GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 Physics - II PH301

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

			Marks	CO No
1.	i)	The number of possible arrangements of two fermions in 3 cells	1	CO1
		is		
		a. 9		
		b. 6		
		c. 3		
	••	d. 1		2 04
	ii)	Quantum dot is a	1	CO1
		a. 1-D structure		
		b. 2-D structure		
		c. 0-D structure		
	:::)	d. Bulk	1	CO1
	iii)	In a region of constant potential a. the electric field is uniform.	1	COI
		b. the electric field is zero.		
		c. there can be no charge inside the region.		
		d. both (b) and (c) are correct.		
	iv)	In three dimension the momentum operator is	1	CO1
	11)		1	001
		a. $\mathbf{p} = -\frac{\hbar}{i} \nabla$		
		b. $\mathbf{p} = -\frac{i\hbar}{\nabla}$		
		_		
		c. $\mathbf{p} = \frac{\hbar}{i} \nabla$		
		d. $\mathbf{p} = \frac{\hbar}{i}$		
	v)	Hall effect cannot be observed in	1	CO1
	,	a. conductor		-
		b. insulator		
		c. semiconductor		
		d. any one of these		

B.TECH/CSE/IT/ODD/SEM-III/PH301/R18/2020-2021

:)	William of the fall and a material advantation of the second	1	CO 1
vi)	Which of the following materials show 1-D confinement?	1	CO1
	a. CNT		
	b. Graphene		
	c. Graphite		
::)	d. Fullerene	1	CO4
vii)	Commutator bracket of of $[x, p]$ is	1	004
	a. +iħ b iħ		
	c1 d. +1		
::)		1	CO1
viii)	In free space, the Poisson equation becomes	1	COI
	a. Maxwell equation		
	b.Ampere equation		
	c. Laplace equationd. Steady state equation		
ix)	Phonon obeys	1	CO1
IX)	a. MB statistics	1	COI
	b. BE statistics		
	c. FD statistics		
	d. Classical statistics		
x)	RAM is a	1	CO1
л)	a. primary storage device	1	COI
	b. magnetic storage device		
	c. Semiconductor storage device		
	d. Optional storage device		
xi)	∇ .B=0 indicates that	1	CO1
<i>(</i> ()	a. magnetic monopole does exist in nature	1	001
	b. nothing can be concluded about magnetic poles		
	c. magnetic monopole does not exist in nature		
	d. none of these		
xii)	A material with one dimension in Nano range and the other two	1	CO1
	dimensions are large is called		
	a. Micro-material		
	b. Quantum wire		
	c. Quantum well		
	d Quantum dot		

d. Quantum dot

2.

GROUP – B

(Short Answer Type Questions) Answer any *three* from the following: 3×5=15

		Marks	CO No
a)	Estimate value of is $\begin{bmatrix} & & \\ x, & \frac{\partial}{\partial x} \end{bmatrix}$	2	CO2
b)	Calculate expectation value of linear momentum $_{\langle p \rangle}$ for	3	CO2
	$\psi(x) = \sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}$, $0 < x < L$ and $\psi(x) = 0 x > L$.		

B.TECH/CSE/IT/ODD/SEM-III/PH301/R18/2020-2021

3.	a)	What is Ampere's circuital law. Obtain its differential form.	3	CO1
	b)	What is the limitation of it? How is it corrected?	2	CO2
4.	a)	Find the state of polarization when x- and y- components of electric fields are (i) $E_x = E_0 \sin (\omega t + kz)$ and $E_y = E_0 \cos (\omega t + kz)$ (ii) $E_x = E_0 \cos (\omega t + kz)$ and $E_y = (E_0 / \sqrt{2}) \cos (\omega t + kz + \pi)$	4	CO2
	b)	State Brewster's law	1	CO1
5.	a)	Interpret the physical importance of the Fermi Dirac distribution function at T>0K.	3	CO 3
	b)	A particle of mass m is moving along +x axis from 0 <x <math="" towards="">x>0 and faces a finitely high potential energy barrier of height $V(x)=V_0$ at $x = 0$. $V(x) = 0$ for $x<0$ and $V(x) = V_0$ for $x \ge 0$. If energy of the particle, E is less than V_0 is it possible for the particle to be present in region $x \ge 0$? If yes how and what is the name of this effect.</x>	2	CO 2
6.	a)	Prove that the first excited state of a free particle in cubical box has three fold Degeneracy	3	CO 2
	b)	Show that $(1+d/dx)^2 = 1+2d/dx+d^2/dx^2$	2	CO 3

GROUP – C

(Short Answer Type Questions) Answer any *three* from the following: 3×15=45

		This wer any <i>unce</i> from the following. 5×10–40		
			Marks	CO No
7.	a)	A particle of mass m is moving along $+x$ axis and is restricted to move between x=0 and x=a, there two infinitely high potential energy barrier at x= 0 and x=a	5	CO 1
	b)		2	CO 1
		Also obtain corresponding energy eigen values.		
	c)	Plot the ground state and 1 st excited state of the system.	3	CO2
	d)	In ground state find out the average position of the particle.	3	CO2
	e)	State the area of application of superposition principle of Quantum Mechanics	2	CO2
8.	a)	Explain Fermi Distribution Function at zero and non zero temperatures (with figure).	4	CO1
	b)	Find out the numbers of possible arrangements of 3 particles in 3 shells according to I. MB statistics II. BE statistics	8	CO1
		III. FD statistics		
	c)	Write down the expression of Pauli spin matrices.	3	CO 2
9.	a)	Using Biot-Savart's law, show that no isolated magnetic monopole exist.	4	CO1
	b)	If the vector potential $\mathbf{A} = (x^2 + y^2 - z^2) \mathbf{j}$ at position (x, y, z) find the magnetic field at (2, 2, 2).	2	CO2
	c)	Starting from Maxwell's equations in a charge free medium, obtain the wave equations for magnetic field.	4	CO2

B.TECH/CSE/IT/ODD/SEM-III/PH301/R18/2020-2021

	d)	Using the plane wave solution, show that e.m. wave is transverse in character.	5	CO2
10.	a)	Find out the expression for potential drop and electric field between two plates of a parallel plate capacitor.	6	CO2
	b)	Write down Gauss's law in electrostatics and derive its differential form.	4	CO2
	c)	What is Hall effect? Which force is playing important roll in this effect?	4	CO2
	d)	What is bit?	1	CO2
11.	a)	Explain the term electric flux. What are the dimension and unit of it?	3	CO2
	b)	For an electric potential $V(x, y, z) = \frac{1}{\sqrt{2x^2 + 4y^2 + 3z^2}}$ calculate	4	CO2
		the electric field at (1,1,1)		
	c)	Estimate electric field of cylindrical sphere capacitor applying Laplace equation (i) outside the sphere	6	CO3
		(ii) on the surface of the sphere		
	d)	(iii) in side the sphere. Express Gauss's law in differential form. Explain its physical significance	2	CO2