GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 NUMERICAL METHODS AND STATISTICS M(IT)302

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10 Marks CO No 1. (i) Newton Raphson method fails when 1 CO1 (a) f'(x)=1(b) f'(x) = -1(c) f'(x)=0(d) None of These Mode of 2,2,3,4,1,2,3,4,2,2,2,4,3,1,4,1,2,3,3,2,2,2 CO1 (ii) 1 (a) 2 (b) 1 (c) 3 (d) 4 Number of significant digits of 12356.1010 is CO₂ (iii) 1 (a) 4 (b) 7 (c) 3 (d) 8 The percentage error for approximation of 4/3 to 1.3333CO1 (iv) 1 is (a) 0.0025% (b) 25% (c) 0.000025% (d) 0.25% Product of regression coefficients is (v) 1 **CO3** (a) 1 (b) -1 (c) 0.5 (d) ρ^{2} Degree of precision of Simpson's 1/3rd Rule of **CO1** (vi) 1 Integration is (a) 1 (b) 2 (c) 3 (d) 4

B.TECH/IT/ODD/SEM-III/M(IT)302/R18/2020-2021

(vii)	Lagrange Interpolation formula is applicable if nodes are	1	CO2
	(a) Equispaced		
	(b) Un equispaced		
	(c) Both equispaced and un equispaced		
/ ···	(d) None of these		901
(V111)	Trapezoidal rule of integration is applicable when the	I	COI
	number of equal subintervals is		
	(a) Even (b) Odd		
	(b) Oud (c) Both even and odd		
	(c) Both even and odd (d) None of these		
(iv)	Correlation Coefficient lies in	1	CO1
(1X)	(a) [-1 1]	1	COI
	(a) $\begin{bmatrix} 1,1 \end{bmatrix}$ (b) $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$		
	(c) $[0,1]$		
	(d) None of these		
(x)	Euler method for ODE has a truncation error of the	1	CO1
(11)	order of	1	001
	(a) h^3		
	(b) h^{6}		
	(c) h_{z}^{2}		
 . 	(d) h ³		GO A
(X1)	δ^2 is equivalent to	1	CO3
	(a) $\Delta \nabla$		
	(b) Δ/∇		
	(c) $\Delta + \nabla$		
	(d) None of these		
(xii)	Gauss Elimination method is	1	CO1
	(a) direct method		
	(b) indirect method		
	(c) iterative method		
	(d) None of These		
	GROUP – B*		
	(Short Answer Type Questions)		
	Answer any <i>three</i> from the following: 3×5=15		
	_	Marks	CO No
	Use Newton Raphson method to compute $\sqrt[4]{23}$, correct to	5	CO3
	3 decimal places.		
	$\begin{bmatrix} & \Delta f(x) \end{bmatrix}$	5	CO2
	Prove that $\Delta \log f(x) = \log \left 1 + \frac{f(x)}{f(x)} \right $		
	$\begin{bmatrix} f(x) \end{bmatrix}$	5	CO2
	Do these two lines $2x+3y=7$ and $3y-7x-2=0$ as the	3	02
	regression lines? Give reasons.	~	000
	$\int dx$	5	CO3
	Evaluate $\int \frac{1}{x^2 + 1}$ by Simpson's 1/3 rd rule of integration,		
	0^{-1} -		
	correct to 3 decimal places		
	, content to 5 decimal places.		

2.

3.

4.

5.

B.TECH/IT/ODD/SEM-III/M(IT)302/R18/2020-2021

6.		Find correlation coefficient from the following table $\begin{bmatrix} x & 1 & 2 & 3 & 4 \end{bmatrix}$	5	CO3		
		y 3 6 9 11				
		$\mathbf{GROUP} - \mathbf{C}^*$				
(Long Answer Type Questions)						
		Answer any <i>three</i> from the following: 5×15=45	Marks	CO No.		
7.	(a)	Solve the system of equations using Gauss Elimination method:	8	CO3		
		2x + y + z = 3				
		x + 3y + z = -2				
		x + y + 4z = -6				
	(b)	Solve the system of equations using Gauss Seidel method, correct to 2 decimal places: 3x + y + 5z = 13, $5x - 2y + z = 4$, $x + 3z = 13$	7	CO3		
		6y - 2z = -1				
8.	(a)	Find the value of $f(2.0)$ correct up to 2 decimal places	8	CO3		
		from the following table (using Newton's Forward Interpolation Formula):				
		x: 1.9 2.1 2.3 2.5 2.7				
		f(x) 1.35 1.45 1.55 1.59 1.69				
	(b)	Compute $y(1.2)$ by Runge Kutta method of fourth order	7	CO3		
		for the differential equation				
		$\frac{dy}{dx} = 2xy, y(1) = 1, take h = 0.1$				
9.	(a)	Compute one positive root of $x^3 - 2x - 5 = 0$ correct	8	CO3		
		to two decimal places by Regula falsi method.				
	(b)	Compute one positive root of $e^x - 3x = 0$ correct to two	7	CO3		
		decimal places by method of bisection.				
10.	(a)	Find the regression lines of y on x and x on y for the sample	7	CO3		
		x 2 4 6 8 10				
		y 1 10 12 24 31				
	(b)	Fit a straight line to the following data	8	CO3		
		Year 15 16 17 18 19				
		$\begin{array}{ c c c c c } Productivity & 8 & 10 & 12 & 10 & 16 \\ \hline in Kc & & & \\ \end{array}$				
		Also find the expected production in year 21				
11.	(a)	If the sample observations are 2,4,6,8,10 from an infinite	8	CO3		
		population with variance σ^2 , determine an unbiased				
		estimate of σ^2 .				
	(b)	Prove that the sample mean is unbiased estimator of the	7	CO3		
		population mean.				