# GURU NANAK INSTITUTE OF TECHNOLOGY <br> An Autonomous Institute under MAKAUT <br> 2020-2021 <br> CIRCUIT THEORY AND NETWORK(Backlog) <br> EE(CSE)301 

TIME ALLOTTED: 3 Hours
FULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
GROUP - A
(Multiple Choice Type Questions)
Answer any ten from the following, choosing the correct alternative of each question: $\mathbf{1 0} \times \mathbf{1}=\mathbf{1 0}$
Marks CO No
1(i) The node method of circuit analysis is based on
a) KVL and Ohm's law
b) KCL and KVL
c) KVL, KCL and Ohm's law
d) KCL and Ohm's law

1(ii) Maximum power transfer occurs at efficiency of
01
CO 2
a) $100 \%$
b) $50 \%$
c) $25 \%$
d) $75 \%$

1(iii) What should be the internal impedance of an ideal current source?
01
CO 4
a) zero
b) infinite
c) both (a) \& (b)
d) none of these

1(iv) The phasor combination of resistive power and reactive power is
$01 \quad$ CO1
a) active power
b) apparent power
c) average power
d) none of these

1(v) A series resonance circuit under resonance condition is called
01
CO1
a) an oscillator circuit
b) a rejector circuit
c) an acceptor circuit
d) none of these
(vi) The value of the impulse function $\delta(\mathrm{t})$ at $\mathrm{t}=0$ is
$01 \quad$ CO2
a) 0
b) $\infty$
c) 1
d) indeterminate

1(vii) A two port network is reciprocal if and only if
01
CO4
a) $\mathrm{Z}_{11}=\mathrm{Z}_{22}$
b) $\mathrm{BC}-\mathrm{AD}=-1$
c) $\mathrm{Y}_{12}=\mathrm{Y}_{21}$
d) both b) and c)

1(viii) Laplace Transform analysis gives
01
CO 2
a) timedomain response only
b) frequency domain response only
c) real response only
d) Both (a) \& (b)

1(ix) The function $f(t)$ in figure below
01
CO3
a) $u(t)$
b) $u(t-2)$
c) $u(2-t)$
d) $u(2 t)$


1(x) An R-C series circuit has a time constant given by
01
CO1
a) $R / C$
b) $C / R$
c) $1 / \mathrm{RC}$
d) RC

1(xi) The Cut-set matrix gives the relation between
01
CO5
a) branch currents and link currents
b) branch voltages and twig voltages.
c) branch voltages and link voltages
d) none of these

1(xii) The number of links for a graph having ' $n$ ' nodes and ' $b$ ' branches
01
CO5
a) $\mathrm{b}-\mathrm{n}+1$
b) $\mathrm{n}-\mathrm{b}+1$
c) $\mathrm{b}+\mathrm{n}-1$
d) $b+n$

## GROUP - B

(Short Answer Type Questions)
(Answer any three of the following) $3 \times 5=15$
2
State and prove Maximum Power Transfer theorem For AC network.
Marks CO No

3 With reference to the figure draw the oriented graph and write down the
5 Tie Set matrix.


Determine Y- parameter in terms of Z- parameter

## GROUP - C

(Long Answer Type Questions)
(Answer any three of the following)
Find the inverse Laplace of $\mathrm{F}(\mathrm{s})$.
$3 \times 15=45$
Marks
CO No 7 CO2

$$
\mathrm{F}(\mathrm{~s})=\frac{10(s+4)}{s(s+3)(s+1)^{2}}
$$

7.b) The circuit in the figure was in steady state with switch in position 1. Find current $i(t)$ for $t>0$ if the switch is moved from position 1 to 2 at $t=0$.

8.a) State and explain Norton's theorem.
b) Obtain Norton's equivalent network between terminal A and B as shown 9

4.a) Derive the expression for resonant frequency for the parallel circuit shown $9 \quad$ CO5 in figure.

b) For the oriented graph shown below find the incidence matrix and reduced incidence matrix and reduced incidence matrix. Find the possible number of trees.


An RLC series circuit with a resistance $10 \Omega$, inductance of 0.2 H and a
15 CO5 capacitance of $40 \mu \mathrm{~F}$ is supplied with a 100 V supply at variable frequency. Find the following w.r.t. the series resonant circuit.
(i) Frequency of which resonance takes place
(ii) Current
(iii) Power
(iv) Power factor
(v) Voltage across R, L, C at that time
(vi) Quality factor
(vii) Half power points
(viii) Resonance curve
(ix) Phasor diagram

