GURU NANAK INSTITUTE OF TECHNOLOGY
 An Autonomous Institute under MAKAUT 2020-2021
 CIRCUIT THEORY AND NETWORKS (Backlog) EE301

TIME ALLOTTED: 3HR
FULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable
GROUP - A
(Multiple Choice Type Questions)
Answer any ten from the following, choosing the correct alternative of each question: $\quad \mathbf{1 0} \times \mathbf{1}=\mathbf{1 0}$
1(i) The equivalent resistance of the figure between x and y is
1 CO1

a) 30Ω
b) 50Ω
c) 60Ω
d) 10Ω

1(ii) The Superposition Theorem is applicable to
$1 \quad \mathrm{CO} 1$
a) Linear response only
b) Linear and nonlinear response only
c) Linear, Non-linear and time variant response only
d) Linear, Non-linear and time invariant response only

1(iii) A R-C has a time constant given by
1 CO 3
a) R / C
b) C / R
c) $1 /(\mathrm{RC})$
d) RC

1(iv) Laplace transform analysis gives
$1 \quad \mathrm{CO} 2$
a) Time domain response onty
b) Frequency domain response only
c) Both A and B
d) None of these

1(v) The value of the impulse function $\delta(\mathrm{t})$ at $\mathrm{t}=0$ is
a) 0
b) ∞
c) 1
d) indeterminate.

1(vi) When a unit impulse voltage is applied to an inductor of 1 H , the 1 CO1 energy supplied by the source is
a) Infinite
b) 0
c) $1 / 2 \mathrm{~J}$
d) d) 1 J

1(vii) The no of Iinks for a graph having n nodes and b branches are
a) $b-n+1$
b) $n-b+1$
c) $b+n-1$
d) $b+n$

1(viii) A tie set matrix has 3 rows and 7 branches. The number of twigs is
a) 3
b) 5
c) 2
d) 4

1(ix) A two port network is reciprocal if and only if
a) $\mathrm{Z}_{11}=\mathrm{Z}_{22}$
b) $\mathrm{BC}-\mathrm{AD}=-1$
c) $\mathrm{A}=\mathrm{D}$
d) $\mathrm{Y}_{11}=\mathrm{Y}_{21}$

1(x) For maximum power to be transferred between the load and the source the condition is
a) $R_{S}>R_{L}$
b) $R_{S}=R_{L}$
c) $R_{S}<R_{L}$
d) None of these.

1(xi) When a source is delivering max power to a load, the efficiency of the 1 CO1 circuit
a) is always 50%
b) is always 75%
c) Depends on the circuit parameter
d) None of these

1(xii) A cut-set schedule gives the relation between
a) Branch current and link current
b) Branch voltage and tree branch voltage
c) Branch voltage and link voltage
d) Branch and tree current

GROUP - B

(Short Answer Type Questions)
(Answer any three of the following)
2 Find Norton's equivalent network across terminal A and B

3 With reference to the figure draw the oriented graph and write down 5 CO5 the Tie Set matrix.

4 The circuit in the figure was in steady state with switch in position 1. Find current $i(t)$ for $t>0$ if the switch is moved from position 1 to 2 at $\mathrm{t}=0$.

6 Find the laplace transform of the waveform shown in figure.

6
What are ABCD parameters? Prove that $\mathrm{AD}-\mathrm{BC}=1$
GROUP - C
(Long Answer Type Questions)
(Answer any three of the following)
5
CO4

below:

7.b) For an RL series circuit shown in figure, with no initial current in the inductor, a voltage $\mathrm{V}=4 e^{-t}$ volts is applied at $\mathrm{t}=0 \mathrm{sec}$. find the expression for the resulting current in the circuit for $\mathrm{t} \geq 0$ using laplace transform method.

7.c) Find the inverse Laplace transform of $F(s)=\frac{s^{2}-15 s-11}{(s+1)(s-2)^{2}}$
8.a) Find Z-parameters in terms of Y-parameters of a two port network.
$5 \quad \mathrm{CO} 2$
8.b) Deduce the condition for reciprocity and symmetry for the Z
parameter of a two port network.
8.c) Find Y parameters for the network. Determine whether the network is 5 CO4 symmetrical and reciprocal.

9.a) State and explain Thevenin's theorem. $\quad 6 \quad$ CO1
9.b) Find the current through $(3+\mathrm{j} 4) \Omega$ impedance using Superposition $9 \quad \mathrm{CO} 1$ theorem.

10.a) Design a first-order low pass filter with a cut-off frequency of 2 kHz and pass-band gain of 3 .
10.b) What are the advantages of active filter over passive filter?
10.c) Draw and explain the characteristics of an ideal band-pass filter. 5
11.a) What is oriented graph of a network? Explain with a suitable example. 6
11.b) For the network shown in figure below write down the Tie set matrix 9 CO5 and obtain the network equilibrium equation in matrix form using KVL. Calculate loop currents.

