GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT
 2020-2021
 FIELD THEORY (BACKLOG)
 EE302

FULL MARKS: 70
TIME ALLOTTED: 3 Hours
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable GROUP - A
(Multiple Choice Type Questions)
Answer any ten from the following, choosing the correct alternative of each question: $\mathbf{1 0} \times \mathbf{1}=\mathbf{1 0}$
Marks CO No
1(i) The vector identity of $\nabla \times(\nabla \times \vec{A})$
(a) $\nabla(\nabla . \vec{A})-\nabla^{2} \vec{A}$
(b) $\nabla(\nabla \times \vec{A})-\nabla^{2} \vec{A}$
(c) $(\nabla \times \vec{A})-\nabla^{2} \vec{A}$
(d) $\nabla \times(\nabla \cdot \vec{A})-\nabla^{2} \vec{A}$

1(ii) The continuity equation for steady current is
1 CO 3
(a) $\nabla \times \vec{J}=0$
(b) $\frac{\delta Q_{v}}{\delta t}=0$
(c) $\nabla . \vec{J}=0$
(d) None of these

1(iii) Pointing vector has the unit of
1 CO 4
(a) Watt
(b) Watt/ m
(c) Watt $/ m^{2}$
(d) Watt $/ m^{3}$

1(iv) For a lossless transmission line the characteristics
1 CO 4 impedance is given by
(a) $\sqrt{\frac{C}{L}}$
(b) $\sqrt{\frac{L}{C}}$
(c) $2 \pi \sqrt{\frac{C}{L}}$
(d) $2 \pi \sqrt{\frac{L}{C}}$

1(v) Curl of a gradient of a scalar field results
(a) A scalar function with non-zero value
(b) A vector function with non-zero value
(c) A zero vector
(d) A periodic function.

1(vi) The magnetic field strength \vec{H} produced by a conductor carrying current I at a distance ' r ' is given by
(a) $\vec{H}=2 \Pi r I$
(b) $\vec{H}=I / 2 \Pi r$
(c) $\vec{H}=I / 4 \Pi r$
(d) $\vec{H}=4 \Pi r / I$

1(vii) Displacement current can flow through
(a) Capacitor
(b) Inductor
(c) Resistor
(d) None of these

1 (viii) Which of the following is not Maxwell's equation?
(a) $\vec{\nabla} \cdot \vec{D}=\rho$
(b)) $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
(c) $\vec{\nabla} \times \vec{H}=J+\frac{\partial \vec{D}}{\partial t}$
(d) $\vec{\nabla} \cdot \vec{J}=-\frac{\partial \vec{\rho}}{\partial t}$

1(ix) A transmission line of length $\frac{\lambda}{4}$ shorted at far end behaves like
(a) Series resonant circuit
(b) Parallel resonant circuit
(c) Pure inductor
(d) Pure capacitor
$1(\mathrm{x}) \quad$ The direction of propagation of electromagnetic waves is given by the $1 \quad \mathrm{CO} 4$ direction of
(a) \vec{E}
(b) \vec{H}
(c) $\vec{E} \times \vec{H}$
(d) None of these

1(xi) Electric field in a region containing space charges can be found using $1 \quad \mathrm{CO} 2$
(a) Laplace's equation
(b) Poisson's equation
(c) Coulombs law
(d) Helmholtz equation

1(xii) Stoke's theorem transforms the
(a) Line to volume integral
(b) Volume to surface integral
(c) Surface to volume integral
(d) Surface to line integral

GROUP - B
 (Short Answer Type Questions)
 (Answer any three of the following) $\mathbf{3 \times 5}=\mathbf{1 5}$

2. Prove that $\nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}$, the symbols having usual meaning.
3. Starting from Gauss's theorem of electro-statics, derive the Poisson's

Marks CO No
. Stang form Gauss's theorem of ectro-statics, derive the Poisson's and Laplace's equation.
4. State and explain Helmholtz Theorem. 5 CO1
5.a) Write down Magnetic scalar potential \& magnetic vector potential. 3
5.b) Find the location of the point $(1,2,3)$ in cylindrical co-ordinates.
6. Write down the primary and secondary parameters of a transmission 5 CO1
6. Write down the primary and secondary parameters of a transmission line. Express the secondary parameters in terms of primary parameters.

GROUP - C
 (Long Answer Type Questions)

(Answer any three of the following) $\mathbf{3 \times 1 5}=\mathbf{4 5}$
Marks CO No
7. a) Write and explain differential \& integral forms of Maxwell's 10 CO3 equations.
7. b) Find the conduction and displacement current densities in a material $5 \quad \mathrm{CO} 2$ having conductivity of $10^{-3} \mathrm{~s} / \mathrm{m}$ and $\varepsilon_{r}=2.5$ if the electric field in the material is $E=5.0 \times 10^{-6} \sin \left(9.0 \times 10^{9} t\right) v / m$
8.a) Explain the significance of Transformer and Motional EMF. 8 CO3
8.b) A transmission line operating at 500 MHz has $Z_{o}=80 \Omega, \alpha=0.04 \quad 7 \quad \mathrm{CO} 4$ $\mathrm{Np} / \mathrm{m}, \beta=1.5 \mathrm{rad} / \mathrm{m}$. Find the line parameters R, L, G \& C
9.a) Deduce boundary conditions on electric vector \vec{E} and \vec{D} for dielectric- $7 \quad$ CO2 dielectric interface.
9.b) A plane polarized wave is travelling along Z-axis. Show that $\frac{E_{y}}{H_{z}}=8 \quad \mathrm{CO} 4$ 377Ω
10.a) What is Poynting Vector? Prove that Poynting vector gives the power 10 flow per unit area of cross-section, at a point in the medium.
10.b) Derive Biot-Savart's law from magnetic vector potential.
11. Write short notes on any three of the following:
11.a) Faraday's law of electromagnetic induction
11.b) Divergence and Curl 5
11.c) Stoke's Theorem
11.d) Coulombs law in vector form 5
11.e) Displacement Current 5

CO3

