GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2020-2021 PROCESS CONTROL SYSTEM EI(FT)701B

TIME ALLOTTED: 3 Hrs

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

Answe	er any <i>ten</i> from the following, choosing the correct alternative of each ques	stion: 1 Marks	0×1=10 CO No
1(i)	Transfer function of a system is defined as	1	CO1
	a) Output/ Input		
	b) Input/Output		
	c) Laplace transform of Output/Laplace transform of Input when all		
	d) Longage transform of Langut /Longage transform Output of when all		
	a)Laplace transform of input/Laplace transformOutput of when an initial conditions are zero		
(;;)	Which of the following controllers has maximum offset	1	CO^{2}
(11)	a) P controller	1	02
	b) PD controller		
	c) PID controller		
	d) I controller		
(iii)	Tight shut off is not present in	1	CO4
~ /	a) single seated valve		
	b) double seated valve		
	c) butterfly valve		
	d) gate valve		
(iv)	Reset rate is another term used for time	1	CO2
	a) derivative		
	b) integral		
	c) dead		
	d) none of these		
(v)	What is the type of a system whose transfer function is	1	CO1
	$G(S) = 5/S^2(S^2 + 5S + 6)$		
	a) Type 0, Order 2		
	b) Type 2, Order 2		
	c) Type 2,Order 4		
 	d) Type 1,Order 4	1	000
(vi)	Which controller cannot be used alone	1	CO2
	a) P controller		
	D) I Controller		
	c) D Controller		
	u) All of these		

BTECH/FT/ODD/SEM-VII/EI(FT)701B/R16/2020-2021

(vii)	 Stabilization time is minimum in a) I controller b) PD controller c) PID controller 	1	CO2
(viii)	d) PI controller Find the total transfer function of the system.	1	CO1
	$R(s) \longrightarrow G1 \longrightarrow G2 \longrightarrow G5 \longrightarrow C(s)$ $G3 \longrightarrow G4 \longrightarrow G4$		
	a) (G1.G2 - G3.G4).G5		
	b) (G1.G2 + G3) - G4.G5		
	c) $(G1 + G2).G3 + (G4 + G5)$		
(\cdot, \cdot)	d) $G1.G2 + G3.G4 - G5$	1	004
(1X)	v-port type valve is used for	1	004
	a) decreasing sensitivity		
	a) linear sonsitivity		
	d) all the above		
(\mathbf{x})	Bevelled disc type value is used for	1	CO4
(11)	a) decreasing sensitivity	1	001
	b) increasing sensitivity		
	c) linear sensitivity		
	d) all the above		

GROUP – B (Short Answer Type Ouestions)

(Answer any <i>three</i> of the following)	3 x 5 = 15	
	Marks	CO No
Plot the graph of a PI controller output as a function time. The error	5	CO2
to the controller is shown in fig. Kp=5, KI=1.0 s-1, PI(0)=20%.		

2.

3.

Plot the graph of a PI controller output as a function time. The error to 5 CO2 the controller is shown in fig. Kp=5, KI=1.0 s-1, PI(0)=20%.

4. Find the overall Transfer of the system.

CO1

5

- 5. "Actuator power required for a single seated valve is greater than the double seated valve". Justify the statement with proper diagram.
 6. Design an electronic integral controller of input range 6V, an output 5 CO 2
- 6. Design an electronic integral controller of input range 6V,an output 5 CO 2 of 5V and KI of 3.0%/%-min

GROUP – C

(Long Answer Type Questions)

	(Answer any <i>three</i> of the following)	3 x 15 = 45	
		Marks	CO No
7.a)	What are the operational aspects of instrument system?	5	CO1
7.b)	Find out the overall transfer function of the system using block diagram reduction algebra	7	CO1

- 7.c)For the transfer function given below find out3CO1i) poles & zeros of the systemii) order & type of the system $G(S)=(S^2+1)/S(S^2+3S+2)(S+6)$ 78. a)A water tank is gradually losing heat and its temperature drops by7CO2
- 2° K per minute. When the heater is on, the system gains temperature at 4° K per minute. A two position controller has a .5 minute control lag and a neutral zone of $\pm 4\%$ about a set point of 323° K. Plot the temperature versus time graph and find the oscillation period. Assume at t=0, temperature is at set point and the heater is off
- 8. b) What is rangeability? Explain the cavitation and flashing phenomena 5 CO4 with the help of a diagram.

BTECH/FT/ODD/SEM-VII/EI(FT)701B/R16/2020-2021

8. c) Calculate Cv&Kv of the valve for the system shown in figure which 3 CO4 regulates the flow of glycerine. Specific gravity of glycerine is 1.4.

9. a)	What is a Feed forward system, explain briefly. What are the advantages and disadvantages of the system?	5	CO3
9. b)	What is Cascade Control? Explain with example.	5	CO3
9. c)	Explain one Scheme of Ratio Control& its application.	5	CO3
10.a)	Why valve- positioner is required with an actuator? Explain the operating principle of a valve positioner.	7	CO4
10. b)	What is valve sizing? Define Cv and Kv.	5	CO4
10.c)	A valve with a Cv rating of 4.0 is used to throttle the flow of glycerine for which specific gravity relative to error (G) is 1.26. Determine the maximum flow through the valve.	3	CO4
11.	Write short notes on any three:	3x5	
11.a)	Spring actuator with positioner	5	CO4
11.b)	Ratio Control	5	CO3
11.c)	Feedforward control	5	CO3
11.d)	Solenoid as actuator	5	CO4
11.e)	Safety valve	5	CO4