GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021

Enzyme Technology FT702A

TIME ALLOTTED: 3 hours

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1 = 10$ CO No Marks 1 (i) Vector used in r DNA technology is 1 CO₅ (a) Plasmid; (b) Cosmid; (c) Fosmid; (d) All of these OUR is dependent on 1 CO₂ (ii) (a) K_L ; (b) K_La; (c) Impeller speed; (d) All of these (iii) Enzymes are 1 CO₄ (a) Mixed growth associated product; (b) Nongrowth associated product; (c) Growth associated product; (d) none of these (iv) Hydrolases enzymes include: 1 CO₄ (a) Racemases and oxygenases (b) Isomerases and lyases (c) Peptidases and lipases (d) Oxidoreductases and catalases The organism generally used for α -amylase production by mold 1 CO₂ (v) fermentation (a) Aspergilus niger; (b) Aspergillus parasiticus; (c) Saccharomyces cerevisiae; (d) None of these Majority of enzymes used in food industry are 1 CO₃ (vi) (a) Transferases; (b) Isomerases; (c) Oxidoreductases; (d) none of these.

B.TECH/ FT/ODD/SEM-VII/FT702A/R16/2020-2021

(vii)	Renet is mainly produced from (a) Plants;	1	CO3
	(b) Microbes;		
	(c) Animals;		
	(d) All of these.		
(viii)	Enzymes belong to the following class of biomolecules	1	CO2
	(a) Carbohydrate;		
	(b) Protein;		
	(c) Fat;		
(iv)	(d) None of these.	1	CO4
(ix)	Enzyme immobilization facilitates (a) Reuse;	1	CO4
	(a) Reuse, (b) Activity;		
	(c) Loss;		
	(d) Deactivation.		
(x)	Salting in is used for	1	CO2
. ,	(a) Medium preparation;		
	(b) Purification;		
	(c) Fermentation;		
	(d) All of these.		
(xi)	Which enzyme splits lactose	1	CO3
	(a) Beta-galactosidase;		
	(b) Laccase;		
	(c) Lyase;		
(xii)	(d) Alpha-amylase. Enzymes are sensitive to	1	CO1
(AII)	(a) Heat shock;	1	COI
	(b) pH shock;		
	(c) Both a and bt;		
	(d) None of these.		
	GROUP – B		
	(Short Answer Type Questions)		
	(Answer any <i>three</i> of the following) $3 \times 5 = 15$	3.6.1	GO N
2	Classify anymos depending on their functions	Marks	CO No
2.	Classify enzymes depending on their functions.	5	CO4
3.(a)	Why microbial source is favorable for enzyme production in comparison to other sources?	2	CO2
3.(b)	What should be the criteria of a microorganism selected for enzyme production?	3	CO2
4.	Describe the enzyme substrate reaction for sucrose and sucrose.	5	CO1
5.	What are sources of enzymes? Give one examples for each.	5	CO1
6.	Describe the physical methods of enzyme immobilization.	5	CO4

B.TECH/ FT/ODD/SEM-VII/FT702A/R16/2020-2021

GROUP – C (Long Answer Type Questions)

(Answer any *three* of the following) $3 \times 15 = 45$

		•	.		Marks	CO No
7.(a)	What is rDNA	technology?			1	CO5
7.(b)	Briefly explain the role of different enzymes in rDNA technology?				4	CO5
7.(c)	What is chime	eric DNA?			1	CO5
7.(d)	What is the ro	le of vector in r D	NA technology?		2	CO5
7.(e)	Give one exar	nple each of natur	ral and artificial vectors	S.	2	CO5
7 .(f)	Give some potential applications of r DNA technology.					CO5
8.(a)	Derive the Ru	erive the Ruth equation for constant pressure filtration.				CO2
8.(b)	The following data were obtained in a constant pressure filtration unit for filtration of a yeast suspension.				8	CO2
	Characteristics of the filter are as follows: $A = 0.28 \text{ m}^2$, $C = 1920 \text{ kg/m}^3$, $\mu = 2.9 \text{ x } 10^{-3} \text{ kg/m-s}$, $\alpha = 4 \text{m/kg}$					
	$A = 0.20 \text{ m}$, $C = 1920 \text{ kg/m}$, $\mu = 2.9 \text{ x}$ 10 kg/m-5, $\alpha = 400 \text{ kg}$					
	•	t (min)	V (L filtrate)			
		4	115			
		20	365			
		48	680			
		76	850			
		120	1130			

Determine

- i) Pressure drop across the filter.
- ii) Filter medium resistance (r_m)
- iii) Determine the size of filter for the same pressure drop to process 4000 lit of cell suspension in 20 min

9. (a)	Describe in detail the enzymatic break-down process of starch to glucose? Provide schematic.	8	CO3
9. (b)	How the enzymatic clarification of fruit juices is conducted? Discuss in detail with example.	7	CO3
10. (a)	Define intracellular and extracellular enzymes with examples?	5	CO4
10. (b)	Differentiate between intracellular and extracellular enzymes.	5	CO4
10. (c)	Describe the process of synthesis of an intracellular enzyme with the help of a schematic diagram.	5	CO4
11. (a)	What are the methods used for purification of enzymes?	4	CO2
11. (b)	How ultra-filtration is used for purification of enzymes?	5	CO2
11. (c)	Describe the solvent extraction method of enzyme purification.	6	CO2