GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 INFORMATION THEORY AND CODING EC504A

TIME ALLOTTED: 3 Hours

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answe	er any <i>ten</i> from the following, choosing the correct alternative of each	n question: Marks	10×1=10 CO No
1(i)	In modulo-8 arithmetic, we use only the integers in the range of	1	CO1
	a) 1 to 8		
	b) 0 to 7		
	c) 0 to 8		
	d) None of these		
1(ii)	Entropy means	1	CO1
	a) amount of information		
	b) rate of information		
	c) measure of uncertainty		
	d) probability of message		
1(iii)	Relation between message rate (r) and information rate (R) is	1	CO1
	a) $C = B (ln_2 (S/N))$		
	b) $C = B (ln_2 (1 + S/N))$		
	c) $C = B/N$		
	d) $C = B^2 N$		
1(iv)	In Viterbi algorithm, the selected paths are regarded as	1	CO2
	a) Survivors		
	b) Defenders		
	c) Carriers		
	d) Destroyers		
1(v)	For a noiseless channel $I(X;Y)$ is	1	C01
	a) $H(X) - H(Y)$		
	b) $H(Y) - H(X)$		
	c) $H(X)$		
	d) $H(X) - H(Y/X)$.		
1(vi)	The hamming distance between 100 and 001 is	1	CO1
	a) 0		
	b) 1		
	c) 2		
	d) -1		

B. TECH/ECE//ODD/SEM-V/EC504A/R18/2020-2021

1(vii)	A code is with minimum distance $d_{min} = 5$. How many errors can it correct?	1	CO5
	a) 3		
	b) 2		
	c) 4		
	d) 1		
1(viii)	The number of undetectable errors for $a(n k)$ linear code is	1	CO4
1(())	a) 2^{n-k}	-	001
	b) 2^n		
	c) $2^{n}-2^{k}$		
	d) 2^k		
1(ix)	On which factor/s do/does the channel capacity depend/s in the	1	CO1
~ /	communication system?		
	a) Bandwidth		
	b) Signal to Noise Ratio		
	c) both bandwidth and SNR		
	d) None of these		
1(x)	The code rate for (15,5) code is	1	CO4
	a) 3		
	b) 1/3		
	c) 5		
	d) 10		
1(xi)	Relation between syndrome vector (S) and error vector (E) is	1	CO4
	a) $S=H^{T}E$		
	b) $S = EH^T$		
	c) none of these		
	d) both a and b		
1(xii)	Code rate r, k information bits and n as total bits, is defined as	1	CO2
	a) $r = k/n$		
	b) $k = n/r$		
	c) $r = k * n$		
	d) $n = r * k$		
	GROUP – B		
	(Short Answer Type Questions)		
	(Answer any <i>three</i> of the following)		$3 \times 5 = 15$
		Marks	CO No
2.	Define entropy and prove that entropy has maximum value	5	CO1
	when both the messages are equally likely.		
3.	Calculate the channel capacity of an AWGN channel with a	5	CO4
	bandwidth of 1 MHz and S/N ratio of 40 dB.		
4.	Define the term syndrome related to linear block code. For a	5	CO4
	(6,3) linear block code the generator matrix is given below.		
	Find the possible code words. Decode the received code		
	100011.		

$[G] = \begin{bmatrix} 100101\\010011\\001110 \end{bmatrix}$

5.	Determine the conjugates of α^7 and α^9 in GF (2 ⁴).	5	CO3			
6.	The convolution encoder of $\frac{1}{2}$ code rate has polynomial representation as $g_1(x)=1+x^2$ and $g_2(x) = 1+x+x^2$. Draw the encoder circuit. Find the output code for the d= (1011).	5	CO4			
	GROUP – C					
(Long Answer Type Questions)						
	(Answer any <i>three</i> of the following)	Marks	$3 \times 15 = 45$ CO No			
7. a)	Find the entropy of a source generating n number of messages having different probabilities of occurrence.	5	CO1			
7. b)	State and explain source encoding theorem.	5	CO2			
7. c)	Show that the channel capacity for a continuous channel is given by $C = B \log 2 [1 + S/N]$ bit/sec.	5	CO1			
8. a)	Determine the Shanon Fano code for the following messages with the given probabilities: $X_1 = 0.15$, $X_2 = 0.20$, $X_3 = 0.10$, $X_4 = 0.05$, $X_5 = 0.25$, $X_6 = 0.12$, $X_7 = 0.13$ and find out the Coding efficiency.	8	CO1			
8. b)	What is Hamming distance? Give relation between minimum distance and error detecting and correcting capability. Describe a Hamming code.	7	CO2			
9. a)	Calculate generator polynomial for GF (2^3) [double error]	11	CO2			
9. b)	Prove that α^4 is a root of x^3+x+1 in GF (2 ³)	4	CO2			
10. a)	For a systematic (7, 4) cyclic code determine the generator matrix and parity check matrix if $g(x) = 1 + x + x^{3}$.	8	CO5			
10. b)	The parity check bits of a (7,3) block code are generated by C5=d2⊕ d3 C6=d1⊕ d2 C7=d1⊕ d3 Find the generator matrix for this code and Find the parity	7	CO2			
	check matrix for this code.					
11	Write short notes on any three of the following:	3×5	CO4			
11. a)	Viterbi algorithm	5	CO2			
11. b)	BCH codes	5	CO5			
11.c)	Standard array decoding	5	CO2			
11. d)	Turbo codes	5	CO5			
11.e)	Channel capacity theorem	5	CO2			