GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 DESIGN AND ANALYSIS OF ALGORITHMS (Backlog) IT501

TIME ALLOTTED: 3 Hours

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

			Marks	CO No
1.	(i)	Single source shortest path in a graph having negative edge can be solved by— a) Bellman-Ford algorithm	1	CO2
		 b) Dijkstra's algorithm c) Elaud Warshall algorithm 		
		c) Floyd Warshall algorithm d) both (a) and (b)		
	(ii)	Minimum number of colours to colour a graph having $n > 3$ vertex	1	CO3
	()	is—		
		a) 3		
		b) 4		
		c) 1		
	(;;;)	d) 2 Which of the following is not a characteristic of good algorithm?	1	CO2
	(111)	a) Precise	1	02
		b) finite number of steps		
		c) Ambiguous		
		d) logical flow of control		
	(iv)	We use dynamic programming approach when	1	CO 2
		a) we need an optimal solution		
		b) the solution has optimal substructure		
		d) The given problem can be reduced to 3-SAT problem		
	()	What is a hash table?	1	CO 1
	(V)	a) A structure that maps values to keys	1	CO.1
		b) A structure that maps values to values		
		c) A structure used for storage		
		d) A structure used to implement stack and queue		
	(vi)	Which one of the following is true?	1	CO.1
		a) All NP hard problems are NP complete		
		b) All NP complete are NP hard		
		d) None of these		
		a) none of these		

(vii)	The complexity of Binary Search algorithm on n items is	1	CO.2
	a) O(n)		
	b) $O(\log n)$		
	c) c) $O(n^2)$		
	d) O ($n \log n$).		
(viii)	Job sequencing with dead line based onmethod	1	CO1
	a) greedy method		
	b) branch and bound		
	c) dynamic programming		
	d) divide and conquer		
(ix)	If several elements are competing for the same bucket in the hash	1	CO.1
	table, what is it called?		
	a) Diffusion		
	b) Replication		
	c) Collision		
	d) None of the mentioned		
(x)	The running time of Heap sort is.	1	CO1
	a) O(n logn)		
	b) O(n)		
	c) c)O(n ²)		
	d) both b and c		
(xi)	Vertex cover problem belongs to?	1	CO3
	a) Approximation Approach		
	b) Greedy approach		
	c) Backtracking Method		
	d) Dynamic Approach		
(xii)	Which among the following is the best when the list is already	1	CO2
	sorted—		
	a) Selection sort		
	b) Merge sort		
	c) Bubble sort		
	d) Insertion sort		

GROUP – B

(Short Answer Type Questions) Answer any *three* from the following: 3×5=15

			Marks	CO No
2.	(a)	Draw the recursive tree and find the time complexity for the following recurrence relation $3T(n/4) + cn^2$	3	CO3
	(b)	Draw the recursive tree and find the time complexity for the following recurrence relation: 2T(n/2) + cn	2	CO3
3.	(a)	Prove that the lower bound for comparison sort is O(n lg n)	5	C02
4.	(a)	Define Clique Decision problem.	1	CO2
	(b)	Prove CDP is NP complete problem.	4	CO2

B. TECH/ IT//ODD/SEM-V/IT501/R16/2020-2021

5.	(a)	Define different asymptotic notation (O, Ω , Θ) with suitable examples.	5	CO1
6.	(a)	Write a backtracking algorithm for solving 8-queen problem.	5	CO2

$\mathbf{GROUP} - \mathbf{C}^*$ (Long Answer Type Questions) Answer any *three* from the following: 3×15=45

				-		Marks	CO No.
7.	(a)	Find optimal parenthesizations for multiplying the following matrices: [A1] 1945 [A2] 5410 [A3] 19450 [A4] 5945 [A5] 5410			9	CO4	
	(b)	Explain Union-Find Algorithm with proper example				6	CO2
8.	(a)	(a) Consider the following:					CO4
		Object I1 I2	I3	I4	15		
		Weight 10 20	30	40	50		
		Profit 20 30	66	40	60		
		maximum profit that the person ca problem. (Show the necessary step	on earn us os taken)	ing fraction	al knapsack		
	(b)	Explain one solution for solving a	all pair sh	ortest path	problem in a		CO4
		directed graph using dynamic prog	gramming	, formulatio	on. Explain the	-	
0	(a)	technique with algorithm and exar	nple.	ation of two	a matricaa	1	CO^{2}
9.	(a)	Explain one technique for solving having complexity $O(n^{2.81})$	multiplic	ation of tw	o matrices	7	COS
	(b)	Explain one solution for solving a	ll nair sho	ortest nath r	problem in a	7	CO4
	(0)	directed graph using dynamic pros	gramming	formulation	on. Explain the		001
		technique with algorithm and exar	nple.		1	8	
10.	(a)	Find the minimum number of oper matrix chain multiplication using ([A]10×20 [B]20×1 [C]1×10 [D]10×2	rations red dynamic j	quired for t programmi	he following ng:	9	C04
	(b)	Apply Ford-Fulkerson algorithm source(s) and the sink(t) in the giv	to find the ren netwo	e Maximun rk.	n flow between	6	CO1
		16 12 b 20 7 d	t)				
11.		Short Notes(Answer any three of t	the follow	ving):		3x5	
	(a)	Prim's Algorithm				5	CO2
	(b)	KMP String Matching Algorithm				5	CO3
	(c)	Solution of Single source shortest	path prob	ole		5	CO4
	(d)	Ford- Fulkerson Algorithm				5	CO2
	(e)	Heap sort				5	CO1