GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 **DIGITAL COMMUNICATION SYSTEMS (Backlog)** EC 501

TIME ALLOTTED: 3 Hrs

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

	Marks	CO No.
The expression for bandwidth BW of a PCM system, where v is the number of bits per sample and f_m is the modulating frequency, is given by		
a) $BW \ge v f_m$ b) $BW \le v f_m$ c) $BW \ge 2v f_m$ d) $BW \ge \frac{1}{2} v f_m$	01	CO5
The number of voice channels that can be accommodated for transmission in T1 carrier system is $a > 24$		
a) 24 b) 32 c) 56 d) 64	01	CO4
 A random variable is determined by a large number of independent events that tends to have a Gaussian probability distribution. This can be described using a) Central limit theorem b) Superposition c) Convolution d) Correlation 	01	CO3
 In Alternate Mark Inversion (AMI) is a) 0 is encoded as positive pulse and 1 is encoded as negative pulse b) 0 is encoded as no pulse and 1 is encoded as negative pulse c) 0 is encoded as negative pulse and 1 is encoded as positive pulse d) 0 is encoded as no pulse and 1 is encoded as positive or negative pulse 	01	CO1
	The expression for bandwidth BW of a PCM system, where v is the number of bits per sample and f_m is the modulating frequency, is given by a) $BW \ge v f_m$ b) $BW \le v f_m$ c) $BW \ge 2v f_m$ d) $BW \ge \frac{1}{2}v f_m$ The number of voice channels that can be accommodated for transmission in T1 carrier system is a) 24 b) 32 c) 56 d) 64 A random variable is determined by a large number of independent events that tends to have a Gaussian probability distribution. This can be described using a) Central limit theorem b) Superposition c) Convolution d) Correlation In Alternate Mark Inversion (AMI) is a) 0 is encoded as positive pulse and 1 is encoded as negative pulse b) 0 is encoded as no pulse and 1 is encoded as negative pulse c) 0 is encoded as no pulse and 1 is encoded as positive or negative pulse d) 0 is encoded as no pulse and 1 is encoded as positive or negative pulse	MarksThe expression for bandwidth BW of a PCM system, where v is the number of bits per sample and f_m is the modulating frequency, is given by $a)BW \ge vf_m$ 01 $b)BW \le vf_m$ 01 $b)BW \le vf_m$ 01 $c)BW \ge 2vf_m$ 01 $d)BW \ge 1 v f_m$ 01 $c) BW \ge 2v f_m$ 01 $d)BW \ge 1 v f_m$ 01 $c) So = 0$ 01 $d)BW \ge 1 v f_m$ 01 $d) Correlation in T1 carrier system is01a) 2401b) 3201c) 560d) 64A random variable is determined by a large number ofindependent events that tends to have a Gaussianprobability distribution. This can be described usinga) Central limit theorem01b) Superpositionc) Convolutiond) Correlation01In Alternate Mark Inversion (AMI) is0a) 0 is encoded as positive pulse and 1 is encoded asnegative pulse01b) 0 is encoded as negative pulse and 1 is encoded aspositive pulse01d) 0 is encoded as no pulse and 1 is encoded aspositive ornegative pulse01d) 0 is encoded as no pulse and 1 is encoded aspositive ornegative pulse01d) 0 is encoded as no pulse and 1 is encoded aspositive ornegative pulse01d) 0 is encoded as no pulse and 1 is encoded as positive ornegative pulse01d) 0 is encoded as no pulse and 1 is encoded as positive ornegative pulse01$

v)	Eye pattern is		
	a) Is used to study ISI		
	b) May be seen on CRO	01	CO2
	c) Resembles the shape of human eye		
	d) All of the above		
vi)	For two vectors to be orthonormal, the vectors are also said		
	to be orthogonal. The reverse of the same		
	a) Is true	01	CO3
	b) Is not true	01	005
	c) Is not predictable		
	d) None of the above		
vii)	In Binary Phase Shift Keying system, the binary symbols 1		
	and 0 are represented by carrier with phase shift of		
	a) П/2	01	CO4
	b) П	01	C04
	c) 2П		
	d) 0		
viii)	QPSK is a modulation scheme where each symbol consists		
	of		
	a) 4 bits	01	CO^{2}
	b) 2 bits	01	COS
	c) 1 bits		
	d) M number of bits, depending upon the requirement		
ix)	Matched filter may be optimally used only for		
	a) Gaussian noise		
	b) Transit time noise	01	CO5
	c) Flicker		
	d) All of the above		
x)	Regenerative repeaters are used for		
	a) Eliminating noise		
	b) Reconstruction of signals	01	CO3
	c) Transmission over long distances		
	d) All of the above		
xi)	The bit rate of a digital communication system is 34 Mb/s.		
	The modulation scheme is QPSK. The baud rate is		
	a) 68 Mbps	01	CO5
	b) 34 Mbps	01	COS
	c) 17 Mbps		
	d) 8.5 Mbps		
xii)	The transmission bandwidth of the raised cosine spectrum		
	is given by		
	a) BW = $2w(1 + \alpha)$	01	CO1
	b) BW = w(1 + α)	01	COI
	c) BW = $2w(1 + 2\alpha)$		
	d) BW = $2w(2 + \alpha)$		

GROUP - B(Short Answer Type Questions) wer any *three* of the following) $3 \times 5 = 15$

		(A = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =		
		(Answer any <i>three</i> of the following) $3 \times 5 = 15$	Marks	CO No.
2.	a)	The PDF of a Gaussian variable x is given by		
		$f_X(x) = \frac{1}{3\sqrt{2\pi}} e^{-(x-4)^2/18}$	3	CO1
		Determine: $F(X \ge 4)$		
	b)	For the above PDF, Determine: $F(X \le 0)$	2	CO1
3.	a)	What are the advantages of adaptive-delta modulation over ordinary delta-modulation?	3	CO3
	b)	What is the bit rate in a T-1 digital system?	2	CO5
4.	a)	Draw the signal space representation of BFSK and find the distance between symbols.	3	CO2
	b)	Find the probability of error in Phase Shift Keying (PSK).	2	CO2
5.	a)	What are the properties of line coding?	2	CO4
	b)	What are the advantages and disadvantages of bipolar signaling format? -Explain.	3	CO3
6.	a)	For a sinusoidal signal (A Cos $\omega_m t$), find the condition for no slope overload, if step size is Δ and sampling period is Ts	3	CO5
	b)	What is the difference between source coding and line coding?	2	CO3

GROUP – C (Long Answer Type Questions)

	(Answer any <i>three</i> of the following) $3 \times 15 = 45$	Marks	CO No.
7. a)	Show that the squared length of any signal vector is equal to	4	CO3
1 \	the energy of the signal.		
b)	Figure 1. displays the waveforms of four signals		
	$s_1(t), s_2(t), s_3(t)$ and $s_4(t)$.		
	Using the Gram-Schmidt orthogonalization procedure, find		
	an orthonormal basis function for this set of signals		
	$s_1(t)$ $s_2(t)$ $s_3(t)$ $s_4(t)$		
		8	CO2
	$\begin{array}{c} \hline T \\ \hline 0 \\ \hline T \\ \hline 3 \\ \hline \end{array} \\ r \\ \hline 0 \\ \hline 2 \\ \hline 3 \\ \hline \end{array} \\ r \\ \hline 0 \\ \hline T \\ \hline 0 \\ \hline T \\ \hline \end{array} \\ r \\ \hline 0 \\ \hline T \\ \hline 0 \\ \hline T \\ \hline \end{array} \\ r \\ \hline 0 \\ \hline T \\ \hline \end{array} \\ r \\$		
	Figure 1		

Page 3 of 4

A pair of signals $s_i(t)$ and $s_k(t)$ have a common duration T, show that the inner product of this pair of c) signals is given by

8.

9.

$$\int_{0}^{T} s_{i}(t) s_{k}(t) dt = \boldsymbol{s}_{i}^{T} \boldsymbol{s}_{k}$$

$$3 \qquad CO2$$

		0		
		Where s_i and s_k denote the vector representations of the		
		signals $s_i(t)$ and $s_k(t)$ respectively.		
8.	a)	What do you mean by match filter?	3	CO5
	b)	Prove that the SNR at the output of a matched filter is		
		8Es/ η . Where Es is the signal energy and $\eta/2 = G_n(f)$, for	8	CO1
		white Gaussian noise.		COI
		And hence deduce the transfer function of a matched filter.		
	c)	A polar NRZ waveform has to be received with the help of		
		a matched filter. Here a rectangular positive pulse represents		
		binary one and a rectangular negative pulse represents	4	CO2
		binary zero. Determine the impulse response of the matched		
		filter with proper sketch.		
9.	a)	What is Nyquist criterion for Inter-symbol interference?	5	CO5
	1 \			
	6)	what are the limitations of ideal solution and now it can be solved with the help of Beised Cosine Eurotion?	5	CO4
		A communication channel of handwidth 75 kHz is required		
	0)	A communication channel of bandwidth $/3$ kHz is required to transmit binary data at a rate of 0.1 Mbrs using raised	5	CO5
		cosine pulses. Determine the roll-off factor	5	005
10	a)	Explain the principle of operation of OPSK transmitter with	7	CO3
10.	u)	suitable block diagram	,	005
	b)	Draw constellation diagram of OPSK modulation scheme.	5	CO2
	c)	What is offset OPSK? How it is more advantageous over	2	~~~
	-)	non-offset OPSK?	3	CO2
11.		Writeshort notes on any <i>three</i> of the following:	3x5=15	
	a)	Differential PCM	5	CO4
	b)	Companding	5	CO1
	c)	M-ary PSK	5	CO2
	d)	Eye pattern	5	CO3
	e)	Vector Signal Analyzer (VSA)	5	CO5