GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 CRYPTOGRAPHY AND NETWORK SECURITY CS704C

TIME ALLOTTED: 3 HRS

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions) ten (10) from the following choosing the correct alternative of each question: $10 \times 1 = 10$

Ans	wer any	<i>ten</i> (10) from the following, choosing the correct alternative of each que	uestion: Marks	10×1=10 CO No
1.	(i)	SHA-1 has a message digest of	01	CO1
		a) 160 bits		
		b) 512 bits		
		c) 628 bits		
		d) 820 bits		
	(ii)	Message authentication is a service beyond	01	CO4
		a) Message Confidentiality		
		b) Message Integrity		
		c) Message Splashing		
		d) Message Sending		
	(iii)	Caesar Cipher is an example of	01	CO2
		a) Poly-alphabetic Cipher		
		b) Mono-alphabetic Cipher		
		c) Multi-alphabetic Cipher		
		d) Bi-alphabetic Cipher		
	(iv)	Use Caesar's Cipher to decipher the following	01	CO5
		HQFUBSWHG WHAW		
		a) ABANDONED LOCK		
		b) ENCRYPTED TEXT		
		c) ABANDONED TEXT		
		d) ENCRYPTED LOCK		
	(v)	A can be used to preserve the integrity of a	01	CO2
		message.		
		a) Message digest		
		b) Message Summary		
		c) Ciphertext		
		d) Plaintext		
	(vi)	Which of the following slows the cryptographic algorithm –	01	CO5
		1) Increase in Number of rounds		
		2) Decrease in Block size		
		3) Decrease in Key Size		
		4) Increase in Sub key Generation		

	a) 1 and 3 b) 2 and 3		
	c) 3 and 4		
	d) 2 and 4		
(vii)	The DES algorithm has a key length of	01	CO2
	a) 128 Bits		
	b) 32 Bits		
	c) 64 Bits		
/ ····\		01	000
(V111)	How many keys does the Triple DES algorithm use?	01	02
	a) 2 b) 2		
	0/3		
	d) $3 \text{ or } 4$		
(iv)	AFS uses a bit block size and a key size of	01	CO3
	hits	01	005
	a) 128: 128 or 256		
	b) 64; 128 or 192		
	c) 256; 128, 192, or 256		
	d) 128; 128, 192, or 256		
(x)	Which one of the following is not a cryptographic algorithm-	01	CO2
	JUPITER, Blowfish, RC6, Rijndael and Serpent?		
	a) JUPITER		
	b) Blowfish		
	c) Serpent		
<i>.</i> • • • • • • • • • • • • • • • • • • •	d) Rijndael	01	GOA
(X1)	How many entries are present in each of the S-boxes present in the	01	CO3
	blowfish algorithm?		
	a) 250 b) 512		
	c) 1024		
	d) 64		
(xii)	For $p = 11$ and $q = 17$ and choose $e=7$ Apply RSA algorithm where	01	CO5
(////)	Cipher message=11 and thus find the plain text.	01	000
	a) 88		
	b) 122		
	c) 143		
	d) 111		
	GROUP – B		
	(Short Answer Type Questions)		
	(Answer any <i>three</i> (3) of the following) 3×5	5 = 15	CO N
	Use the additive Cinher with key—15 to energy the message "helle"	Marks 5	
	and then decrypt it	5	CO4
(a)	(Define a symmetric-key cipher	2	CO^{2}
(a)	(Denne a symmetrie-key cipiter.	4	CO_2

(b) Are all stream ciphers monoalphabetic? Explain. 3 CO3

2.

3.

BTECH/CSE/ODD/SEM-VII/CS704C/R16/2020-2021

4.		Use the Euclidean algorithm, find the greatest common divisor of the following pairs of integers: (i) 88 and 220 (ii) 300 and 42	5	CO4
5		(111) 24 and 320 Explain working principle of MD5 with diagrams	5	CO1
<i>6</i> .		State RSA algorithm with example.	5	CO3
		GROUP – C		
		(Long Answer Type Questions)	. 15 45	
		(Answer any <i>three</i> (3) of the following)	5 X 15 = 45 Marks	
7.	(a)	Assume that 'n' is a non-negative integer.	5	CO No CO4
		 (a) Find gcd(2n+1,n) (b) Using the result of (a), find gcd(201,100), gcd(81,40)ar acd(501,250) 	nd	
	(b)	Perform the following operations using reductions first. a. (273 + 147) mod 10	8	CO4
		b. (4223 + 17323) mod 10 c. (148 + 14432) mod 12 d. (2467 + 461) mod 12		
	(a)	d. (2467 + 461) mod 12 What is the module operator? What is its application?	2	CO^{2}
	(\mathbf{C})	what is the modulo operator? what is its application?	L	02
8.	(a)	Find the result of $(x^5 + x^2 + x) \bigoplus (x^7 + x^4 + x^3 + x^2 + x)$ in GF(2 ⁸) wi irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$	th 6	CO4
	(b)	Show how a polynomial can represent 'n' bit word.	3	CO2
	(c)	For the group $G = \langle Z4, + \rangle$:	3	CO2
	(d)	Show the model and the set of permutation tables for a 3-bit bloc substitution cipher.	ck 3	CO3
9.	(a)	(i) What is the pattern in the cipher text of a one-time pad cipher each of the following cases?(a) The plaintext is made of n 0's(b) The plaintext is made of n 1's	in 8	CO4
		(c) The plaintext is made of alternating 0's and 1's (d) The plaintext is a random string of bits		
	(b)	Describe Synchronous Stream Ciphers	4	CO2
	(c)	What is Linear Cryptanalysis?	3	CO2
10.	(a)	State ElGamal Cryptography method.	5	CO3
	(b)	Apply Encryption and Decryption Technique (Consider PT =7)	5	CO4
	(c)	Explain SHA algorithm	5	CO3

BTECH/CSE/ODD/SEM-VII/CS704C/R16/2020-2021

11.		Write short notes on any three (3) of the following:	3x5	
	(a)	Pretty Good Privacy (PGP)	5	CO4
	(b)	S/MIME Cryptographic Algorithms	5	CO4
	(c)	Different approaches to attack the RSA algorithm	5	CO3
	(d)	Elliptic Curve Cryptography	5	CO2
	(e)	Digital signature	5	CO3