GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT 2020-2021 COMPILER CONSTRUCTION

COMPILER CONSTRUCTION PGCSE 302D

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $0 \times 1 = 10$

				Marks	CO No
1.	i)	, ,	are specified by Linker Macro Processor	1	CO1
	ii)	· · · · · · · · · · · · · · · · · · ·	Machine code	1	CO3
	iii) iv)	The grammar A → AA (A) e is not suit because the grammar is? a) Ambiguous b)	Left recursive An operator grammar	1	CO2
	IV)	parsing) appropriately? a) Position where next reduce or shift ope b) The next step has use of Non-terminal a c) Used for reduction in a coming-up step sentential form where the next shift or red d) Used in the next step for reduction alor sentential form where the right hand side of	ration will occur for reduction along with a position in the uce operation will occur ag with a position in the	1	CO3
	v)	Which of the following groups is/are toke structures? a) Syntax analyzer b)	n together into semantic Intermediate code generation Semantic analyzer	1	CO1
	vi)	Which of the following statements is false a) Unambiguous grammar has both kind of b) An LL(1) parser is a top-down parser c) LALR is more powerful than SLR d) Ambiguous grammar cannot be LR(k)		1	CO4
	vii)	, 1	list of tokens Jachine code	1	CO2

M.TECH/ CSE /ODD/SEM-III/ PGCSE 302D /2020-2021

	viii)		Canonical LR parsing table None of these	1	CO4
	ix) is a process of finding a parse tree for a string of tokens.				
		· ·	Analysing Tokenizing	1	CO3
	x)	· · · · · · · · · · · · · · · · · · ·	program into proper General syntax analysis Interpretation analysis	1	CO2
	xi)	Which grammar rules violate the require 1. $P \rightarrow Q R$ 2. $P \rightarrow Q s R$ 3. $P \rightarrow \varepsilon$ 4. $P \rightarrow Q t R r$	ments of an operator grammar?	1	CO3
	xii)	c) 2 and 3 only d) 3 A grammar that produces more than one	1 and 3 only 3 and 4 only e parse tree for some sentence		
		•	Unambiguous All of these	1	CO2
GROUP – B* (Short Answer Type Questions)					
Answer any <i>three</i> from the following: $3\times5=15$					
2.	a)	What is 'handle' and 'handle prunning'? this.		Marks 2	CO No CO1
	b)	Consider the grammar : $E \rightarrow E + E \mid E^* \mid$ For a sentence id +id * id, write the han form of the reduction.		2	CO2
	c)	What is predictive parsing?		1	CO1
3.		Translate the expression: $(x-y)*(z+d)+(x+z+d)$ i) quadruples ii) triples iii) indirect triples) into	5	CO4
4.		Write down the output of each phase for	the expression	5	CO2
5.		a: = b - c / 50 We have a grammar with not epsilon and $S \rightarrow \epsilon$ and $S \rightarrow a$) to parse a string, we maximum number of reduces moves that parser for this grammar? Justify your answer.	with n tokens. What is the	5	CO4

M.TECH/ CSE /ODD/SEM-III/ PGCSE 302D /2020-2021

5 CO3 6. The programming language given below is written in the programming language that does not allow nested declarations of functions and allows global variables. global int j = 100, k = 5; void M(n) int j = 10; print (n + 10); j = 200;k = 20;print (n); main() M(j + k);What is the output of the above program if the programming

GROUP – C* (Long Answer Type Questions) Answer any *three* from the following: 3×15=45

language uses static scoping and call by need parameter passing

mechanism?

7.	a)	What is cross-compiler?	2	CO1
	b)	Design Finite Automata for the following expression: $(b + a)*abb$	6	CO3
	c)	Define lexemes, tokens, patterens	3	CO1
	d)	What is Left-Recursion? How it can be eliminate?	4	CO3
8.	a)	Describe LR parsing with block diagram.	4	CO3
	b)	What are the main advantages of LR parsing?	3	CO3
	c)	Construct SLR parsing table for the grammar given below : $S -\!\!\!> Ab$, $A -\!\!\!> bA \mid c$	8	CO3
9.	a)	Construct DFA directly from [Not by generating NFA] the regular expression:	5	CO1
		$L = (a \mid b)*ba$		
	b)	Compare Synthesized and Inherited attribute with suitable example.	5	CO3
	c)	Design a Dependency Graph and Direct Acyclic Graph for the string $x + x*(y-z) + (y-z)*d$	5	CO4
10.	a)	Briefly Describe Peephole optimization with suitable example.	5	CO5
	b)	What is an activation record? When and why are those records used?	5	CO4

Marks

CO No.

M.TECH/ CSE /ODD/SEM-III/ PGCSE 302D /2020-2021

5

CO3

		block:		
		d := y * z		
		e := x + y		
		y := y * z		
		x := e - d		
11.	a)	The instructions of a simplified computer, which has only two registers, are given below: OP Rj, Rk - Performs Rj OP Rk and stores the result in register Rk. OP m, Rj - Performs the content of memory location m OP Rj and stores the result in Rj MOV m, Rk - Moves the content of memory location m to register		CO4
		Rk. MOV Rk, m - Moves the content of register Rk to memory location		
		m. OP is either ADD or SUB.		
		We have the following basic block:		
		T1 = a + b		
		T2 = c + d		
		T3 = e - T2		
		T4 = T1 - T3		
		Assuming that all operands are initially in memory and the final		
		value of the computation in memory. What is the minimum number of MOV instructions in the code generated for this basic block?		
	b)	Consider the grammar G, whose SLR parser has q1 states and LALR parser has q2 states. What is the relation between q1 and q2?	4	CO3
	c)	Why is the code optimizations are carried out on the intermediate	5	CO4

Construct the DAG (Directed Acyclic Graph) for the following basic

c)

code?