GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 CIRCUIT THEORY & NETWORKS EI303

TIME ALLOTTED: 3 HoursFULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

	(Muniple Choice Type Questions)		
Ans	swer any <i>ten</i> from the following, choosing the correct alternative of each	question: Marks	10×1=10 CO No
1(i)	 Two resistors are connected in parallel & each dissipates 20 watts. The total power dissipated across two resistors equals a) 10 watts b) 20 watts c) 40 watts d) 80 watts 	01	CO 1
1(ii)	Superposition theorem is not valid for a) voltage responses b) current responses c) power responses d) either a) or b)	01	CO 1
1(iii)	The Laplace transform of the signal described in the figure -1 shown below is	01	CO 2
	$ \begin{array}{c} f(t) \\ 1 \\ 0 \\ a \\ b \\ t \end{array} $		
	a) e^{-as}/s b) e^{-bs}/s c) $(e^{-as} + e^{-bs}) / s$ d) $(e^{-as} - e^{-bs}) / s$		
1(iv)	 Find the conductance of a conductor of resistance 10 Ω and, 5 kΩ. (a) 0.01S and 0.02mS (b) 0.1S and 0.02mS (c) 0.01S and 0.2mS (d) 0.1S and 0.2mS 	01	
1(v)	The value of impulse function $K \partial (t)$ at $t = 0$ is a) K b) 0 c) ∞	01	CO 2

B. TECH/AEIE/ODD/SEM-III/EI303/R18/2020-2021

d) 1

1(vi)	Thevenein's equivalent resistance of the given circuit is	01	CO 1
	a) 20 Ω		
	$\mathbf{b} 0 0$		

- b) 0 Ω
 c) 5 Ω
 d) 10 Ω

1(vii)	In a R-L series circuit, the phase angle difference between voltage and current is	01	CO 1
	a) 30°		
	b) 90°		
	c) 180°		
	d) in between $0^{\circ} \& 90^{\circ}$		
1(viii)	Impulse function is first derivative of	01	CO 2
	a) ramp function	-	
	b) Step function		
	c) gate function		
	d) parabolic function		
1(ix)	In Superposition theorem, while considering a source, all other	01	CO 1
	current sources are?		
	a) short circuited		
	b) change its position		
	c) open circuited		
	d) removed from the circuit		
1(x)	At resonance the impedance of the circuit given is	01	CO 3
	a) 100 Ω		
	b) 50 Ω		
	c) 120 Ω		
	d) 10 Ω		
	10 ohm 100H		
	$\sin t \left(\widehat{\mathbf{A}} \right)$		
	↓		

B. TECH/AEIE/ODD/SEM-III/EI303/R18/2020-2021

1(xi)	For a series resonant circuit at low frequency, circuit impedance is and at high frequency circuit impedance is	01	CO3
	a) capacitive, inductive		
	b) inductive, capacitive		
	c) resistive, inductive		
	d) capacitive, resistive		
1(xii)	A filter that passes frequencies between two designated cut-off	01	CO 5
	frequencies and attenuates all other frequencies is called?		
	a) high pass filter		
	b) band elimination filter		
	c) band pass filter		
	d) low pass filter		

GROUP – B

	(Short Answer Type Questions)		
	(Answer any <i>three</i> of the following)		3 x 5 = 15
		Marks	CO No
2.	Define ABCD parameters of a two port network. Where are they most efficiently used?	5	CO4
3.	Find the voltage across the Resistance R of the circuit shown.	5	CO1

(**M**)

4. Determine the Laplace Transform of the given signal 5 CO2
 f(t) ↑

5. Draw equivalent circuit by applying Thevenin's Theorem and find 5 CO1 out load current.

6. State Superposition Theorem. Using this theorem calculate the current 5 CO1 through R of the circuit, shown in the figure below.

GROUP – C (Long Answer Type Questions) (Answer any *three* of the following)

3 x 15 =	45
Marks	CO No
5	CO1

7. a) Find out the node voltages using super node analysis.

7. b) Find the current through 10 Ohm resistor using Norton's theorem 5 CO1

7. c) Find the voltage across R

- 8.a) State and prove Maximum Power Transfer theorem. Show that the 4 CO1 efficiency for maximum power transfer is 50%.
- 8.b) What should be the value of impedance R for maximum power to be 5 CO1 transferred from the source. Obtain the amount of maximum power.

- 8.c) A coil of inductance 50 mH and resistance 5Ω is connected to a 110 6 CO1 V d.c. supply. Determine (a) the final value of current, (b) the value of current after 4 ms, (c) the value of the voltage across the resistor after 6 ms, (d) the value of the voltage across the inductance after 6 ms, and (e) the time when the current reaches 15 A.
- 9.a) The circuit shown in the figure is initially at steady state with switch at position 'a'. If the switch position is changed from 'a' to 'b' at time t=0, find the expression for current after switchi

9.b) Find the transient response of aR-C series circuit due to step input 5 CO₂ signal. 9.c) Design a band pass filter with $f_L=200$ Hz & $f_H=1$ KHz and a pass 5 CO5 band gain=4. Also calculate Q of the filter. What are Symmetry and Reciprocityin terms of a two port CO₄ 10. a) 6 network.Determine, for a two port network, the condition of reciprocity and condition of symmetry in terms of Y parameter.

5

5

CO₂

- 10. b) What are the open circuit impedance parameters of a two port 5 CO4 network? Why are they so called?
- 10. c) Define Tree and Co-Tree. Write the Incidence matrix of the given 4 CO4 oriented graph.

11.a) Write down the tie set matrix for the following circuit given. Also 6 CO5 find branch current in terms of loop current.

- 11.b) What is selectivity of a resonant circuit? Prove that the selectivity is 4 CO3 the quality factor.
- 11.c) a) Prove that resonance frequency $f_{0=1/2\pi}\sqrt{LC}$ for a R-L-C series 5 CO3 network.

b) For a R-L-C network, prove bandwidth is the ratio of resonance frequency to the quality factor