GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT
2020-2021
MATHEMATICS-III (Backlog)
M(CSE) 301

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable

GROUP - A
(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: $\mathbf{1 0} \times \mathbf{1}=\mathbf{1 0}$
Marks CO No
1 i For a Poisson distribution $P(x), P(1)=P(2)$, then $P(0)$ is
a) $1 / \mathrm{e}$
b) $1 / \mathrm{e}^{2}$
01
C04
c) $1 / \mathrm{e}^{3}$
d) e.
ii $\quad-(p \vee q) \vee(p \wedge \neg q) \equiv$
a) $\neg p$
b) p
01
CO2
c) $\neg q$
d) none of these
iii Let X be a Poisson Random Variate and $E(X)=\lambda$. Then $E[(X+$ 1) ${ }^{2}$] will be
a) λ
b) $\lambda^{2}+2 \lambda$
c) $\lambda^{2}+2 \lambda+1$
d) $\lambda^{2}+3 \lambda+1$
iv If R is a ring without zero divisors, then $x . y=0$ implies
a) $x=0$ or $y=0$
b) $x=0$ and $y=0$
01
CO 2
c) $x=0, y \neq 0$
d) $x \neq 0, y=0$

CO 2
v In the Dijkstra's algorithm for a digraph if the edge $A B$ is directed from A to B only then we take weight on the edge BA
a) 0
b) ∞
c) - weight on the directed edge AB
d) none
vi Which of the following sets is closed under multiplication?
a) $\{1,-1,0,2\}$
b) $\{1, i\}$
c) $\left\{1, \omega, \omega^{2}\right\}$
d) $\{\omega, 1\}$

01 CO 1
$\left\{1,1, \frac{1}{2!}, \frac{1}{3!}, \frac{1}{4!}, \ldots \ldots\right\}$ is
a) e^{x}
b) e^{-x}
c) $\log (1+x)$
d) $(1-x)^{-1}$

CO 2
viii A group contains 12 elements. Then the possible number of elements in a subgroup is
a) 3
b) 5
c) 7
d) 11
ix The number of generators of an infinite cyclic group is
a) 1
b) 2
c) infinite
d) none of these
$x \quad$ The order of dihedral group D_{4} is
a) 4
b) 6
c) 8
d) 64
1
CO 3
xi The minimum number of connected component of a graph with 16 vertices and 10 edges is
a) 4
b) 5
c) 8
d) 6
1
CO1
xii To make a graph G (with e edges, n vertices) free from any circuit the minimum number of edges to be removed from G is
a) $e-n$
b) $e-n+1$
c) $\mathrm{n}-1$
d) $\mathrm{e}-1$

1
CO 2

Marks
CO No
2. The probability density of a continuous distribution is given by $f(x)=\frac{3}{4} x(2-x), 0<x<2$. Compute mean and variance.
3 Use division algorithm to prove that the square of an odd integer is of the form $8 k+1$, where k is an integer.
4. The minimum number of edges in a connected graph with n vertices is $\mathrm{n}-1$.
5 Prove that the set of all even integers forms a commutative ring. 05
CO 2
6 Show that $\{(p \wedge \sim q) \rightarrow r\} \rightarrow\{p \rightarrow(q \vee r)\}$ is a tautology 05

> GROUP - C*

(Long Answer Type Questions)

Answer any threefrom the following: $\mathbf{3} \times \mathbf{1 5}=\mathbf{4 5}$
Marks CO No
7. a. A box contains 5 defective and 10 non defective lamps and 8 are drawn at random in succession without replacement. What is the probability that the $8^{\text {th }}$ lamp is the $5^{\text {th }}$ defective?
b. 100 unbiased coins are tossed. Using normal approximation to binomial distribution calculate the probability to get
(i) exactly 40 heads
(ii) 55 heads or more.

Given $\phi(2.1)=0.9821, \phi(1.9)=0.9713, \phi(0.9)=0.8159$
c. Using Lagrange's theorem prove that every group of prime order is cyclic.
8. a. Prove that the order of each subgroup of finite group is a divisor of
the order of group
b. Prove that every cyclic group is commutative but the converse of above may not be true
c. Let G be a group. If $a, b \in G$ such that $a^{4}=e$ the identity element of G and $a b=b a^{2}$ prove that $a=e$
9. a. Find the shortest path and the length of the shortest path from the vertex B to G of the graph:

CO5
08
b. Solve the recurrence relation by using generating function
$a_{n}-5 a_{n-1}+6 a_{n-2}=2^{n}+n, n \geq 2$ with the boundary
07
CO4
conditions $a_{0}=1, a_{1}=1$.
a. If in a ring R with unity, $(x y)^{2}=x^{2} y^{2}$ for all $x, y \in R$ then show that R is commutative.
b. For any prime p, the ring Z_{p} of all integer module p is a field. Is it true? Justify your answer.
c. Show that all roots of the equation $x^{4}=1$ forms a commutative group under the operation usual multiplication.
11 a. Find the Principal Disjunctive Normal Forms(PDNF) and Principal Conjunctive Normal Forms(PCNF) of the statement
b. The number of pendent vertices in a binary tree is $(\mathrm{n}+1) / 2$ where n is
c. Find the remainder when the sum $1!+2!+3!+\ldots \ldots \ldots+100$! is divided by 5 .

