hz & $f_H=1$ KHz and a pass band gain=4. Also calculate Q of the filter.		CO 5
10. a)	Determine for a two port network the condition of reciprocity and condition of symmetry in terms of Z parameter.	5	CO 4
10. b)	Define ABCD parameters of a two port network. Where are they most efficiently used?	4+1	CO 4
10. c)	Find the Y parameters of the following circuit.	5	CO 4
	+ 0 1_2 0 1_2 0 1_2 0 1_2 0 0 1_2 0 0 0 0 0 0 0 0 0 0		

^{11.a)} For the circuit shown in figure determine the value of inductance for 6 CO 5 resonance if Q =50 and f0 =175 kHz. Also find the circuit current and the band-width of the circuit.

- 11.b) What is selectivity of a resonant circuit? prove that the selectivity is the 4 CO 3 quality factor.
- 11.c) a) Prove that resonance frequency $f_{0=1}/2\pi\sqrt{LC}$ for a R-L-C series 2+3 CO 3 network.

b) For a R-L-C network, prove bandwidth is the ratio of resonance frequency to the quality factor