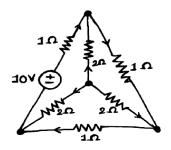
GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 CIRCUIT THEORY AND NETWORKS EC302

TIME ALLOTTED: 3 Hours

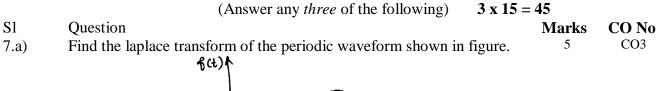
FULL MARKS: 70

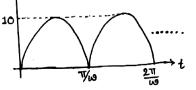

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. GROUP – A

(Multiple Choice Type Questions)

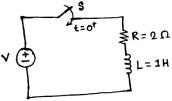
1. Answer any <i>ten</i> from the following, choosing the correct alternative of each question: $10 \times 1=10$					
	Marks	CO No			
1(i) The equivalent resistance of the figure between x and y is	1	CO1			
2					
 a) 30Ω b) 50Ω c) 60Ω d) 10Ω 					
 1(ii) For a resistive load network maximum power transfer occurs a efficiency of a) 25% b) 50% c) 75% d) 100% 	ıt 1	CO2			
1(iii) A R-L series circuit has a time constant given by	1	CO3			
a) R/L b) L/R c) 1/(RL) d) 2RL					
1(iv) Laplace transform if sin(at)u(t) is?	1	CO2			
a) s/a^2+s^2 b) a/a^2+s^2 c) s^2/a^2+s^2 d) a^2/a^2+s^2					
1(v) In which of the following oscillations are not present?	1	CO2			
 a) Under damping b) Over damping c) Critical damping d) Both 2 and 3 					
1(vi) When a unit impulse voltage is applied to an inductor of 1H, the energ	y 1	CO1			
supplied by the source is					
a) Infinite					
b) 0					
c) 1/2J					

d) 1J


1(vii)	The no of Iinks for a graph having n nodes and b branches are a) b-n+1	1	CO5
	b) n-b+1		
	c) $b+n-1$		
1(viii)	d) $b+n$ Laplace transform of $f(t) = 1$ is	1	CO5
	a) 1/S		
	b) $1/S^2$		
	c) S d) S^2		
1(ix)	A two port network is symmetrical if and only if	1	CO4
	a) $Z_{11}=Z_{22}$		
	b) BC-AD= -1 c) A=D		
	d) $Y_{11}=Y_{21}$		
1(x)	For maximum power to be transferred between the load and the source	1	CO1
	the condition is		
	a) $R_S > R_L$ b) $R_S = R_L$		
	c) $R_{S} < R_{L}$		
	d) None of these.	1	601
1(xi)	The coefficient of coupling for two coils having $L_1=2H$, $L_2=8H$, $M=$ 3H is	1	CO1
	a) 0.75 b) 0.1875		
	b) 0.1875 c) 1.333		
	d) 5.333		
1(xii)	A cut-set schedule gives the relation between	1	CO5
	a) Branch current and link currentb) Branch voltage and tree branch voltage		
	c) Branch voltage and link voltage		
	d) d. Branch and tree current		
	GROUP – B		
	(Short Answer Type Questions) (Answer any <i>three</i> of the following) $3 \times 5 = 15$		
	$(1 \text{ mission any notice of the following}) e \neq e = 1e$	Marks	CO No
2	Find the node voltage V_2 in the network of the following Figure.	5	CO1
	V ₁ V ₂ V ₂		
	$10 \angle 0^{\circ} A $		
3	With reference to the figure draw the oriented graph and write down the Tie Set matrix.	5	CO5

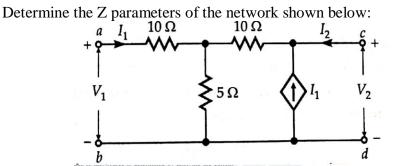


4	Explain Source Transformation formula with suitable justification.	5	CO2
5	Find the laplace transform of the waveform shown in figure. $f^{(4)}$	5	CO3
	V T $2T$ t		
6	A Series resonant circuit has an impedance of 500 ohm at resonant frequency. Cut off frequencies are 10 kHz and 100 Hz. Determine (a)	5	CO3


6 A Series resonant circuit has an impedance of 500 onin at resonant 5 CO frequency. Cut off frequencies are 10 kHz and 100 Hz. Determine (a) resonant frequency (b) value of L, C, and (c) quality factor at resonant frequency.

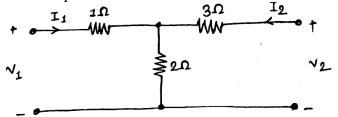
GROUP – C (Long Answer Type Questions)

7.b) For an RL series circuit shown in figure, with no initial current in the 5 CO2 inductor, a voltage $V = 4e^{-t}$ volts is applied at t = 0 sec. find the expression for the resulting current in the circuit for $t \ge 0$ using laplace transform method.

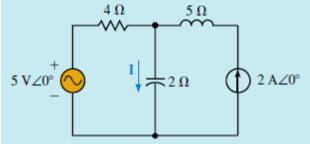


7.c)Find the inverse Laplace transform of $F(s) = \frac{s^2 - 15s - 11}{(s+1)(s-2)^2}$ 5CO28.a)Find Z-parameters in terms of Y-parameters of a two port network.5CO4

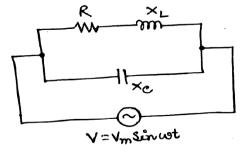
B. TECH/ECE/ODD/SEM-III/EC302/R18/2020-2021


5

CO4



8.b)


8.c) Find Y parameters for the network. Determine whether the network is 5 CO4 symmetrical and reciprocal.

9.a)State and explain Norton theorem.6CO19.b)Find the current I by using Superposition theorem.9CO1

10.a) Derive the expression for resonant frequency for the parallel circuit 5 CO3 shown in figure.

CO3 5 10.b) A series RLC resonance circuit has a impedance of 500Ω at resonant frequency. Cutoff frequencies are 10,000Hz and 100Hz. Determine i) Resonant frequency. ii) Value of L and C. iii) Quality factor at resonant frequency. CO3 10.c) Two impedances $Z_1 = (20 + j10) \Omega$ and $Z_2 = (10 - j30) \Omega$ are 5 connected in paralleland this combination is connected in series with $Z_3 = (10 + jX) \Omega$. Find the value of X which will produce resonance.

11.a) Define incident matrix of a graph and draw the orientation graph from 6 CO5 the reduced incident matrix.

$$[\mathbf{A}] = \begin{bmatrix} \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} - \mathbf{1} & -\mathbf{1} - \mathbf{1} \\ -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

11.b) For the network shown in figure obtain current, I through 8 V battery. 9 CO5

$$I \bigoplus 5 \land R_1 \lessapprox 2 \Omega$$

$$E_1 \bigoplus 8 \lor$$

$$B \lor$$

$$E_2 \bigoplus 6 \lor$$