GURU NANAK INSTITUTE OF TECHNOLOGY
 An Autonomous Institute under MAKAUT
 YEAR: 2020-2021
 Mathematics III
 M(EE) 301

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70
The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP - A
(Multiple Choice Type Questions)

1. Answer any ten from the following, choosing the correct alternative of each question: $\mathbf{1 0} \times \mathbf{1}=\mathbf{1 0}$

Marks CO No.

1. i The variance of a random variable X is
i) $\quad E(X)-E\left(X^{2}\right)$
ii) $\quad(\mathrm{E}(\mathrm{X}))^{2}-\mathrm{E}\left(\mathrm{X}^{2}\right) \quad 1 \quad \mathrm{CO} 2$
iii) $\quad E\left(X^{2}\right)-E(X)$
iv) $\quad \mathrm{E}\left(\mathrm{X}^{2}\right)-(\mathrm{E}(\mathrm{X}))^{2}$
ii The arithmetic mean of a set of 10 numbers is 20 . If each number is first multiplied by 2 and then increased by 5 , then what is the mean of new numbers?
i) $\quad 20$
ii) 25
iii) 40
iv) 45
iii The relation between mean, median and mode is
i) Mode=3 Median - 2 Mean
ii) Mode=2 Median -3 Mean $\quad 1 \quad$ CO2
iii) Median=2Mode- 2 Mean
iv) None of the above
iv The partial differential equation $5 \frac{\partial^{2} z}{\partial x^{2}}+6 \frac{\partial^{2} z}{\partial y^{2}}=x y$ is classified as
i) Elliptic
ii) Parabolic
iii) Hyperbolic
iv) None of the above
v The following partial differential equation: $\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{4} u}{\partial x^{4}}-6 \frac{\partial^{2} u}{\partial x^{2}}=0 \quad$ is
i) Linear; $4^{\text {th }}$ order $\quad 1 \quad \mathrm{CO} 3$
ii) Nonlinear; $4^{\text {th }}$ order
iii) Linear; $2^{\text {nd }}$ order
iv) Nonlinear; $2^{\text {nd }}$ order
vi A population has normal distribution with parameter $\mathrm{m}=5$ and $\sigma=0.1$. Then \bar{X}, the sample mean with sample size 25 is a normal variable with mean and s.d
i) $\quad 5,0.02$
ii) $5,0.1$
iii) $5,0.2$
iv) None of these
vii The percentage error in approximated $4 / 3$ to 1.3333 is
i) 0.0025%
ii) 25%
1
CO 1
iii) 0.000025%
iv) 0.25%
viii The degree of precision of Simpson's one third rule is
i) 3
ii) 2

CO 1
iii) 1
iv) 5
ix
In Simpson's $1 / 3$ rule of finding $\int_{a}^{b} f(x) d x, f(x)$ is approximated by
i) line segment

1
CO 1
ii) parabola
iii) circular sector
iv) part of ellipse
x Lagrange's interpolation formula is used for
i) equispaced arguments only
ii) unequispaced arguments only
iii) both equispaced and unequispaced argumentsd
iv) None of these
xi From an unknown population of a sample size 5 is drawn whose variance is 13.2. Then unbiased estimate of the population mean is
i) $\quad 26$
ii) 6
$1 \quad \mathrm{CO} 2$
iii) 8
iv) 10
xii Regula-Falsi method is
i) Conditionally convergent
ii) linearly convergent
iii) divergent
iv) none of these

GROUP - B

(Short Answer Type Questions)
Answer any three from the following: $\mathbf{3 \times 5 = 1 5}$
Marks CO No.
2. From the following table, find by Lagrange's formula, the value of y when $\mathrm{x}=102$.

x	93.0	96.2	100.0	104.2	108.7
y	11.38	12.80	14.70	17.07	19.91

3. a. Solve the differential equation by Euler method $\frac{d y}{d x}=(x-y), y(0)=1$ at $\mathrm{x}=0.2$, taking $\mathrm{h}=0.1$, correct upto three $3 \quad$ CO3 decimal places.
b. Prove that $E \equiv \mathrm{I}+\Delta$
4. Solve the system of equations by Gauss Elimination method:

$$
\begin{aligned}
& 3 x_{1}+9 x_{2}-2 x_{3}=11 \\
& 4 x_{1}+2 x_{2}+13 x_{3}=24 \\
& 4 x_{1}-2 x_{2}+x_{3}=-8
\end{aligned}
$$

6. Obtain the series solution of the equation $\left(1+x^{2}\right) y^{\prime \prime}+x y^{\prime}-y=0$
GROUP - C

(Long Answer Type Questions)

Answer any three from the following: $\mathbf{3 \times 1 5 = 4 5}$
Marks CO No.
7. a. For finding the square root of ' a ' $(a>0)$, derive the Newton Raphson iteration formula $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right), n=0,1,2,3, \ldots$.
Hence find $\sqrt{2}$, correct to five significant figures.
b. Find the $5^{\text {th }}$ root of 2 by Newton Raphson method, which is correct upto four decimal places
c. Compute one positive root of $x+\ln x-2=0$, correct to four decimal places by method of Newton Raphson method.
8. a. Solve the system of equations by LU factorization method:

$$
\begin{align*}
& 8 x_{1}-3 x_{2}+2 x_{3}=20 \\
& 4 x_{1}+11 x_{2}-x_{3}=33 \tag{8}\\
& 6 x_{1}+3 x_{2}+12 x_{3}=36 \tag{CO 3}
\end{align*}
$$

Correct to three significant figures.
b. Solve the system of equations by Gauss Seidel method:

$$
\begin{align*}
& 10 x-5 y-2 z=3 \tag{CO 3}\\
& 4 x-10 y+3 z=-3 \tag{7}\\
& x+6 y+10 z=-3
\end{align*}
$$

Correct to four significant figures.
9.

Show that $\frac{d}{d x}\left\{x^{-p} J_{p}(x)\right\}=-x^{p} J_{p+1}(x)$, where $J_{p}(x)$ is the
Bessel's function of degree p.
b. A population consists of the three numbers 1,3,4. Consider all possible samples of size two with replacement. Find the mean of the sampling distribution of the sample variance and verify the result $\mathrm{E}\left(\mathrm{S}^{2}\right)=\frac{n-1}{n} \sigma^{2}$. Find the standard deviation of the sampling
distribution of variances.
c. The height of male students in a large university is normally distributed with s.d $=2.1$ inches. The average height of a randomly chosen sample of 100 male students is found to be 68.6 inches. Find the 98% confidence interval for the mean height of the male students of the university[given that $\mathrm{P}(\mathrm{Z}>2.327)=0.01$, where Z is a standard normal variate]
10. a. A particle moves in a path such that its velocity is proportional to the square of its displacement measured from a fixed point on the path. Describe the motion mathematically and find the distance of the particle at the time 1.02 unit from the fixed point by Euler's method, where the particle started its journey from the distance 2 unit from the fixed point. Given that the proportionality constant is 2.
b. Solve by Euler's modified method the following differential equation for $\mathrm{x}=0.02$ taking step length $\mathrm{h}=0.01$,

$$
\frac{d y}{d x}=x^{2}+y, \mathrm{y}=1 \text { when } \mathrm{x}=0 .
$$

c. Compute $y(0.4)$ by Runge Kutta method of fourth order for the differential equation $\frac{d y}{d x}=x y, y(0)=1$, taking $\mathrm{h}=0.2$.
11. a. A particle travels in a path at a maximum velocity $20 \mathrm{Km} / \mathrm{h}$ satisfying the points $(2,4),(3,7),(5,13),(6,28),(7,39),(9,55)$. It started its journey from $(2,4)$ at a velocity $15 \mathrm{Km} / \mathrm{h}$. What will be its height at a distance 4 unit from origin?
b. Find the power series solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}+2\right) y=0 \text { about } x=0 .
$$

c. Solve the one dimensional Heat Equation by method of separation of variable

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

$$
5
$$

