GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT YEAR: 2020-2021 Mathematics III M(EE) 301

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

1. Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

			Marks	CO No.
1.	i	The variance of a random variable X is		
		i) $E(X)-E(X^2)$		
		ii) $(E(X))^2 - E(X^2)$	1	CO2
		iii) $E(X^2)-E(X)$		
		iii) $E(X^2)-E(X)$ iv) $E(X^2)-(E(X))^2$		
	ii	The arithmetic mean of a set of 10 numbers is 20. If each number		
		is first multiplied by 2 and then increased by 5, then what is the		
		mean of new numbers?		
		i) 20	1	CO2
		ii) 25		
		iii) 40		
		iv) 45		
	iii	The relation between mean, median and mode is		
		i) Mode=3 Median – 2 Mean		
		ii) Mode=2 Median – 3 Mean	1	CO2
		iii) Median=2Mode- 2 Mean		
		iv) None of the above		
	iv	The partial differential equation $5\frac{\partial^2 z}{\partial x^2} + 6\frac{\partial^2 z}{\partial y^2} = xy$ is classified as		
		i) Elliptic	1	CO 3
		ii) Parabolic	1	05
		iii) Hyperbolic		
		iv) None of the above		
	v	The following partial differential equation:		
		$\frac{\partial^2 u}{\partial t^2} + \frac{\partial^4 u}{\partial x^4} - 6 \frac{\partial^2 u}{\partial x^2} = 0 is$		
		i) Linear; 4^{th} order	1	CO 3
		ii) Nonlinear; 4 th order	-	
		iii) Linear; 2^{nd} order		
		iv) Nonlinear; 2^{nd} order		
	vi	A population has normal distribution with parameter m=5 and		
	V I	$\sigma = 0.1$. Then \bar{X} , the sample mean with sample size 25 is a	1	CO 2
		normal variable with mean and s.d	1	
		normai variable with mean and s.u		

	i) ii) iii)	5, (5, (5, (
	iv)		ne of these						
vii	-	-	e error in ap	oproxima	ated $4/3$ to	0 1.3333	is		
	i)		025%						GO 1
	ii)	25%						1	CO 1
	iii)		00025%						
viii	iv) The degr	0.2	precision of	fSimnso	n's one tl	aird rula			
VIII	i)	3	precision	i Simpso			15		
	ii)	2						1	CO 1
	iii)	1						1	001
	iv)	5							
ix	,	-			b				
	In Simps	son's	1/3 rule of	f finding	$\int_{a} f(x) dx$	x, f(x) is	approximated		
	by							1	CO 1
	i)		segment					1	CO 1
	ii)	-	abola						
	iii)		ular sector						
	iv)		t of ellipse						
Х			erpolation t			r			
	i)	-	ispaced arg		-			1	CO 1
	ii)		quispaced a	-	•		a m t a d	1	CO 1
	iii)		h equispace the of these	ed and ur	iequispac	ed argun	ientsa		
xi	iv) From on t			tion of a	complo o	izo 5 is d	rawn whose		
AI					-		lation mean is		
	i)	26 ¹³	2. Then un	Jiascu es		the popu	nation mean is		
	ii)	6						1	CO 2
	iii)	8							
	iv)	10							
	11)	10							
xii	Regula-F	alsi r	nethod is						
	i)		nditionally o	-	nt				
	ii)		early conve	rgent				1	CO 1
	iii)		rgent						
	iv)	noi	ne of these						
					OUP – E		[×]		
(Short Answer Type Questions)									
	Answer any <i>three</i> from the following: 3×5=15								
								Marks	CO No.
	From the following table, find by Lagrange's formula, the value of								
	y when $x=102$.								
	-			06.2	100.0	104.2	109 7		
		X	93.0 11.38	96.2 12.80	100.0 14.70	104.2	108.7 19.91	5	CO2
		У	11.30	12.00	14.70	17.07	17.71		

2.

3.	a.	Solve the differential equation by Euler method		
		$\frac{dy}{dx} = (x - y), y(0) = 1$ at x=0.2, taking h=0.1, correct upto three	3	CO3
	b.	decimal places. Prove that $E \equiv I + \Delta$	2	CO3
4.		Solve the system of equations by Gauss Elimination method: 3r + 9r = 2r = 11		
		$3x_1 + 9x_2 - 2x_3 = 11$ $4x_1 + 2x_2 + 13x_3 = 24$	5	CO3
		$4x_1 + 2x_2 + 15x_3 = -8$	5	005
5.		A normal population has a mean 0.1 and S.D 2.1. Find the probability that the mean of a sample of size 900 will be negative. Given that $P(Z <1.43)=0.847$.	5	CO5
6.		Obtain the series solution of the equation $(1+x^2)y'' + xy' - y = 0$	5	CO4
		GROUP – C		
		(Long Answer Type Questions) Answer any <i>three</i> from the following: 3×15=45		
		Answer any <i>meet</i> from the following. 5×15–45	Marks	CO No.
7.	a.	For finding the square root of ' a '($a > 0$), derive the Newton	Wiai K5	00110.
7.	u.	Raphson iteration formula $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x}), n = 0, 1, 2, 3,$	6	CO3
		Hence find $\sqrt{2}$, correct to five significant figures.		
	b.	Find the 5 th root of 2 by Newton Raphson method, which is correct upto four decimal places	5	CO3
	c.	Compute one positive root of $x + \ln x - 2 = 0$, correct to four		~~~
		decimal places by method of Newton Raphson method.	4	CO3
8.	a.	Solve the system of equations by LU factorization method: $8x_1 - 3x_2 + 2x_3 = 20$		
		$4x_1 + 11x_2 - x_3 = 33$	8	CO3
		$6x_1 + 3x_2 + 12x_3 = 36$		
	b.	Correct to three significant figures. Solve the system of equations by Gauss Seidel method: 10x-5y-2z=3		
		4x - 10y + 3z = -3	7	CO3
		x + 6y + 10z = -3		
_		Correct to four significant figures.		
9.	a.	Show that $\frac{d}{dx} \{ x^{-p} J_p(x) \} = -x^p J_{p+1}(x)$, where $J_p(x)$ is the	6	CO4
	1	Bessel's function of degree p .		
	b.	A population consists of the three numbers 1,3,4. Consider all possible samples of size two with replacement. Find the mean of the sampling distribution of the sample variance and verify the result $E(S^2) = \frac{n-1}{n} \sigma^2$. Find the standard deviation of the sampling	4	CO5
		n		

distribution of variances.

10	c.	The height of male students in a large university is normally distributed with s.d =2.1 inches. The average height of a randomly chosen sample of 100 male students is found to be 68.6 inches. Find the 98% confidence interval for the mean height of the male students of the university[given that $P(Z>2.327)=0.01$,where Z is a standard normal variate]	5	CO5
10.	a.	A particle moves in a path such that its velocity is proportional to the square of its displacement measured from a fixed point on the path. Describe the motion mathematically and find the distance of the particle at the time 1.02 unit from the fixed point by Euler's method, where the particle started its journey from the distance 2 unit from the fixed point. Given that the proportionality constant is 2.	5	CO2
	b.	Solve by Euler's modified method the following differential equation for x=0.02 taking step length h=0.01, $\frac{dy}{dx} = x^2 + y, y=1 \text{ when x=0.}$	6	CO2
11.	c.	Compute $y(0.4)$ by Runge Kutta method of fourth order for the differential equation $\frac{dy}{dx} = xy$, $y(0) = 1$, taking h=0.2.	4	CO2
	a.	A particle travels in a path at a maximum velocity 20Km/h satisfying the points (2,4), (3, 7), (5,13), (6,28), (7,39), (9, 55). It started its journey from (2, 4) at a velocity 15 Km/h. What will be its height at a distance 4 unit from origin?	5	CO3
	b.	Find the power series solution of the differential equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (x^2 + 2)y = 0 \text{ about } x = 0.$	5	CO4
	c.	Solve the one dimensional Heat Equation by method of separation of variable		
		$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ $u(0,t) = 0, u(L,t) = 0$	5	CO4

$$u(x,0) = f(x).$$