GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT 2020-2021
NUMERICAL METHODS AND STATISTICS M(IT) 302
TIME ALLOTTED: 3 HOURS
FULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable
GROUP - A
(Multiple Choice Type Questions)
Answer any ten from the following, choosing the correct alternative of each question: $\mathbf{1 0 \times 1 = 1 0}$

1. (i) Newton Raphson method fails when
(a) $f^{\prime}(x)=1$
(b) $f^{\prime}(x)=-1$
(c) $\mathrm{f}^{\prime}(\mathrm{x})=0$
(d) None of These
(ii) \quad Mode of $2,2,3,4,1,2,3,4,2,2,2,4,3,1,4,1,2,3,3,2,2,2$
(a) 2
(b) 1
(c) 3
(d) 4
(iii) Number of significant digits of 12356.1010 is
(a) 4
(b) 7
(c) 3
(d) 8

The percentage error for approximation of $4 / 3$ to 1.3333
1 is
(a) 0.0025%
(b) 25%
(c) 0.000025%
(d) 0.25%
(v)

Product of regression coefficients is
1
(a) 1
(b) -1
(c) 0.5
(d) ρ^{2}
(vi) Degree of precision of Simpson's 1/3rd Rule of $1 \quad$ CO1 Integration is
(a) 1
(b) 2
(c) 3
(d) 4

Lagrange Interpolation formula is applicable if nodes 1 are
(a) Equispaced
(b) Un equispaced
(c) Both equispaced and un equispaced
(d) None of these

Trapezoidal rule of integration is applicable when the number of equal subintervals is
(a) Even
(b) Odd
(c) Both even and odd
(d) None of these

Correlation Coefficient lies in
(a) $[-1,1]$
(b) $[0,1]$
(c) $[0,2]$
(d) None of these

Euler method for ODE has a truncation error of the order of
(a) h^{3}
(b) h^{6}
(c) h^{2}
(d) h^{5}
δ^{2} is equivalent to
(a) $\Delta \nabla$
(b) Δ / ∇
(c) $\Delta+\nabla$
(d) None of these

Gauss Elimination method is
1
(a) direct method
(b) indirect method
(c) iterative method
(d) None of These

GROUP - B*

(Short Answer Type Questions)

Answer any three from the following: $\mathbf{3 \times 5 = 1 5}$

2.
3.
4.
5.

Use Newton Raphson method to compute $\sqrt[4]{23}$, correct to 3 decimal places.
Prove that $\Delta \log f(x)=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]$
Do these two lines $2 x+3 y=7$ and $3 y-7 x-2=0$ as the regression lines? Give reasons.
Evaluate $\int_{0}^{1} \frac{d x}{x^{2}+1}$ by Simpson's $1 / 3^{\text {rd }}$ rule of integration, taking 6 equal subintervals and hence find the value of π correct to 3 decimal places.
$\begin{array}{cc}\text { Marks } & \text { CO No } \\ 5 & \text { CO3 }\end{array}$

5
CO2

5
CO 2
6.

Find correlation coefficient from the following table

$$
\left[\begin{array}{ccccc}
x & 1 & 2 & 3 & 4 \\
y & 3 & 6 & 9 & 11
\end{array}\right]
$$

GROUP - C ${ }^{*}$

(Long Answer Type Questions)

Answer any three from the following: $3 \times 15=45$
7. (a) Solve the system of equations using Gauss Elimination method:

$$
\begin{aligned}
& 2 x+y+z=3 \\
& x+3 y+z=-2 \\
& x+y+4 z=-6
\end{aligned}
$$

(b)

Solve the system of equations using Gauss Seidel method, correct to 2 decimal places:

$$
3 x+y+5 z=13,5 x-2 y+z=4, x+
$$

$6 y-2 z=-1$
8. (a)

Find the value of $f(2.0)$ correct up to 2 decimal places from the following table (using Newton's Forward Interpolation Formula):

$\mathrm{x}:$	1.9	2.1	2.3	2.5	2.7
$f(x)$	1.35	1.45	1.55	1.59	1.69

(b)

Compute $y(1.2)$ by Runge Kutta method of fourth order for the differential equation $\frac{d y}{d x}=2 x y, y(1)=1$, take $h=0.1$
9. (a)

Compute one positive root of $x^{3}-2 x-5=0$, correct to two decimal places by Regula falsi method.
(b)

Compute one positive root of $e^{x}-3 x=0$, correct to two decimal places by method of bisection.
10. (a)

Find the regression lines of y on x and x on y for the sample

x	2	4	6	8	10
y	1	10	12	24	31

(b)

Fit a straight line to the following data

Year	15	16	17	18	19
Productivity in Kg	8	10	12	10	16

Also find the expected production in year 21.
11. (a) If the sample observations are $2,4,6,8,10$ from an infinite 8 population with variance σ^{2}, determine an unbiased estimate of σ^{2}.
(b) Prove that the sample mean is unbiased estimator of the

