GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 CONTROL SYSTEM-I (Backlog) EE503

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1=10$

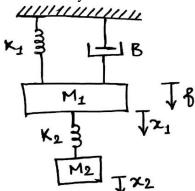
-		Marks	CO No
(i)	Signal flow graph is used to obtain the	1	CO1
	a) stability of a system.		
	b) transfer function of a system.		
	c) controllability of a system.		
	d) observability of a system.		
(ii)	AC servomotor is basically a	1	CO2
	a) universal motor.		
	b) single phase induction motor.		
	c) two phase induction motor.		
	d) three phase induction motor.		
(iii)	In torque-current analogy, displacement is analogous to		
	a) flux		
	b) moment of inertia	1	CO2
	c) voltage		
	d) current		
(iv)	Number of roots on the equation $2s^4 + s^3 + 3s^2 + 5s + 7 = 0$ that	1	CO3
	in lie in the right half of s-plane is		
	a) zero		
	b) one		
	c) two		
	d) three		
(v)	A position control is	1	CO3
	a) an automatic regulating system		
	b) a servomechanism		
	c) a process control system		
	d) a stochastic control system.		
(vi)	A system has a single pole at origin. Its impulse response will	1	CO2
	be		
	a) constant		
	b) ramp		
	c)decaying exponentially		
	d) oscillatory		

(vii)	1+ <i>s</i>	1	CO4					
~ /	$G(s) = \frac{1+s}{s(1+0.5s)}$. The corner frequencies are							
	a) 0 & 1							
	b) 0 & 2							
	c) $0 \& -1$							
(viii)	d) 1 & 2 Addition of zero to the closed loop transfer function	1	CO3					
(111)	a) increase rise time	1	005					
	b) decrease rise time							
	c) increase overshoot							
	d) has no effect	_	~~~					
(ix)	By the use of a PD control of a second order system, the rise	1	CO3					
	a) decreases.							
	b) increases.							
	c) remains same.							
	d) has no effect.							
(x)	Phase margin of a system is used to specify	1	CO3					
	a) time response							
	b) frequency responsec) absolute stability							
	d) relative stability							
(xi)	The value of ξ for a system is unity. The system response will	1	CO2					
	be							
	a) over damped							
	b) critically damped							
	c) Under dampedd) oscillatory							
(xii)	The initial slope of the Bode plot for a transfer function having	1	CO3					
~ /	a simple pole at							
	origin is:							
	a) -20 db/decade							
	b) 10 db/decadec) 20 db/decade							
	c) 20 db/decaded) -10 db/decade.							
	GROUP – B							
	(Short Answer Type Questions)							
	Answer any <i>three</i> from the following: 3×5=15		CO N					
(\mathbf{a})	The open loop transfer function of a unity feedback control	Marks 3	CO No CO2					
(a)	The open loop transfer function of a unity feedback control system is $G(s)=20/s(s+2)$. Determine its steady state error	5	02					
	when the input is $r(t) = a_0 + a_1 t$							
(b)	The open loop transfer function of a unity feedback system is	2	CO2					
	given by $G(s) = \frac{4}{s(s+1)}$. Determine the rise time, peak time,							
	peak overshoot and settling time.							

2.

B. TECH/EE/ODD/SEM-V/EE503/R16/2020-2021

CO₂


5

- Calculate the angles of asymptotes and their centroid for the 3. 5 CO3 system having open loop transfer function as, $G(s)H(s) = \frac{K(s+1)}{s^2(s+3.6)}$. Draw the polar plot of a type zero system which is given by, 4. 5 CO3 $G(S) = \frac{k}{(1 + ST_1)(1 + ST_2)}$ Determine the transfer function $\frac{V_{R2}(s)}{E_i(s)}$ of the network given 5 5. CO₂ below. i2 6. Using Routh's criterion determine the stability, indicating the number of roots in the right half s-plane of a closed loop system that has the characteristic equation 5 CO₃ $s^{6} + 3s^{5} + 5s^{4} + 9s^{3} + 8s^{2} + 6s + 4 = 0$ **GROUP - C** (Long Answer Type Questions) Answer any *three* from the following: 3×15=45 CO No Marks Draw the Signal Flow Diagram and determine C/R for the 7. (a) block diagram shown in the figure. 5 CO₂ G3 H₂ (b) A system having a forward path transfer function G(s) =is configured with unity negative feedback. 16/s(s+1)5 CO₂ Determine the value of (i) damping ratio, (ii) rise time and (iii) 2% settling time.
 - (c) A unity negative feedback servomechanism is designed to keep a radar antenna pointed at a flying object. If the object is flying with a velocity of 600km/h, at a range of 2 km and the minimum tracking error is to be within 0.1°, determine the required velocity error constant. The open loop transfer function is a type-1 third order system.

B. TECH/EE/ODD/SEM-V/EE503/R16/2020-2021

CO2

8. (a) Draw the electrical analogous circuit using force voltage 8 analogy for the mechanical system as shown in figure.

	(b)	Determine the transfer function of a armature controlled DC	7	CO1
9.	(a)	motor. Sketch the root locus plot for the open loop transfer function of		
	(1)	the system as $G(s)H(s) = \frac{K(s+5)}{(s+3)(s-1)}$	08	CO2
	(b)	Find the value of <i>K</i> of the above system so that the damping ratio of the closed loop system is 0.5.	04	CO2
	(c)	Is the closed loop system is stable for $K=2?$	03	CO2
10.	(a)	Define the term Absolute and relative stability of a system.	5	CO2
	(b)	Draw the Bode plot for the system whose open loop transfer function is	10	CO3
11		$G(s) = \frac{50}{s(1+0.25s)(1+0.1s)}$ From the graph determine (a) Gain crossover frequency. (b) Phase crossover frequency. (c) GM and PM. (d) Stability of the system		
11.		Write short notes on any <i>three</i> of the following:		
	(a)	Effect of addition of poles and zeros in closed loop transfer function	5	CO2
	(b)	P, PI & PID control.	5	CO3
	(c)	Tachometer	5	CO2
	(d)	Masson's Gain Formula	5	CO2
	(e)	Servomotors	5	CO2