GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 CONTROL ENGINEERING

EI503

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answe	r any ten from the following, choosing the correct alternative of each	question: 10×	1=10
		Marks	CO No
(i)	For a stable system, the poles should lie on the	1	CO1
	side of the imaginary axis.		
	a) Right		
	b) left		
	c) middle		
	d) none of these.		
(ii)	The order of a system is equals to the number of	1	CO2
	a) zeroes		
	b) multipliers		
	c) adders		
	d) poles		
(iii)	The type of a system is equals to the number of	1	CO3
	a) polesat origin		
	b) polesnot at origin		
	c) zeroesat origin		
	d) zeroesnot at origin		
(iv)	The roots of the characteristics equation is called	1	CO4
	a) zero		
	b) pole		
	c) gain		
	d) scale		
(v)	The definition of transfer function is applicable	1	CO1
	for		
	a) Linear system		
	b) Non-linear system		
	c) Both of the above		
	d) None of the above		
(vi)	In Bode plot, if gain margin is positive, the system is	1	CO2
	a) Stable		
	b) Unstable		
	c) None of the above		
	d) Cannot be determined		

BTECH/ AEIE/ODD/SEM-5/EI503/R18/2020-2021

(vii)	If two poles are added in the transfer function, the magnitude plot slope is changed by	1	CO2
	a) 20 db/Decade		
	b) 40 db/Decade		
	c) -20 db/Decade		
	d) -40 db/Decade		
(viii)	If a zero is added in the transfer function, the magnitude plot slope	1	CO3
	is changed by		
	a) 20 db/Decade		
	b) 40 db/Decade		
	c) -20 db/Decade		
	d) -40 db/Decade		
(ix)	Nyquist Plot is	1	CO4
	a) Variation of complex transfer function with the variation of		
	angular frequency from –infinity to +infinity		
	b) Variation of complex transfer function with the variation of		
	angular frequency from zero to +infinity		
	c) Variation of complex transfer function with the variation of		
	angular frequency from –infinity to zero		
	d) None of the above		
(x)	Overshoot can be seen at	1	CO4
	a) Underdamped system		
	b) Overdamped system		
	c) Nonlinear system		
	d) Critically damped system		
(xi)	The stability is higher for	1	CO3
	a) Open loop system		
	b) Closed loop system		
	c) Equal		
	d) Undetermined		
(xii)	The bandwidth is higher for	1	CO1
	a) Open loop system		
	b) Closed loop system		
	c) Equal		
	d) Undetermined		

GROUP – B

(Short Answer Type Questions) (Answer any *three* of the following) $3 \times 5 = 15$

			Marks	CO No
2.	(a)	The characteristic equation of the system is given by	4	CO1
		s4 + 2s3 + (4 + k) s2 + 9s + 25 = 0. Determine the range of k for the		CO2
		system to be stable.		
	(b)	Is it possible to find the relative Stability using Root Locus Plot?	1	CO4
3.		Find whether the system is stable or not using Routh Hurwitz criteria	5	CO2
		s5 + s4 + 2s3 + 2s2 + 3s + 5 = 0		

BTECH/ AEIE/ODD/SEM-5/EI503/R18/2020-2021

4.		Find the total gain using Mason's gain formula $X2 = a12 \cdot X1 + a32 \cdot X3 + a42 \cdot X4 + a52 \cdot X5$	5	CO1
		X3 = a23. X2		
		X4 = a34. $X3 + a44$. $X4X5 = a35$. $X3 + a45$. $X4$		
5.		Calculate the steady state error of the close loop system of transfer	4	CO1
		function		CO3
		$G(s) = \frac{2}{S(S+2)}$ and $H(s) = 1$ with the I/P signal		
		$3 + t + 7 t^{2}/2$		
		What do you mean by static Error coefficient?	1	CO3
6.		Find the condition of stability for open loop gain (unit feedback)	5	CO1
		G(s) = K(s-2)/(s+1)2 using Nyquist stability criteria.		
		GROUP – C		
		(Long Answer Type Questions)		
		(Answer any <i>three</i> of the following) $3 \times 15 = 45$	Monka	
			IVIALKS	CUNO
7.	(a)	Find the root locus showing all the steps for a unity feedback open	10	CO4
		$G(s) = K/[s(s+4)(s^2 + 4s + 20)].$		
	(b)	Find the root locus showing all the steps for a unity feedback open	5	CO2
		loop gain		
0		G(s) = K/[s(s+1)(s+2)].	10	000
8.	(a)	Find the Gain Margin and Phase Margin of the transfer function using Bode Plot	13	002
		G(s) = 100000(s+1) / [s(s+5)(s+100)(s+500)]		
	(b)	Define Gain Margin, Phase Margin, Gain crossover	2	CO3
0		frequency and Phase crossover frequency	0	001
9	(a)	Find the total transfer function of the system.	9	COI
		$R(s)_{\frown} \frown \frown \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$		
		$ \qquad \qquad$		
		H_2		
	(b)	Find steady state error for Type 0, 1, 2 systems for unit	6	CO3
		step, ramp and parabolic inputs		_ - ·
10	(a)	A unity feedback system with open-loop transfer function has two poles at 0.1 and 1 zeroes at 2 and 1 and a variable gain K^2	6	CO4
		Using Routh's criteria, find the range of K for which the closed		
		J , J		

- (b) loop system will have 0, 1, 2 poles in the right side. (b) Find whether the system is stable or not using Routh Hurwitz 6 CO2 criteria s6 + 2s5 + 8s4 + 12s3 + 20s2 + 16s + 16 = 0
- (c) Describe different performance indices 3 CO2

BTECH/ AEIE/ODD/SEM-5/EI503/R18/2020-2021

		Write short notes on any three of the following:	3x5	
((a)	State equation and output equation of the transfer function T(s) = [b0s3 + b1s2 + b2s + b3] / [s3 + a1s2 + a2s + a3]	5	CO1
((b)	Effects of adding a zero to a system	5	CO1
((c)	System controllability and Observability	5	CO4
((d)	Analogy between mechanical systems (translational and rotational), electrical systems (voltage and current analogy), thermal system and fluid system	5	CO4
((e)	Lead-lag compensation	5	CO2

11