GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 CONTROL ENGINEERING(Backlog)

EI 503

TIME ALLOTTED: 3 Hours

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

	-		Marks	CO No
1.	(i)	For relative stability of the system which of the following is sufficient?	1	CO4
		a) Gain margin		
		b) Phase marginc) Both (a) and (b)		
		d) None of these		
	(ii)	In Nyquist criterion roots of the characteristic equation are	1	CO3
	(1)	given by	-	000
		a) Zeros of open loop transfer function		
		b) Zeros of closed loop transfer function		
		c) Poles of closed loop transfer function		
		d) Poles of open loop transfer function		
	(iii)	Cut off frequency is the frequency at which magnitude of	1	CO3
		closed loop frequency response is		
		a) 1 db below its zero frequency		
		b) 2 db below its zero frequencyc) 3 db below its zero frequency		
		d) 4 db below its zero frequency		
	(iv)	Steady state error is always zero in response to the	1	CO2
	(1)	displacement input for	-	001
		a) Type 0 system		
		b) Type 1 system		
		c) Type 2 system		
		d) Type $(N > 1)$ system for N= 0, 1, 2N		
	(v)	Electrical resistance is analogous to	1	CO1
		a) Inertia		
		b) Dampers		
		c) Spring		
	(11)	d) Fluid capacity Transfer function of a system can used to study its	1	CO1
	(vi)	Transfer function of a system can used to study its a) Steady state behavior	1	COI
		b) Transient behavior		
		c) Both (a) and (b)		
		d) d) None of these		
		· · ·		

B. TECH/AEIE//ODD/SEM-V/EI503/R16/2020-2021

(vii)	An open loop system a) Output control the input signal	1	CO1
	b) Output has no control over input signal		
	c) Some other variable control the input signal		
	d) Neither output nor any other variable has any effect on		
	input		
(viii)	A system Gain Margin is -12 dB, the system is	1	CO3
· /	a) Stable		
	b) unstable		
	c) marginally stable		
	d) none of the above		
(ix)	If a Nyquist plot of G (j ω) H (j ω) for a closed loop system	1	CO3
	passes through (-2, j0) point in GH plane, what would be the		
	value of gain margin of the system in dB?		
	a) $0 dB$		
	b) 2.0201 dB		
	c) 4 dB		
	d) 6.0205 dB		
(x)	Polar plots for+ve and –ve frequencies	1	CO3
	a) Are always symmetrical		
	b) Can never be symmetrical		
	c) May be symmetrical		
	d) None of these		
(xi)	By adding a pole at $s = 0$, Nyquist plot of the system will	1	
	a) Shift 90° clockwise		
	b) Shift 90° anticlockwise		CO3
	c) Shift 180°		
	d) Not change at all		
(xii)	A complex-conjugate pair of poles on the jw axis will	1	CO1,CO
	produce a		2
	a) High oscillatory mode of transient response		
	b) Steady state mode of response		
	c) Sinusoidal mode of response		

GROUP – B

d) None of these

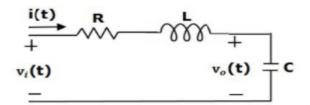
(Short Answer Type Questions)

Answer any *three* from the following: $3 \times 5 = 15$

			Marks	CO No
2.	(a)	Draw the transient response characteristics graph of second order underdamped initially relaxed system.	2	CO2
	(b)	Define the following:-	3	CO2
		Delay Time		
		Rise Time		
		Peak Time		
		Maximum Peak		
		Settling Time		
		Steady State error		
3.	(a)	Calculate the steady state error of the close loop system of	3	CO1,CO

B. TECH/AEIE//ODD/SEM-V/EI503/R16/2020-2021

		transfer function G(s) = 1 / S(S+3)		2
		and $H(s) = 1$ with the I/P signal 2 +5 t +9 t ² /2		
	(b)	What do you mean by proportional Error Coefficient & Acceleration Error coefficient?	2	CO2
4.	(a)	Draw the Signal Flow graph of the following Block diagram.	4	CO1,CO 2
		$\mathbf{R}(\mathbf{s}) \bigoplus \mathbf{G}_{1} \rightarrow \mathbf{G}_{2} \rightarrow \mathbf{G}_{3} \rightarrow \mathbf{G}_{5} \rightarrow \mathbf{G}_{5} \rightarrow \mathbf{Y}(\mathbf{s})$		
	(b)	What is Close Loop Transfer Function?	1	CO1
5.	(a)	Sketch the Polar plots of the transfer function given below. Where K=20.	3	CO4
		$G(s)H(s)=rac{K}{s(s+1)(s+5)}$		
	(b)	Determine the gain Cross over frequency.	2	CO4
6.	(a)	Draw the electrical equivalent circuit of the following mechancal system using Force-Current analogy?	4	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CO1,CO 2
	(b)	What is force Voltage Analogy?	1	CO1
		GROUP – C		
		(Long Answer Type Questions)		
		Answer any <i>three</i> from the following: 3×15=45	Marks	CO No
7.	(a)	Sketch Nyquist plot for following transfer function.	10	CO10
	(b)	G(S) = 2 / [S(S+2)(S+3)] Find the GM and PM.	4	CO4
	(c)	Comment on the stability of the system.	1	CO4
8.	(a)	Define Root Locus.	2	CO1
	(b)	Consider a feedback system having characteristics equation	10	CO2
		G(s) = K / [s(s + 1)(s2 + 2s + 2)]		


B. TECH/AEIE//ODD/SEM-V/EI503/R16/2020-2021

Find the root locus of the system.

9.

	(c)	Explain the Relative stability measurement using Root	3	CO1
•	(a)	Locus Technique. Explain Nyquist stability criteria.	5	CO3
	(b)	Using Bode Plot find whether the closed-loop system will be stable for the open-loop transfer function and Calculate its gain margin. G(s) = 14 / [s(s + 1) (s + 2)]	10	CO2
	(a)	Write definitions of state and state variables. Derive	5	CO4

- 10. (a) Write definitions of state and state variables. Derive 5 CO4 expression of transfer function of the system which is represented in the following standard state space form: $\ddot{X} = AX + BU$; Y = CX + DU
 - (b) Derive the State Space Model from Differential Equation of 8 CO3 the following system.

	(c)	Define controllability and Observability.	2	CO4
11.		Answer any three of the following		
	(a)	Relative Stability and Absolute Stability of the Control System	5	CO3
	(b)	Lag Compensator	5	CO4
	(c)	Polar Plot	5	CO3
	(d)	Gain margin & phase margin	5	CO2
	(e)	Time response of Second Order System for step response	5	CO2