GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 CIRCUIT THEORY AND NETWORK(Backlog) EE(CSE)301

TIME ALLOTTED: 3 Hours

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

A	Answer any <i>ten</i> from the following, choosing the correct alternative of eac	ch question: 10	×1=10
		Marks	CO No
1(i)	The node method of circuit analysis is based on	01	CO 1
	a) KVL and Ohm's law		
	b) KCL and KVL		
	c) KVL, KCL and Ohm's law		
	d) KCL and Ohm's law		
1(ii)	Maximum power transfer occurs at efficiency of	01	CO 2
	a) 100%		
	b) 50%		
	c) 25%		
	d) 75%		
1(iii)	What should be the internal impedance of an ideal current source?	01	CO 4
	a) zero		
	b) infinite		
	c) both (a) & (b)		
1(2)	d) none of these	01	001
I (1V)	The phasor combination of resistive power and reactive power is	01	COI
	a) active power b) apparent power		
	b) apparent power		
	d) none of these		
$1(\mathbf{v})$	Δ series resonance circuit under resonance condition is called	01	CO 1
1(v)	a) an oscillator circuit	01	COI
	h) a rejector circuit		
	c) an acceptor circuit		
	d) none of these		
1(vi)	The value of the impulse function $\delta(t)$ at t=0 is	01	CO 2
1(1)	a) 0	01	002
	b) ∞		
	c) 1		
	d) indeterminate		
1(vii)	A two port network is reciprocal if and only if	01	CO 4
~ /	a) $Z_{11} = Z_{22}$		
	b) BC - AD = -1		
	c) $Y_{12} = Y_{21}$		
	d) both b) and c)		

1(viii)	 Laplace Transform analysis gives a) timedomain response only b) frequency domain response only c) real response only d) Both (a) & (b) 	01	CO 2
1(ix)	The function $f(t)$ in figure below a) $u(t)$ b) $u(t-2)$ c) $u(2-t)$ d) $u(2t)$	01	CO 3
1(x)	An R-C series circuit has a time constant given by a) R/C	01	CO 1
	b) C/R c) 1/RC d) RC		
1(xi)	 The Cut-set matrix gives the relation between a) branch currents and link currents b) branch voltages and twig voltages. c) branch voltages and link voltages d) none of these 	01	CO 5
1(xii)	The number of links for a graph having 'n' nodes and 'b' branches a) $b-n+1$ b) $n-b+1$ c) $b+n-1$	01	CO 5

d) b+n

GROUP – B

(Short Answer Type Questions)

	(Answer any <i>three</i> of the following) $3 \times 5 = 15$		
2	State and prove Maximum Power Transfer theorem For AC network.	Marks 5	CO No CO1
3	With reference to the figure draw the oriented graph and write down the Tie Set matrix.	5	CO5

B. TECH/CSE/ODD/SEM-III/EE(CSE)301/R16/2020-2021

4	What is impulse function? Find its Laplace Transform.	5	CO2
5	The combined inductance of two coils connected in series is 0.6H or 0.1H depending on relative directions of currents in the two coils. If one of the coils has a self-inductance of 0.2H, find (i) mutual inductance and (ii) coefficient of coupling.	5	CO5
6	Determine Y- parameter in terms of Z- parameter	5	5

GROUP – C (Long Answer Type Questions)

	(Answer any <i>three</i> of the following)	3 x 15 = 45	
		Marks	CO No
7.a)	Find the inverse Laplace of F (s).	7	CO2
	$F(s) = \frac{10(s+4)}{s(s+3)(s+1)^2}$		

7.b) The circuit in the figure was in steady state with switch in position 1. Find 8 CO2 current i(t) for t > 0 if the switch is moved from position 1 to 2 at t = 0.

- 8.a) State and explain Norton's theorem.
- b) Obtain Norton's equivalent network between terminal A and B as shown 9 CO1 in fig.

4.a) Derive the expression for resonant frequency for the parallel circuit shown 9 CO5 in figure.

CO1

6

B. TECH/CSE/ODD/SEM-III/EE(CSE)301/R16/2020-2021

b) For the oriented graph shown below find the incidence matrix and reduced 6 CO5 incidence matrix and reduced incidence matrix. Find the possible number of trees.

⁵ An RLC series circuit with a resistance 10Ω , inductance of 0.2H and a 15 CO5 capacitance of 40μ F is supplied with a 100V supply at variable frequency. Find the following w.r.t. the series resonant circuit.

(i) Frequency of which resonance takes place

- (ii) Current
- (iii) Power
- (iv) Power factor
- (v) Voltage across R, L, C at that time
- (vi) Quality factor
- (vii) Half power points
- (viii) Resonance curve
- (ix) Phasor diagram