GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 DIGITAL SIGNAL PROCESSING (Backlog)

EC503

TIME ALLOTTED: 3 HOURS

1

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

(i) DIT algorithm divides the sequence into 1 CO	D2
a) Positive and negative values	
b) Even and odd samples	
c) Upper higher and lower spectrum	
d) Small and large samples	
(ii) Which of the following is used in the realization of a	
system?	
a) Delay elements	\mathbf{D}^2
b) Multipliers	-
c) Adders	
d) All of the mentioned	
(iii) if $x(n)=(1,0,0,1)$, the DFT value of $x(0)$ is 1 CO	D2
a) 2	
b) 1+j	
c) 0	
d) 1-j	
(iv) FIR filter is 1 CC	D5
a) Recursive and linear	
b) Non-recursive and linear	
c) Recursive and non-linear	
d) Recursive.	
(v) How many complex multiplications are need to be 1 CC	D2
performed for each FFT algorithm?	
a) (N/2)logN	
b) Nlog2N	
c) $(N/2)\log 2N$	
d) None of the mentioned	
(vi) What is the circular convolution of the sequences 1 CC	D1
$x1(n) = \{2,1,2,1\}$ and $x2(n) = \{1,2,3,4\}$?	
a) {14.14.16.16}	
b) $\{16, 16, 14, 14\}$	
c) $\{2,3,6,4\}$	
d) $\{14, 16, 14, 16\}$	

(vii)	The impulse response of ideal filter is	1	CO5
	a) Causal		
	b) Non Causal		
	c) Non Causal and finite		
(viii)	u) none To reduce side lobes in which region of the filter the	1	CO5
(*111)	frequency specifications has to be optimized?	1	005
	a) Stop band		
	b) Pass band		
	c) Transition band		
	d) None of the mentioned		
(ix)	How many memory locations are used for storage of the	1	CO5
	output point of a sequence of length M in direct form		
	realization?		
	a) M+1		
	b) M		
	c) M-1 d) None of the mentioned		
(\mathbf{x})	In IIR Filter design by the Bilinear Transformation, the	1	CO5
(A)	Bilinear Transformation is a mapping from	1	005
	a) Z-plane to S-plane		
	b) S-plane to Z-plane		
	c) S-plane to J-plane		
	d) J-plane to Z-plane		
(xi)	In Overlap save method of long sequence filtering, what	1	CO3
	is the length of the input sequence block?		
	a) L+M+1		
	b) $L+M$		
	c) L+M-1 d) None of the montioned		
(vii)	Gibb's phenomenon occurred due to	1	CO5
(AII)	a) Linear phase	1	005
	b) Truncation of infinite Fourier series		
	c) Window method		
	d) Nonlinear phase		
	GROUP – B		
	(Short Answer Type Questions)		
	Answer any <i>three</i> from the following:3×5=15		
		Marks	CU No
	Compute the circular convolution of the sequences		
	$x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$ using concentric	5	CO3
	circular method.	2	
(a)	What is Butter fly diagram? Explain with net sketch	3	CO2
	diagram.		
(b)	What is bit reversal technique?	2	CO2

2.

3.

BTECH/ ECE/ODD/SEM-5/EC503/R16/2020-2021

4.		For the analog filter with the transfer function			
		$H(s) = \frac{1}{(S+1)(S+2)}$. Determine $H(z)$ using impulse invariant	5		
		method with T=1sec.			
5.		Compute the DFT of the sequence whose values for one period is given by $x(n) = \{1, 1, -2, -2\}$	5	CO1	
6.	(a)	What do you mean by Input Quantization Error, explain with an example?	3	CO4	
	(b)	Define "dead band" of the filter.	2	CO4	

GROUP – C (Long Answer Type Questions)

· · · · · · · · · · · · · · · · · · ·	0	,		•	/
Answer	any a	t <i>hree</i> from	the	follov	ving:3×15=45

		Answer any <i>three</i> from the following:3×15=45		
_			Marks	CO No
7.	(a)	Why FFT is needed?	2	CO2
	(b)	Compute the 8-point DFT of the sequence $x(n) = \{1 \ 2 \ 2 \ 1 \ 0 \ 1 \ 2 \ 3\}$ using DIT FFT algorithm.	8	CO2
	(c)	Show that multiplication of two DFTs $X_1(k)$ and $X_2(k)$ is equal to the IDFT of circular convolution	5	CO1
8.	(a)	Find the output $y(n)$ of a filter whose impulse response is $h(n) = \{1,0,1\}$ and input signal $x(n) = \{1,2,0,2,-1,2,1,1\}$		CO1, CO4
		3 -2 0 1 2} using overlap add method and overlap save method.	12	
	(b)	Find the system transfer function for the following		CO5
		difference equation v[n]-3v[n-1]+2v[n-2]=x[n]-x[n-1]	3	
9.	(a)	Convert the following analog filter with	6	CO5
		H(s)=(s+0.1)/(s+0.1)2+16 into a digital IIR filter by means of bilinear transformation. The		
		digital filter is to have a resonant frequency $\omega_r = \pi/4$.		
	(b)	Design the Analog Butterworth filter that has a -2dB passband attenuation at 20rad/sec and -10dB stop band	9	CO5
10	(-)	attenuation at 30 rad/sec.	10	005
10.	(a)	Form realization for the system $(1) = 2 + 2 + 2 = 2 + 2 = 2 = 2 = 2 = 2 = 2$	12	005
		y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)		
	(b)	What is warping effect?	3	CO5
11.		Write short notes on (any three)	3x5	
	(a)	TMS 320 C 5416 architecture	5	CO4
	(b)	Design of FIR filter using windows	5	CO4
	(c)	Zero input limit cycle oscillation	5	CO4
	(d)	Bilinear transformation	5	CO5
	(e)	Gibb's Phenomenon	5	CO5