GURU NANAK INSTITUTE OF TECHNOLOGY
 An Autonomous Institute under MAKAUT
 2020-2021
 CIRCUIT THEORY \& NETWORKS
 EI303

TIME ALLOTTED: 3 HoursFULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
GROUP - A
(Multiple Choice Type Questions)
Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1=10$
1(i) Two resistors are connected in parallel \& each dissipates 20 watts.

Marks	CO No
01	CO 1

The total power dissipated across two resistors equals
a) 10 watts
b) 20 watts
c) 40 watts
d) 80 watts

1(ii) Superposition theorem is not valid for
01 CO 1
a) voltage responses
b) current responses
c) power responses
d) either a) or b)

1(iii) The Laplace transform of the signal described in the figure -1 shown
$01 \quad$ CO 2 below is

a) $e^{-a s} / s$
b) $\mathrm{e}^{-\mathrm{bs}} / \mathrm{s}$
c) $\left(\mathrm{e}^{-\mathrm{as}}+\mathrm{e}^{-\mathrm{bs}}\right) / \mathrm{s}$
d) $\left(\mathrm{e}^{-\mathrm{as}}-\mathrm{e}^{-\mathrm{bs}}\right) / \mathrm{s}$

1(iv) Find the conductance of a conductor of resistance 10Ω and, $5 \mathrm{k} \Omega$.
(a) 0.01 S and 0.02 mS
(b) 0.1 S and 0.02 mS
(c) 0.01 S and 0.2 mS
(d) 0.1 S and 0.2 mS

1(v) The value of impulse function $K \partial(t)$ at $t=0$ is
a) K
b) 0
c) ∞
d) 1

1(vi) Thevenein's equivalent resistance of the given circuit is
01
CO 1
a) 20Ω
b) 0Ω
c) 5Ω
d) 10Ω

1(vii) In a R-L series circuit, the phase angle difference between voltage and current is
a) 30°
b) 90°
c) 180°
d) in between $0^{\circ} \& 90^{\circ}$

1 (viii) Impulse function is first derivative of
01
CO 2
a) ramp function
b) Step function
c) gate function
d) parabolic function

1(ix) In Superposition theorem, while considering a source, all other current sources are?
a) short circuited
b) change its position
c) open circuited
d) removed from the circuit

1(x) At resonance the impedance of the circuit given is
a) 100Ω
b) 50Ω
c) 120Ω
d) 10Ω

1(xi) For a series resonant circuit at low frequency, circuit impedance is \ldots ___ and at high frequency circuit impedance is \qquad
a) capacitive, inductive
b) inductive, capacitive
c) resistive, inductive
d) capacitive, resistive

1(xii) A filter that passes frequencies between two designated cut-off frequencies and attenuates all other frequencies is called?
a) high pass filter
b) band elimination filter
c) band pass filter
d) low pass filter
GROUP - B
(Short Answer Type Questions)
(Answer any three of the following)

5. Draw equivalent circuit by applying Thevenin's Theorem and find

Marks	$3 \times 5=15$ CO No CO4
5	CO 1

CO3
01

01
CO 5

CO1 out load current.

6. State Superposition Theorem. Using this theorem calculate the current through R of the circuit, shown in the figure below.

GROUP - C
(Long Answer Type Questions)
(Answer any three of the following)
$3 \times 15=45$
7. a) Find out the node voltages using super node analysis.

7. b) Find the current through 10 Ohm resistor using Norton's theorem
7. c) Find the voltage across R

8.a) State andprove Maximum Power Transfer theorem. Show that the efficiency for maximum power transfer is 50%.
8.b) What should be the value of impedance R for maximum power to be transferred from the source. Obtain the amount of maximum power.

8.c) A coil of inductance 50 mH and resistance 5Ω is connected to a 110 V d.c. supply. Determine (a) the final value of current, (b) the value of current after 4 ms , (c) the value of the voltage across the resistor after 6 ms , (d) the value of the voltage across the inductance after 6 ms , and (e) the time when the current reaches 15 A .
9.a) The circuit shown in the figure is initially at steady state with switch at position ' a '. If the switch position is changed from ' a ' to ' b ' at time $\mathrm{t}=0$, find the expression for current after switchi

9.b) Find the transient response of aR-C series circuit due to step input signal.
9.c) Design a band pass filter with $\mathrm{f}_{\mathrm{L}}=200 \mathrm{~Hz} \& \mathrm{f}_{\mathrm{H}}=1 \mathrm{KHz}$ and a pass band gain=4. Also calculate Q of the filter.
$\begin{array}{llll}\text { 10. a) } & \begin{array}{l}\text { What are Symmetry and Reciprocityin terms of a two port } \\ \text { network.Determine, for a two port network, the condition of } \\ \text { reciprocity and condition of symmetry in terms of Y parameter. }\end{array} & 6 & \text { CO4 }\end{array}$
10. b) What are the open circuit impedance parameters of a two port network? Why are they so called?
10. c) Define Tree and Co-Tree. Write the Incidence matrix of the given oriented graph.

11.a) Write down the tie set matrix for the following circuit given. Also find branch current in terms of loop current.

11.b) What is selectivity of a resonant circuit? Prove that the selectivity is the quality factor.
11.c) a) Prove that resonance frequency $f_{0=1} / 2 \pi \sqrt{ }$ LCfor a R-L-C series network.
b) For a R-L-C network, prove bandwidth is the ratio of resonance frequency to the quality factor

