GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 Electrical Circuit Analysis EE301

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $0 \times 1 = 10$

			Marks	CO No
1.	i)	The coefficient of coupling for two coils having $L_1=2H$, $L_2=8H$,	1	CO2
	,	M=3H is		
		a) 0.75		
		b) 0.1875		
		c) 1.333		
		d) 5.333		
	ii)	For maximum power to be transferred between the load and the	1	CO1
		source the condition is		
		a) $R_S > R_L$		
		b) $R_S = R_L$		
		c) $R_{\rm S} < R_{\rm L}$		
		d) None of these.		
	iii)	A periodic function $f(t)$ with time period T repeats itself after half	1	CO2
		time period T/2. The Fourier series of $f(t)$ would contain		
		a) cosine terms only		
		b) even harmonic terms only		
		c) odd harmonic terms only		
		d) d) sine terms only		
	iv)	The no of links for a graph having n nodes and b branches are	1	CO2
		a) b-n+1		
		b) n-b+1		
		c) b+n-1		
		d) b+n		
	v)	Maximum Power transfer occurs at a	1	CO1
		a) 100% efficiency		
		b) 75% efficiency		
		c) 10% efficiency		
		d) 50% efficiency		

B.TECH/EE/ODD/SEM-3/EE301/R18/2020-2021

		Pag	ge 2 of 5
a)	What are links and twigs?	2	CO.2
b)	Show the all steps for delta to star transformation of impedances with the circuit diagrams.	3	CO1
a)	State Thevenin's Theorem with the help of suitable diagrams?	2	CO No CO1
	GROUP – B (Short Answer Type Questions) Answer any <i>three</i> from the following: 3×5=15	Morka	
	 c) a resistance and a capacitance. d) a resistance a capacitance and an inductance 		
	b) a resistance, an inductance and an opamp.		
	a) a resistance, a capacitance and an opamp.		
xii)	The minimum amount of hardware required to make a lowpass filter is	1	2
	d) Insufficient data provided View		
	c) Depends on the BJT		
	a) res b) No		
xi)	Can we use Norton's theorem on a circuit containing a BJT?	1	1
	d) e.m.fs. in the circuit		
	c) value of resistor		
	b) direction of current through the resistor		
	a resistor, it is necessary to know a) value of current through the resistor		
x)	To determine the polarity of the voltage drop across	1	3
	d) None		
	c) $h_{12} = h_{21}$		
	a) $H_{11}H_{22}-H_{12}H_{21}=1$ b) $h_{12}=h_{21}$		
ix)	For hybrid parameters the condition of symmetry is $(a,b,b,b,c,d) = 1$	1	CO.2
	d) None of these		
	c) Both A and B		
	a) Frequency domain response only b) Frequency domain response only		
viii)	Laplace transform analysis gives	1	CO1
	d) four time		
	c) two times		
	b) half		
	a) One fourth		
vii)	In a linear circuit when the ac input is doubled the ac output	1	CO4
	d) non linear ,time varying and stable		
	c) non linear, time invariant and unstable		
	a) non linear, time varying and unstable b) linear, time varying and unstable		
vi)	The System $y(t)=t x(t)+4$ is	1	CO3
• \			000

2.

3.

3

CO₂

b) Find out the incidence matrix of the given graph.

5.

4. In the series RL circuit of Fig., the switch is in position 1 long 5 CO.4 enough to establish the steady state and is switched to position 2 at t = 0. Find the current.

5

6. Two combined inductance of two coils connected in series is 5 CO1 0.6 H and 0.1 depending on relative directions of currents in the two coils. If one of the coils has a self-inductance of 0.2 H, find i) mutual inductance and ii) coefficient of coupling.

GROUP – C (Short Answer Type Questions)

		Answer any <i>three</i> from the following:	15×3=45 Marks	CO No
7.	a)	Define the ABCD parameters of a 4 terminal network.	3	2
	b)	Prove that AD-BC=1	5	2
	c)	Find the condition of reciprocity and symmetry for short-circuit parameters of a 2 port network.	7	2
8.	a)	Find the z-parameter of the network shown in the figure.	8	3
		10 ohm		

B.TECH/EE/ODD/SEM-3/EE301/R18/2020-2021

3

3

4

3

CO₂

5

9

b) Currents I 1 and I 2 entering ports 1 and 2 respectively of a two port network are given by the following equations: I $1 = 0.5V \ 1 - 0.2V \ 2$ $I \ 2 = -0.2V \ 1 + V \ 2$: Where V1 and V2 are the voltages at ports 1 and 2 respectively,

Find the Y and ABCD Parameters.

9 a) Find the Laplace transform of the periodic function shown in 8 CO2 figure below:

- b) Design a high pass filter with a corner frequency of 3 kHz and a 7 CO3 high frequency gain of 10.
- 10. a) Find the laplace transform of the periodic waveform shown in figure. 5

b) For an RL series circuit shown in figure, with no initial current in the inductor, a voltage $V = 4e^{-t}$ volts is applied at t = 0 sec. find the expression for the resulting current in the circuit for $t \ge 0$ using laplace transform method.

c) Find the inverse laplace transform of F(s) = $\frac{s^2 - 15s - 11}{(s+1)(s-2)^2}$ 5

11 a) A R-L-C series circuit with a resistance of 10 ohm, inductance of 0.2 H and a capacitance of 40 µF is supplied with a 100 V supply at variable frequency. Find the following to series resonant circuit.
 i)The resonant frequency

ii) find the max current

- iii) power
- iv) power factor

- v) voltage across R-L-C at that time
- vi) quality factor
- vii) Bandwidth

b) For the network shown below, find the voltages *V1*, *V2 and V3* 6 CO2

