GURU NANAK INSTITUTE OF TECHNOLOGY
 An Autonomous Institute under MAKAUT

2020-2021
 OPERATING SYSTEMS

CS502

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable

> GROUP - A
(Multiple Choice Type Questions)
Answer any ten from the following, choosing the correct alternative of each question: $\mathbf{1 0} \times \mathbf{1}=\mathbf{1 0}$
Marks CO No

1. (i) Which one is starvation free algorithm?

1
CO3
a) Multilevel queue scheduling
b) Shortest Remaining Time First
c) Priority Algorithm
d) Round Robin
(ii) The Mode bit for user mode is-
a) 0
b) 1
c) 10
d) 11
(iii) main()
\{
fork();
fork();
printf("Hello");
\}
No of Child process will be created-
a) 3
b) 4
c) 5
d) 2
(iv) Which one is incorrect for waiting time?
a) Total time spent in ready queue
b) For pre-emptive algorithm it is equal to response time
c) Waiting time $=$ Starting time -Arrival time
d) Waiting time $=$ Turnaround time -Burst time
(v) Basic unit of CPU utilization is called
a) Process
b) Program
c) Thread
d) None of the mentioned
(vi) The Bankers algorithm is used to

1
a) Avoid deadlock
b) Prevent deadlock
c) Solve deadlock
d) Detect deadlock
(vii) Which one is not the condition for a good solution for critical section problem?
a) Mutual Exclusion
b) Progress
c) Bounded Waiting
d) Circular wait
(viii) Which one is internal fragmentation problem free technique?
a) Dynamic multiprogramming technique
b) Paging
c) First Fit algorithm
d) Best Fit algorithm
(ix) Belady's anomaly related to
a) FIFO Page replacement
b) LRU
c) Optimal Page replacement
d) None of the mentioned
(x) The smallest addressable unit in secondary memory-
a) Byte
b) Block
c) Character
d) Page
(xi) The file system NTFS stands for
a) New type file system
b) Never terminated file system
c) New technology file system
d) Non terminated file system
(xii) Priority and process id- 1
a) Both are same
b) Both are completely different.
c) Can be same
d) None of the mentioned

GROUP - B
(Short Answer Type Questions)
Answer any three from the following: $\mathbf{3 \times 5 = 1 5}$

Marks

CO No

2. (a) | Differentiate between Multiprogramming and Multitasking |
| :--- |
| Operating system. |
3. (b) What are the advantages of micro-kernel OS structure? 2
4. Let S and Q be two semaphores initialized to 1 . Now consider that P0 and P1 are two process running the following code in a multiprogramming system.

P_{0}	P_{1}
wait $(S) ;$	$\operatorname{wait}(Q) ;$
wait $(Q) ;$	$\operatorname{wait}(S) ;$

\vdots	\vdots
$\operatorname{signal}(S) ;$	$\operatorname{signal}(Q ;$
$\operatorname{signal}(Q)$	$\operatorname{signal}(S) ;$

Show that this may lead to deadlock
4. Consider the following page reference string : $1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6$ How many page faults would occur for the following replacement algorithms, assuming number of frames equal to 4 . (initially all the frames are empty)?
a) LRU
b) FCFS
5.
5. (a) What is critical section?
(b) How critical section problem can be solved using semaphore?
(b) How critical section problem can be solved using semaphore.
6. (a) Logical address space $=4 \mathrm{~GB}$, Physical address space $=64 \mathrm{MB}$, Page size $=4$ KB. Calculate- i) No of pages ii) No of frames iii) No of entries in the page table iv) Size of page table (Memory s Byte addressable).
(b) What is Boot block?

GROUP - C

(Long Answer Type Questions)
Answer any three from the following: $\mathbf{3 \times 1 5 = 4 5}$
Marks CO No.
7. (a) Write the functions of Long-term and Short-term scheduler
(b) What is bootstrap program? How is it useful?
(c)

Process No.	Arrival Time	Burst Time
P1	0	3
P2	1	5
P3	3	4
P4	4	1
P5	5	2

Using Shortest Remaining Time First algorithm answer the following questions-
i) Draw the Gantt chart
ii) Calculate throughput of the system.
iii) Calculate Average Turnaround Time
iv) Calculate Average Waiting Time
v) Calculate Average Response Time
8. (a) Write a solution for Dining philosopher's problem.
(b) What are the significances of Resource allocation graph?
(c) Consider the following snapshot of a system:

	Allocation	Max	Available
	A B C D	A B C B	AB C D
P0	0012	0012	1520
P1	1000	1750	
P2	1354	2356	
P3	0632	0652	
P4	0014	0656	

i) What is the content of matrix need?
ii) Is the system in a safe state?
iii) If a request from process P1 arrives for ($0,4,2,0$) can the request be granted immediately?
9. (a) What is seek time and rotational latency?

2 CO 3
(b) Consider a disk Queue with request for two blocks on cylinder $23,89,132,42,187$. There are 200 cylinders numbered from 0 - 199. The disk head starts at number 100. Find out the total disk head movement for FCFS, SSTF, SCAN, C-SCAN and LOOK scheduling.
(c) Explain Programmed I/O

CO4
10. (a) What is virtual memory concept? 3
(b) What is page fault? 3 CO3
(c) Optimal page replacement algorithm is an efficient algorithm 3 CO4 but impossible to implement-explain.
(d) What is Race condition and busy waiting? What are the 6 CO4 benefits of multithreaded programming?
11. Write short notes (Any Three)
(a) Dual mode operation in Operating systems $\quad 5 \quad$ CO1
$\begin{array}{lll}\text { (b) Context Switching } & 5 & \mathrm{CO} 2\end{array}$
(c) Fragmentation problem $\quad 5 \quad$ CO3
(d) Deadlock prevention $\quad 5 \quad$ CO4
(e) Multilevel feedback queue scheduling algorithm $\quad 5 \quad \mathrm{CO} 3$

