GURU NANAK INSTITUTE OF TECHNOLOGY
 An Autonomous Institute under MAKAUT 2020-2021
 CIRCUIT THEORY AND NETWORK CS303

FULL MARKS: 70
TIME ALLOTTED: 3 Hours
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)
Answer any ten from the following, choosing the correct alternative of each question: $\mathbf{1 0} \times \mathbf{1}=\mathbf{1 0}$
1(i) The system $y(t)=t x(t)+4$ is
a) non linear, time varying and unstable
b) linear, time varying and unstable
c) non linear, time- invariant and unstable
d) non linear, time varying and stable

1(ii) The theorem that enables a number of voltage (or current) sources to be $1 \quad \mathrm{CO} 1$ combined directly into a single voltage (or current) source is the
........theorem
a) Superposition
b) Reciprocity
c) Milliman's
d) . Thevenin

1(iii) A R-L series circuit has a time constant given by
a) R / L
b) L / R
c) $1 /(\mathrm{RL})$
d) $2 R L$

1(iv) Laplace transform if $\sin (a t) u(t)$ is?
a) $s / a^{2}+s^{2}$
b) $a / a^{2}+s^{2}$
c) $\mathrm{s}^{2} / \mathrm{a}^{2}+\mathrm{s}^{2}$
d) $a^{2} / a^{2}+s^{2}$

1(v) How is the discrete time impulse function defined in terms of the step $1 \quad \mathrm{CO} 2$ function?
a) $d[n]=u[n+1]-u[n]$
b) $d[\mathrm{n}]=\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-1]$
c) $\mathrm{d}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-2]$
d) $d[n]=u[n+1]-u[n-1]$

1(vi) When a unit impulse voltage is applied to an inductor of 1 H , the energy $1 \quad \mathrm{CO} 1$ supplied by the source is
a) Infinite
b) 0
c) $1 / 2 \mathrm{~J}$
d) 1 J

B. TECH/CSE/ODD/SEM-III/CS303/R18/2020-2021

1(vii) The no of Iinks for a graph having n nodes and b branches are
1
CO5
a) $b-n+1$
b) $\mathrm{n}-\mathrm{b}+1$
c) $b+n-1$
d) $b+n$

1 (viii) A tie set matrix has 3 rows and 7 branches. The number of twigs is
a) 3
b) 5
c) 2
d) 4

1(ix) A two port network is symmetrical if and only if
CO4
a) $\mathrm{Z}_{11}=\mathrm{Z}_{22}$
b) $\mathrm{BC}-\mathrm{AD}=-1$
c) $\mathrm{A}=\mathrm{D}$
d) $\mathrm{Y}_{11}=\mathrm{Y}_{21}$

1(x) Under the condition of maximum power transformation, efficiency 1 CO1 of the circuit is
a) 100%
b) 50%
c) 25%
d) 75%

1(xi) The coefficient of coupling for two coils having $L_{1}=2 H, L_{2}=8 H, M=3 H$ is
a) $\quad 0.75$
b) 0.1875
c) $\quad 1.333$
d) $\quad 5.333$

1(xii) The input and output of a continuous time system are respectively denoted by $x(t)$ and $y(t)$, which of the
following description corresponds to a causal system?
a) $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}-2)+\mathrm{x}(\mathrm{t}-4)$
b) $y(t)=x(t-4) x(t+1)$
c) $y(t)=x(t+4) x(t-1)$
d) $y(t)=(t+5) x(t+5)$

GROUP - B

(Short Answer Type Questions)
(Answer any three of the following)
2. Find the node voltage V_{2} in the network of the following Figure.

$\mathbf{3 \times 5}=\mathbf{1 5}$	
Marks	CO No
5	CO1

3.b) Explain the concept of mutual inductance with a suitable example.
3.b) Derive the expression between self-inductances of two coils and the 3 CO 1 mutual inductance between them.

4 Find a tree from the graph of the network shown in the below figure. Make the tie-set matrix and write the equations loop currents. All the values given in the figure are in ohms.

Find the laplace transform of the waveform shown in figure.
5
CO5

6 A Series resonant circuit has an impedance of 500 ohm at resonant frequency. Cut off frequencies are 10 kHz and 100 Hz . Determine (a) resonant frequency (b) value of L, C, and (c) quality factor at resonant frequency.
rrequency.
7.a) Find the laplace transform of the periodic waveform shown in figure.

$$
-2
$$

$$
\begin{gathered}
\text { GROUP - C } \\
\text { (Long Answer Type Questions) } \\
\text { (Answer any three of the following) }
\end{gathered}
$$

7.b) For an RL series circuit shown in figure, with no initial current in the inductor, a voltage $\mathrm{V}=4 e^{-t}$ volts is applied at $\mathrm{t}=0 \mathrm{sec}$. find the expression for the resulting current in the circuit for $t \geq 0$ using laplace transform method.

7.c) Find the inverse Laplace transform of $F(s)=\frac{s^{2}-15 s-11}{(s+1)(s-2)^{2}}$
8.a) What are the conditions for system to be a linear system? Give one practical example each of an ideal voltage source and ideal current source.
8.b) Find the effective value of the inductance for the following connection

8.c) Prove, $k=\frac{M}{\sqrt{L_{1} L_{2}}}$, Where $\mathrm{k}=$ coupling co-efficient, $\mathrm{M}=$ Mutual inductance and $L_{1} L_{2}$ are the self inductance of a coupled circuit.
9.a) State and explain Norton theorem.

CO1
9.b) Find the current I by using Superposition theorem.

10,a) A capacitor of 5 micro Farad is charged initially to 10 V and connected
5 to 10 KOhm resistance. It is allowe to discharge through it by witching of a switch k . find the discharging current.
10.b) Obtain the Laplace transform of the given square wave train.

10.c)

Obtain expression for current flowing through the circuit.
11.a) Define incident matrix of a graph and draw the orientation graph from $6 \quad$ CO5 the reduced incident matrix.

$$
[A]=\left[\begin{array}{rrrrr}
0 & -1 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & -1 \\
-1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

11.b) For the network shown in figure obtain current, I through 8 V battery.

9
CO5

