GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT
2020-2021
Physics - II (Backlog)
PH301
TIME ALLOTTED: 3 HOURS
FULL MARKS: 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable

GROUP - A
 (Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: $\quad \mathbf{1 0 \times 1 = 1 0}$
Marks CO No

1. i) The number of possible arrangements of two fermions in 3 cells1CO1 is
a. 9
b. 6
c. 3
d. 1
ii) Quantum dot is a
1
CO1
a. 1-D structure
b. 2-D structure
c. 0-D structure
d. Bulk
iii) In a region of constant potential
1
a. the electric field is uniform.
b. the electric field is zero.
c. there can be no charge inside the region.
d. both (b) and (c) are correct.
iv) In three dimension the momentum operator is
1
a. $\mathbf{p}=-\frac{\hbar}{i} \nabla$
b. $\mathbf{p}=-\frac{i \hbar}{\nabla}$
c. $\mathbf{p}=\frac{\hbar}{i} \nabla$
d. $\mathbf{p}=\frac{\hbar}{i}$
v) Hall effect cannot be observed in
a. conductor
b. insulator
c. semiconductor
d. any one of these
vi) Which of the following materials show 1-D confinement?

1
CO1
a. CNT
b. Graphene
c. Graphite
d. Fullerene
vii) Commutator bracket of of $[x, p]$ is
a. $+\mathrm{i} \hbar$
b. - iћ
c. -1
d. +1
viii) In free space, the Poisson equation becomes
a. Maxwell equation
b .Ampere equation
c. Laplace equation
d. Steady state equation
ix) Phonon obeys

1
CO1
a. MB statistics
b. BE statistics
c. FD statistics
d. Classical statistics
x) RAM is a
a. primary storage device
b. magnetic storage device
c. Semiconductor storage device
d. Optional storage device
xi) $\quad \nabla . B=0$ indicates that

1
CO1
a. magnetic monopole does exist in nature
b. nothing can be concluded about magnetic poles
c. magnetic monopole does not exist in nature
d. none of these
xii) A material with one dimension in Nano range and the other two

1
CO1 dimensions are large is called
a. Micro-material
b. Quantum wire
c. Quantum well
d. Quantum dot

GROUP - B

(Short Answer Type Questions)
Answer any three from the following: $\mathbf{3 \times 5 = 1 5}$
2. a) Estimate value of is $\left[\begin{array}{c}\hat{\partial}, \frac{\partial}{\partial x}\end{array}\right]$
b) Calculate expectation value of linear momentum $\langle p\rangle$ for $\psi(x)=\sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}, 0<|x|<\mathrm{L}$ and $\psi(x)=0|x|>\mathrm{L}$.
3. a) What is Ampere's circuital law. Obtain its differential form.

3
b) What is the limitation of it? How is it corrected? 2
4. a) Find the state of polarization when x - and y - components of 4 electric fields are
(i) $\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{0} \sin (\omega \mathrm{t}+\mathrm{kz})$ and $\mathrm{E}_{\mathrm{y}}=\mathrm{E}_{0} \cos (\omega \mathrm{t}+\mathrm{kz})$
(ii) $\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{0} \cos (\omega \mathrm{t}+\mathrm{kz})$ and $\mathrm{E}_{\mathrm{y}}=\left(\mathrm{E}_{0} / \sqrt{ } 2\right) \cos (\omega \mathrm{t}+\mathrm{kz}+\pi)$
b) State Brewster's law
5. a) Interpret the physical importance of the Fermi Dirac distribution function at $\mathrm{T}>0 \mathrm{~K}$.
b) A particle of mass m is moving along $+x$ axis from $0<x$ towards $\mathrm{x}>0$ and faces a finitely high potential energy barrier of height $\mathrm{V}(\mathrm{x})=\mathrm{V}_{0}$ at $\mathrm{x}=0 . \mathrm{V}(\mathrm{x})=0$ for $\mathrm{x}<0$ and $\mathrm{V}(\mathrm{x})=\mathrm{V}_{0}$ for $\mathrm{x} \geq 0$. If energy of the particle, E is less than V_{0} is it possible for the particle to be present in region $x \geq 0$? If yes how and what is the name of this effect.
6. a) Prove that the first excited state of a free particle in cubical box has three fold Degeneracy
b) Show that $(1+\mathrm{d} / \mathrm{dx})^{2}=1+2 \mathrm{~d} / \mathrm{dx}+\mathrm{d}^{2} / \mathrm{dx}^{2}$

GROUP - C

(Short Answer Type Questions) Answer any three from the following: $\mathbf{3 \times 1 5 = 4 5}$
7. a) A particle of mass m is moving along $+x$ axis and is restricted to move between $x=0$ and $x=a$, there two infinitely high potential energy barrier at $x=0$ and $x=a$
b) Also obtain corresponding energy eigen values.
c) Plot the ground state and $1^{\text {st }}$ excited state of the system.
d) In ground state find out the average position of the particle.
e) State the area of application of superposition principle of Quantum Mechanics
8. a) Explain Fermi Distribution Function at zero and non zero temperatures (with figure).
b) Find out the numbers of possible arrangements of 3 particles in 3 shells according to
I. MB statistics
II. BE statistics
III. FD statistics
c) Write down the expression of Pauli spin matrices.
monopole exist.
b) If the vector potential $\mathbf{A}=\left(x^{2}+y^{2}-z^{2}\right) \mathbf{j}$ at position (x,y,z) find the magnetic field at $(2,2,2)$.
c) Starting from Maxwell's equations in a charge free medium, 4 CO 2 obtain the wave equations for magnetic field.

B.TECH/CSE/ODD/SEM-III/PH301/R16/2020-2021

d) Using the plane wave solution, show that e.m. wave is 5 CO2 transverse in character.
10. a) Find out the expression for potential drop and electric field 6 CO 2between two plates of a parallel plate capacitor.
b) Write down Gauss's law in electrostatics and derive its 4 CO2differential form.
c) What is Hall effect? Which force is playing important roll in 4 CO2 this effect?
d) What is bit?CO 2
11. a) Explain the term electric flux What are the dimension and 3 CO2unit of it?
b) For an electric potential $V(x, y, z)=\frac{1}{\sqrt{2 x^{2}+4 y^{2}+3 z^{2}}}$ calculate 4 4 CO2the electric field at $(1,1,1)$
c) Estimate electric field of cylindrical sphere capacitor applying 6 CO3 Laplace equation
(i) outside the sphere
(ii) on the surface of the sphere
(iii) in side the sphere.
d) Express Gauss's law in differential form. Explain its physical 2 CO 2 significance

