GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 DESIGN AND ANALYSIS OF ALGORITHMS IT501

TIME ALLOTTED: 3 Hours

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

		Marks	CO No
1. (i)	Single source shortest path in a graph having negative edge can be solved by— a) Bellman-Ford algorithm	1	CO2
	b) Dijkstra's algorithmc) Floyd Warshall algorithmd) both (a) and (b)		
(ii)	Minimum number of colours to colour a graph having $n > 3$ vertex	1	CO3
	is— a) 3 b) 4 c) 1		
(iii)	d) 2 Which of the following is not a characteristic of good algorithm?	1	CO2
	 a) Precise b) finite number of steps c) Ambiguous d) logical flow of control 		
(iv)	 We use dynamic programming approach when a) we need an optimal solution b) the solution has optimal substructure c) It's faster than Greedy d) The given problem can be reduced to 3-SAT problem 	1	CO 2
(v)	What is a hash table?a) A structure that maps values to keysb) A structure that maps keys to valuesc) A structure used for storaged) A structure used to implement stack and queue	1	CO.1
(vi)	 Which one of the following is true? a) All NP hard problems are NP complete b) All NP complete are NP hard c) Some NP complete problems are NP hard d) None of these 	1	CO.1

(vii)	The complexity of Binary Search algorithm on n items is	1	CO.2
	a) O(n)		
	b) $O(\log n)$		
	c) c) $O(n^2)$		
	d) O ($n \log n$).		
(viii)	Job sequencing with dead line based onmethod	1	CO1
	a) greedy method		
	b) branch and bound		
	c) dynamic programming		
	d) divide and conquer		
(ix)	If several elements are competing for the same bucket in the hash	1	CO.1
	table, what is it called?		
	a) Diffusion		
	b) Replication		
	c) Collision		
	d) None of the mentioned		
(x)	The running time of Heap sort is.	1	CO1
	a) O(n logn)		
	b) O(n)		
	c) $c)O(n^2)$		
	d) both b and c		
(xi)	Vertex cover problem belongs to?	1	CO3
	a) Approximation Approach		
	b) Greedy approach		
	c) Backtracking Method		
	d) Dynamic Approach		
(xii)	Which among the following is the best when the list is already	1	CO2
	sorted—		
	a) Selection sort		
	b) Merge sort		
	c) Bubble sort		
	d) Insertion sort		

GROUP – B

(Short Answer Type Questions) Answer any *three* from the following: 3×5=15

			Marks	CO No
2.	(a)	Draw the recursive tree and find the time complexity for the following recurrence relation $3T(n/4) + cn^2$	3	CO3
	(b)	Draw the recursive tree and find the time complexity for the following recurrence relation: 2T(n/2) + cn	2	CO3
3.	(a)	Prove that the lower bound for comparison sort is O(n lg n)	5	C02
4.	(a)	Define Clique Decision problem.	1	CO2
	(b)	Prove CDP is NP complete problem.	4	CO2

B. TECH/ IT//ODD/SEM-V/IT501/R18/2020-2021

5.	(a)	Define different asymptotic notation (O, Ω, Θ) with suitable examples.	5	CO1
6.	(a)	Write a backtracking algorithm for solving 8-queen problem.	5	CO2

$\mathbf{GROUP} - \mathbf{C}^*$ (Long Answer Type Questions) Answer any *three* from the following: 3×15=45

				6		Marks	CO No.
7.	(a)	$[A1]_{10\times5}, [A2]_{5\times10}, [A3]_{10\times50}, [A4]_{50\times5}, [A5]_{5\times10}$					CO4
	(b)						CO2
8.	(a)	Consider the following:					CO4
		ObjectI1I2Weight1020	<u> </u>	I4 40	15 50		
		Weight 10 20 Profit 20 30		40	<u> </u>		
		If a person have a knapsack (c					
		maximum profit that the person can earn using fractional knapsack problem. (Show the necessary steps taken)					
	(b)	Explain one solution for solvi	• •				CO4
		directed graph using dynamic		formulation	. Explain the	7	
9.	(a)	technique with algorithm and e Explain one technique for solv	-	ation of two	matrices	/	CO3
2.	(u)	having complexity $O(n^{2.81})$	ing maniphe		matrices	7	005
	(b)	Explain one solution for solvir					CO4
		directed graph using dynamic technique with algorithm and d		g formulation	. Explain the	8	
10.	(a)	Find the minimum number of operations required for the following					C04
		matrix chain multiplication using dynamic programming:					
	(1)	$[A]_{10\times20}$, $[B]_{20\times1}$, $[C]_{1\times10}$, $[D]_{10\times20}$, $[E]_{20\times100}$					CO1
	(b)	Apply Ford-Fulkerson algorithm to find the Maximum flow between source(s) and the sink(t) in the given network.					CO1
		(s) 10 4 9 7 7 13 (c) 14 (d) 7 (d) 14 $($	t				
11.		Short Notes(Answer any three	of the follow	ving):		3x5	
	(a)	Prim's Algorithm				5	CO2
	(b)	KMP String Matching Algorit	hm			5	CO3
	(c)	Solution of Single source shor	test path prob	ole		5	CO4
	(d)	Ford- Fulkerson Algorithm				5	CO2
	(e)	-					CO1