GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021

Digital Electronics and Computer Organization (Backlog) CS302

TIME ALLOTTED: 3 Hrs

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable GROUP – A

(Multiple Choice Type Questions)

Answer any <i>ten</i> from the following, choosing the correct alternative of each question: Marks			10×1=10 CO No.
1(i)	Convert the following SOP expression to an equivalent POS	1	CO1
	expression.		
	$ABC + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + \overline{A}\overline{B}C$		
	a $(\overline{A} + \overline{B} + \overline{C})(\underline{A} + B + \overline{C})(\overline{A} + B + C)$		
	b. $(A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C})$		
	c. $(\overline{A} + \overline{B} + \overline{C})(A + \overline{B} + C)(A + \overline{B} + C)$		
	d. $(A + B + C)(\overline{A} + B + \overline{C})(A + \overline{B} + C)$		
1(ii)	Microinstructions are kept in	1	CO5
	a. Main memory		
	b. cache memory		
	c. control memoryd. none of these		
1(iii)	(A+B'+A'B)C is same as	1	CO1
- ()	a. 1		
	b. 0		
	c. C		
1(iv)	d. C' Which of the following addressing mode is used for the instruction	1	CO2
1(1V)	"Push B" ?	1	02
	a. Register		
	b. Register indirect		
	c. Direct		
$1(\mathbf{w})$	d. Immediate	1	CO1
1(v)	Let \bigoplus and \bigcirc denote the Exclusive OR and Exclusive NOR operations, respectively. Which one of the following is NOT	1	COI
	correct?		
	a. $(P \bigoplus Q)' = P \odot Q$		
	b. $P' \bigoplus Q = P \odot Q$		
	c. $P' \oplus Q' = P \oplus Q$		
	d. $(P \oplus P') \oplus Q = (P \odot P') \odot Q'$		

B.TECH/ CSE/ODD/SEM-III/ CS302/R16/2020-2021

1(vi)	The minimum number of flip flops required to design a MOD-10	1	CO4
	counter is		
	a. 3		
	b. 5		
	c. 4		
1 ()	d. 10	1	CO 2
1(vii)	The minimum no. of NAND gates required to design one half	1	CO3
	adder circuit is		
	a. 5		
	b. 8 c. 10		
	d. 9		
1(1111)		1	CO2
1(viii)	The logic circuit in ALU is a. entirely combinational	1	02
	b. combinational and sequential		
	c. entirely sequential		
	d. none of these		
1(ix)	In DMA, cycle stealing means	1	CO5
1(1A)	a. Controller gets opportunity to transfer only one word in a time	1	005
	slot		
	b. CPU releases the bus and DMA controller can use endlessly		
	c. 100 bytes are allowed to be transferred		
	d. None of these		
1(x)	To construct an n-line common bus using MUX for k registers of n	1	CO3
. /	bits each, the number of MUXs and size of each MUX are		
	a. k and n x1		
	b. n and 2^k		
	c. n and kx1		
	d. k and 2^n		
1(xi)	The race around condition occurs in	1	CO4
	a. JKFF		
	b. SRFF		
	c. Master Slave FF		
	d. DFF		
1(xii)	What is the control unit's function in the CPU?	1	CO2
	a. To transfer data to primary storage		
	b. to store program instruction		
	c. to perform logic operations		
	d. to decode program instruction		
	GROUP – B		

GROUP – B

(Short Answer Type Questions)

(Short This wer Type Questions)			
	(Answer any <i>three</i> of the following)	3 x 5 = 15	
		Marks	CO No.
2. a)	Distinguish between latch and flipflop.	2	CO4
2. b)	Explain Triggering of Flip-Flops with example.	3	CO4

3.a)	Represent -9.5 in 32-bit IEEE floating point representation.	3	CO2
3.b)	What are guard bits?	2	CO2
4.	What are the different types of DMA controllers?	5	CO5
5. a)	Distinguish between ripple counter and synchronous counter.	3	CO4
5. b)	Compare parallel adder with serial adder.	2	CO3
б.	Distinguish between Hardwired control unit and micro- programmed control unit.	5	CO5

GROUP – C

(Long Answer Type Questions)

	(Answer any <i>three</i> of the following)	3 x 15 = 45	
		Marks	CO No.
7. a)	What is Von Neumann bottleneck?	2	CO2
7. b)	Explain the logic of a 4-bit carry look ahead adder with suitable diagram.	6	CO3
7. c)	Design the circuit of 3:8 Decoder and verify its truth table.	6	CO3
7.d)	Design a comparator circuit with suitable truth table and diagram.	3	CO3
8. a)	Describe JK Flip-Flop with truth table and characteristics table.	5	CO4
8. b)	Construct a D flip-flop using S-R flip-flop. Explain its characteristic table and excitation table.	4	CO4
8. c)	Minimize the following expression in POS form using K-map and realize the simplified expression using NOR gates only. Y (A, B, C, D) = Π (0,1,4,5,6,8,9,12,13,14)	6	CO1
9. a)	Design a 4-bit asynchronous up-down counter.	6	CO4
9. b)	Design a MOD-N synchronous binary UP-counter using JK flip- flop & other necessary logic gates.	6	CO4
9. c)	Design a 4-bit bidirectional shift register.	3	CO4
10. a)	Apply non-restoring division algorithm to divide 9 by 3.	6	CO2
10. b)	Draw and explain instruction state cycle.	4	CO2
10. c)	An instruction is stored at location 300 with its address field at location 301. The address field has the value 400. A processor register R1 contains the number 200. Evaluate the effective address if the addressing mode of the instruction is (a) direct; (b) immediate; (c) relative; (d) register indirect; (e) index with R1 as the index register.	5	CO2
11.	Write short notes on any three of the following:	3x5	
11. a)	IOP	5	CO5
11.b)	Ring counter	5	CO4
11.c)	SRAM and DRAM.	5	CO5
11.d) 11.e)	DE-MUX Tri state buffer.	5 5	CO3 CO3