GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 FIELD THEORY (BACKLOG) EE302

TIME ALLOTTED: 3 Hours

FULL MARKS: 70

Marks CO No

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

		warks	
1(i)	The vector identity of $\nabla \times (\nabla \times \vec{A})$	1	CO1
	(a) $\nabla(\nabla, \vec{A}) - \nabla^2 \vec{A}$		
	(a) $\nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$ (b) $\nabla(\nabla \times \vec{A}) - \nabla^2 \vec{A}$		
	(c) $\left(\nabla \times \vec{A}\right) - \nabla^2 \vec{A}$		
	(d) $\nabla \times (\nabla, \vec{A}) - \nabla^2 \vec{A}$		
1(ii)	The continuity equation for steady current is	1	CO3
	(a) $\nabla \times \vec{J} = 0$		
	(b) $\frac{\delta Q_v}{\delta t} = 0$		
	(c) $\nabla . \vec{f} = 0$		
	(d) None of these		
1(iii)	Pointing vector has the unit of	1	CO4
	(a) Watt	_	
	(b) Watt/ m		
	(c) Watt/ m^2		
	(d) Watt/ m^3		
1(iv)	For a lossless transmission line the characteristics	1	CO4
	impedance is given by		
	(a) $\sqrt{\frac{C}{L}}$		
	(b) $\sqrt{\frac{L}{c}}$		
	(c) $2\pi\sqrt{\frac{C}{L}}$		
	$\sqrt{\frac{1}{L}}$		
	(d) $2\pi\sqrt{\frac{L}{c}}$		
1(v)	Curl of a gradient of a scalar field results	1	CO1
	(a) A scalar function with non-zero value		
	(b) A vector function with non-zero value		
	(c) A zero vector		
	(d) A periodic function.		

1(vi)	The magnetic field strength \vec{H} produced by a conductor carrying current I at a distance 'r' is	1	CO2
	given by		
	(a) $\vec{H} = 2\Pi r I$		
	(b) $\vec{H} = I/2\Pi r$		
	(c) $\vec{H} = I/4\Pi r$		
	(d) $\vec{H} = 4\Pi r/I$		
1(vii)	Displacement current can flow through	1	CO3
	(a) Capacitor		
	(b) Inductor		
	(c) Resistor		
1(viii)	(d) None of these Which of the following is not Manuall's equation?	1	CO^{2}
I(VIII)	Which of the following is not Maxwell's equation?	1	CO3
	(a) $\vec{\nabla}.\vec{D} = \rho$ $\vec{\nabla}.\vec{D} = \vec{\rho}$		
	(b)) $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$		
	(c) $\vec{\nabla} \times \vec{H} = J + \frac{\partial \vec{D}}{\partial t}$		
	(d) $\vec{\nabla} \cdot \vec{J} = -\frac{\partial \vec{\rho}}{\partial t}$		
1(ix)	A transmission line of length $\frac{\lambda}{4}$ shorted at far end behaves like	1	CO4
	(a) Series resonant circuit		
	(b) Parallel resonant circuit		
	(c) Pure inductor		
1()	(d) Pure capacitor	1	004
1(x)	The direction of propagation of electromagnetic waves is given by the direction of	1	CO4
	(a) \vec{E}		
	(a) \vec{E} (b) \vec{H}		
	(b) \vec{H} (c) $\vec{E} \times \vec{H}$		
	(d) None of these		
1(xi)	Electric field in a region containing space charges can be found using	1	CO2
	(a) Laplace's equation	_	
	(b) Poisson's equation		
	(c) Coulombs law		
17	(d) Helmholtz equation	_	a a i
1(xii)	Stoke's theorem transforms the	1	CO1
	(a) Line to volume integral(b) Volume to surface integral		
	(c) Surface to volume integral		
	(d) Surface to line integral		

GROUP – B

(Short Answer Type Questions) (Answer any *three* of the following) $3 \times 5 = 15$

2.	$\rightarrow \rightarrow \partial \vec{D}$	Marks 5	CO No CO3
	Prove that $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$, the symbols having usual meaning.		
3.	Starting from Gauss's theorem of electro-statics, derive the Poisson's and Laplace's equation.	5	CO2
4.	State and explain Helmholtz Theorem.	5	CO1
5.a)	Write down Magnetic scalar potential & magnetic vector potential.	3	CO2
5.b)	Find the location of the point $(1, 2, 3)$ in cylindrical co-ordinates.	2	CO1
6.	Write down the primary and secondary parameters of a transmission line. Express the secondary parameters in terms of primary parameters.	5	CO4
	GROUP – C		
	(Long Answer Type Questions) (Answer any <i>three</i> of the following) 3 x 15	5 – 45	
		Marks	CO No
7. a)	Write and explain differential & integral forms of Maxwell's equations.	10	CO3
7. b)	Find the conduction and displacement current densities in a material having conductivity of 10^{-3} s/m and $\varepsilon_r = 2.5$ if the electric field in the material is $E = 5.0 \times 10^{-6} \sin(9.0 \times 10^9 t) v/m$	5	CO2
8.a)	Explain the significance of Transformer and Motional EMF.	8	CO3
8.b)	A transmission line operating at 500 MHz has $Z_o = 80\Omega$, $\alpha = 0.04$ Np/m, $\beta = 1.5$ rad/m. Find the line parameters R, L, G & C	7	CO4
9.a)	Deduce boundary conditions on electric vector \vec{E} and \vec{D} for dielectric- dielectric interface.	7	CO2
9.b)	A plane polarized wave is travelling along Z-axis. Show that $\frac{E_y}{H_z} = 377\Omega$	8	CO4
10.a)	What is Poynting Vector? Prove that Poynting vector gives the power flow per unit area of cross-section, at a point in the medium.	10	CO4
10.b)	Derive Biot-Savart's law from magnetic vector potential.	5	CO2
11.	Write short notes on any <i>three</i> of the following:		
11.a)	Faraday's law of electromagnetic induction	5	CO2
11.b)	Divergence and Curl	5	CO1
11.c)	Stoke's Theorem	5	CO1
11.d) 11.e)	Coulombs law in vector form	5 5	CO2
11.0)	Displacement Current	3	CO3