GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT
2020-2021
Electrical Circuit Analysis
EE301
TIME ALLOTTED: 3 HOURS
FULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable

GROUP - A
 (Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: $\mathbf{0} \times \mathbf{1}=\mathbf{1 0}$

		Marks	CO No
1. i)	The coefficient of coupling for two coils having $L_{1}=2 H, L_{2}=8 H$, $\mathrm{M}=3 \mathrm{H}$ is	1	CO 2
	a) 0.75		
	b) 0.1875		
	c) 1.333		
	d) 5.333		
ii)	For maximum power to be transferred between the load and the source the condition is	1	CO1
	a) $R_{S}>R_{L}$		
	b) $\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}$		
	c) $R_{S}<R_{L}$ d) None of these.		
iii)	A periodic function $f(t)$ with time period T repeats itself after half time period $\mathrm{T} / 2$. The Fourier series of $f(t)$ would contain a) cosine terms only	1	CO 2
	b) even harmonic terms only		
	c) odd harmonic terms only d) d) sine terms only		
iv)	The no of Iinks for a graph having n nodes and b branches are a) $\mathrm{b}-\mathrm{n}+1$	1	CO 2
	b) $\mathrm{n}-\mathrm{b}+1$		
	c) $b+n-1$		
	d) $b+n$		
v)	Maximum Power transfer occurs at a	1	CO1
	a) 100% efficiency		
	b) 75% efficiency		
	c) 10% efficiency		
	d) 50% efficiency		

vi) The System $y(t)=t x(t)+4$ is
a) non linear ,time varying and unstable
b) linear, time varying and unstable
c) non linear ,time invariant and unstable
d) non linear ,time varying and stable
vii) In a linear circuit when the ac input is doubled the ac output

1
CO4 becomes
a) One fourth
b) half
c) two times
d) four time
viii) Laplace transform analysis gives
a) Time domain response onty
b) Frequency domain response only
c) Both A and B
d) None of these
ix) For hybrid parameters the condition of symmetry is
$1 \quad \mathrm{CO} .2$
a) $\mathrm{h}_{11} \mathrm{~h}_{22}-\mathrm{h}_{12} \mathrm{~h}_{21}=1$
b) $\mathrm{h}_{12}=\mathrm{h}_{21}$
c) $\mathrm{h}_{11}=\mathrm{h}_{22}$
d) None
x) To determine the polarity of the voltage drop across a resistor, it is necessary to know
a) value of current through the resistor
b) direction of current through the resistor
c) value of resistor
d) e.m.fs. in the circuit
xi) Can we use Norton's theorem on a circuit containing a BJT?

1
a) Yes
b) No
c) Depends on the BJT
d) Insufficient data provided View
xii) The minimum amount of hardware required to make a lowpass 1 filter is
a) a resistance, a capacitance and an opamp.
b) a resistance, an inductance and an opamp.
c) a resistance and a capacitance.
d) a resistance, a capacitance and an inductance

GROUP - B

(Short Answer Type Questions)
Answer any three from the following: $3 \times 5=15$
2. a) State Thevenin's Theorem with the help of suitable diagrams?
Marks CO No
b) Show the all steps for delta to star transformation of 3 impedances with the circuit diagrams.
3. a) What are links and twigs?
b) Find out the incidence matrix of the given graph.

4.

In the series RL circuit of Fig., the switch is in position 1 long enough to establish the steady state and is switched to position 2 at $t=0$. Find the current.

5.

Find the mesh currents $\boldsymbol{I}_{\boldsymbol{1}}$ and \boldsymbol{I}_{2} in the network shown below

6.

Two combined inductance of two coils connected in series is 0.6 H and 0.1 depending on relative directions of currents in the two coils. If one of the coils has a self-inductance of 0.2 H , find i) mutual inductance and ii) coefficient of coupling.

GROUP - C

(Short Answer Type Questions)
Answer any three from the following:
7. a) Define the ABCD parameters of a 4 terminal network.
b) Prove that $\mathrm{AD}-\mathrm{BC}=1$
c) Find the condition of reciprocity and symmetry for short-circuit parameters of a 2 port network.
8. a) Find the z-parameter of the network shown in the figure.

b)

Currents I 1 and I 2 entering ports 1 and 2 respectively of a two
3 port network are given by the following equations: $\mathrm{I} 1=0.5 \mathrm{~V} 1-0.2 \mathrm{~V} 2$

$$
\mathrm{I} 2=-0.2 \mathrm{~V} 1+\mathrm{V} 2
$$

Where V1 and V2 are the voltages at ports 1 and 2 respectively, Find the Y and $A B C D$ Parameters.

9 a) Find the Laplace transform of the periodic function shown in figure below:

b) Design a high pass filter with a corner frequency of 3 kHz and a 7 high frequency gain of 10 .
10. a) Find the laplace transform of the periodic waveform shown in figure.

b) For an RL series circuit shown in figure, with no initial current in the inductor, a voltage $\mathrm{V}=4 e^{-t}$ volts is applied at $\mathrm{t}=0$ sec. find the expression for the resulting current in the circuit for $t \geq$ 0 using laplace transform method.

c) Find the inverse laplace transform of $F(s)=\frac{s^{2}-15 s-11}{(s+1)(s-2)^{2}}$ of 0.2 H and a capacitance of $40 \mu \mathrm{~F}$ is supplied with a 100 V supply at variable frequency. Find the following to series resonant circuit.
i) The resonant frequency
ii) find the max current
iii) power
iv) power factor
v) voltage across R-L-C at that time
vi) quality factor
vii) Bandwidth

b) For the network shown below, find the voltages V1,V2 and V3

