GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 CIRCUIT THEORY AND NETWORK CS303

TIME ALLOTTED: 3 Hours

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

Answer any <i>ten</i> from the following, choosing the correct alternative of each question: Marks			10×1=10 CO No
1(i)	The system $y(t) = tx(t) + 4$ is	1	CO3
	a) non linear, time varying and unstable		
	b) linear, time varying and unstable		
	c) non linear, time- invariant and unstable		
	d) non linear, time varying and stable		
1(ii)	The theorem that enables a number of voltage (or current) sources to be	1	CO1
	combined directly into a single voltage (or current) source is the		
	theorem		
	a) Superposition		
	b) Reciprocity		
	c) Milliman's		
	d) . Thevenin		
1(iii)	A R-L series circuit has a time constant given by	1	CO3
	a) R/L		
	b) L/R		
	c) 1/(RL)		
	d) 2RL		
1(iv)	Laplace transform if sin ¹⁷⁰ (at)u(t) is?	1	CO2
	a) $s/a^2 + s^2$		
	b) a/a^2+s^2		
	c) s^2/a^2+s^2		
	d) a^2/a^2+s^2		
1(v)	How is the discrete time impulse function defined in terms of the step	1	CO2
	function?		
	a) $d[n] = u[n+1] - u[n]$		
	b) $d[n] = u[n] - u[n-1]$		
	c) $d[n] = u[n] - u[n-2]$		
	d) $d[n] = u[n+1] - u[n-1]$		
1(vi)	When a unit impulse voltage is applied to an inductor of 1H, the energy	1	CO1
	supplied by the source is		
	a) Infinite		
	b) 0		
	c) 1/2J		

d) 1J

1(vii)	The no of links for a graph having n nodes and b branches are a) $b-n+1$	1	CO5
	b) n-b+1		
	c) b+n-1		
1 ()	d) b+n	1	005
1(viii)	A fie set matrix has 3 rows and 7 branches. The number of fwigs is $a = 2$	1	CO5
	a) 5 b) 5		
	c) 2		
	d) 4		
1(ix)	A two port network is symmetrical if and only if	1	CO4
	a) $Z_{11} = Z_{22}$		
	b) BC-AD= -1		
	c) A=D		
1()	d) $Y_{11}=Y_{21}$	1	001
$I(\mathbf{x})$	Under the condition of maximum power transformation, efficiency	1	COI
	of the circuit is 100%		
	a) 100%		
	c) 25%		
	d) 75%		
1(xi)	The coefficient of coupling for two coils having $L_1=2H$, $L_2=8H$, $M=3H$	1	CO1
	is		
	a) 0.75		
	b) 0.1875		
	c) 1.333		
1(::)	d) 5.333	1	CO 2
I (X11)	The input and output of a continuous time system are respectively denoted by $y(t)$ and $y(t)$, which of the	1	003
	following description corresponds to a causal system?		
	a) $v(t) = x(t-2)+x(t-4)$		
	b) $v(t)=x(t-4)x(t+1)$		
	c) $y(t)=x(t+4)x(t-1)$		
	d) $y(t)=(t+5)x(t+5)$		
	GROUP – B		
	(Short Answer Type Questions)		
	(Answer any <i>three</i> of the following)	3 x 5	= 15
2.	Find the node voltage V_2 in the network of the following Figure	Marks 5	CO No CO1
	5/30°V	U	001
	v_1 v_2		
	$10 \times 10^{\circ} A$ (1) $\gtrsim 5 \Omega$ $(2 \Omega) = 3 / 10 \Omega$ $(1) 5 \times 10^{\circ} V$		
3.b)	Explain the concept of mutual inductance with a suitable example.	2	CO1
3.b)	Derive the expression between self-inductances of two coils and the	3	CO1
	mutual inductance between them.		

4 Find a tree from the graph of the network shown in the below figure. 5 CO5 Make the tie-set matrix and write the equations loop currents. All the values given in the figure are in ohms.

5

7.a)

CO3

5

6 A Series resonant circuit has an impedance of 500 ohm at resonant 5 CO3 frequency. Cut off frequencies are 10 kHz and 100 Hz. Determine (a) resonant frequency (b) value of L, C, and (c) quality factor at resonant frequency.

GROUP – C (Long Answer Type Questions)

(Answer any *three* of the following)

3 x 15 = 45 Marks CO No 5 CO3

7.b) For an RL series circuit shown in figure, with no initial current in the 5 CO2 inductor, a voltage $V = 4e^{-t}$ volts is applied at t = 0 sec. find the expression for the resulting current in the circuit for $t \ge 0$ using laplace transform method.

- 7.c) Find the inverse Laplace transform of $F(s) = \frac{s^2 15s 11}{(s+1)(s-2)^2}$ 5 CO2
- 8.a) What are the conditions for system to be a linear system? Give one 5 CO3 practical example each of an ideal voltage source and ideal current source.
- 8.b) Find the effective value of the inductance for the following connection 5 CO1

- 8.c) Prove, $k = \frac{M}{\sqrt{L_1 L_2}}$, Where k= coupling co-efficient, M= Mutual 5 CO1 inductance and $L_1 L_2$ are the self inductance of a coupled circuit. 9.a) State and explain Norton theorem. 6 CO1
- 9.b) Find the current I by using Superposition theorem. 9 CO1

- 10,a) A capacitor of 5 micro Farad is charged initially to 10V and connected 5 Co2 to 10KOhm resistance. It is allowe to discharge through it by witching of a switch k. find the discharging current.

Obtain expression for current flowing through the circuit.

11.a) Define incident matrix of a graph and draw the orientation graph from 6 CO5 the reduced incident matrix.

$$[\mathbf{A}] = \begin{bmatrix} 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

CO5 9

