GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 **MATHEMATICS-III** M(IT)301

TIME ALLOTTED: 3 HOURS

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10 Marks CO No. 1. i. For the random experiment of a die is thrown until 3 occurs, number of sample points in the sample space is, a) 6 1 CO1 b) 18 c) 216 d) none of these For symmetric Group S_3 and alternating group A_3 , the index number ii. $[S_3: A_3] = ?$ a) 1 1 CO₂ b) 2 c) 3 d) 4 How many even three-digit numbers can be formed from the digits iii. 3,2,5,6 and 9 if each digit can be formed only once? a) 24 1 **CO1** b) 60 c) 30 d) none of these iv. Identity permutation *i* is one of the following: a) even permutation b) odd permutation 1 CO3 c) cyclic permutation d) transposition Find the value of c so that the function f(x) = c(x+1), v. x=0,1,2,3 is a probability mass function of a discrete random variable. a) 5 b) 1/5 1 CO₂ c) 1/10 d) 10

FULL MARKS: 70

vi.	The maximum degree of any vertex in a simple graph with n vertices is		
	a) n-1		
	b) n+1	1	CO3
	c) 2n-1		
	d) n For which distribution $\sigma = \sqrt{2}$		
vii.	For which distribution, $\sigma = \sqrt{\mu}$?		
	a) Binomial Distribution	1	CO1
	b) Poisson Distribution	1	CO1
	c) Uniform Distribution		
	d) Normal Distribution		
viii	Circle has		
•	a) no vertices	_	~ ~ ~
	b) only one vertex	1	CO3
	c) 8 vertices		
	d) none of these		
ix.	Which group is abelian but not cyclic?		
	a) Symmetric group		
	b) Klein's 4-group	1	CO2
	c) $(Z_6, +)$		
	d) all of the above		
х.	A minimal spanning tree of a graph G is		
	a) a spanning sub graph		
	b) a tree	1	CO3
	c) minimum weights		
	d) all of the above		
xi.	Order of element $\overline{4}$ for the group (Z_5 , +) is,		
	a) 5		
	b) 2	1	CO2
	c) 4		
	d) 3		
xii.	Let G be a simple undirected planar graph on 10 vertices with 15		
	edges. If G is a connected graph, then the number of bounded faces		
	in any embedding of G on the plane is equal to		
	a) 3	1	CO3
	b) 4	-	005
	c) 5		
	d) 6		
	u, o		

GROUP – B^{*}

(Short Answer Type Questions) Answer any *three* from the following: 3×5=15

		Marks	CO No.
2.	The probability density of a continuous distribution is given by $f(x) = \frac{3}{4}x(2-x), 0 < x < 2$. Compute mean and variance.	05	CO3
3.	Let $G = \{(a, b): a \neq 0, b \in R\}$ and * be a binary composition defined on <i>G</i> by $(a, b) * (c, d) = (ac, bc + d)$. Show that $(G, *)$ is a non-abelian group.	05	CO2

4.		The minimum number of edges in a connected graph with n vertices is n-1.	05	CO3
5.		In a normal distribution, 31% of the items are under 45 and 8% are above 64. Find the mean and standard deviation [Given $P(0 < Z < 1.405) = 0.42$ and $P(-0.496 < Z < 0) = 0.19$]	05	CO3
6.		A connected planar graph G with n vertices and e number of edges determines $f = e - n + 2$ number of regions.	05	CO4
		GROUP – C^*		
		(Long Answer Type Questions)		
		Answer any <i>three</i> from the following: 3×15=45		
		Answer any <i>unree</i> from the following. 5×15–45	Marks	CO No.
7			Marks	CU NO.
7.	a.	A box contains 5 defective and 10 non defective lamps and 8 are drawn at random in succession without replacement. What is the probability that the 8^{th} lamp is the 5^{th} defective?	05	CO3
	b.	100 unbiased coins are tossed. Using normal approximation to binomial distribution calculate the probability to get (i) exactly 40 heads (ii) 55 heads or more. Given $\phi(2.1) = 0.9821$, $\phi(1.9) = 0.9713$, $\phi(0.9) = 0.8159$	05	CO3
	c.	$\varphi(0.9) = 0.0139$ A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with average number of demand per day 1.5. Calculate the proportion of days on which neither car is used and the proportion of days on which some demand is refused.	05	CO2, CO3
8.	a.	Prove that the order of each subgroup of finite group is a divisor of the order of group	05	CO1, CO3
	b.	Prove that every cyclic group is commutative but the converse of above may not be true	05	CO1, CO2
	c.	Let G be a group. If $a, b \in G$ such that $a^4 = e$ the identity element of G and $ab = ba^2$ prove that $a = e$	05	CO1, CO3
9.	a.	Find the shortest path and the length of the shortest path from the		
		vertex v_1 to v_8 of the graph:		

08 CO3

b. Prove that a tree with n number of vertices has n - 1 number of edges.

07 CO2

10. The weight of students in a college is normally distributed with a. m = 40kg and $\sigma = 5kg$. Find the percentage of the students that have weight (i) greater than 40kg(ii) greater than 50kg(ii) greater than solves (iii) between 38kg and 52kgGiven: $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{2} e^{-\frac{t^2}{2}} dt = 0.9772, \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.4} e^{-\frac{t^2}{2}} dt = 0.6554,$ 3+2+2= CO3 07 $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{2.4} e^{-\frac{t^2}{2}} dt = 0.9918,$ Using Lagrange's theorem prove that every group of prime order b. CO2, 05 is cyclic. CO3 G be a cyclic group of order 30 generated by a. Find the order of a c. 03 CO3 cyclic subgroup generated by a^{18} Draw the graph of the following adjacency matrix. 11. a. $\begin{bmatrix}
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}$ 05 CO3 If a simple regular graph G has n vertices and 24 edges, find all b. 05 CO3 possible values of n. Find the dual of the following graph c.

05 CO2