GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT 2020-2021

UNIT OPERATION OF CHEMICAL ENGINEERIN II FT504 A

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following choosing the correct alternative of each question: $10 \times 1 = 10$

Answ	er any ten from the following, choosing the correct alternative of each	question: Marks	10×1=10 CO No
1(i)	Molecular diffusion is caused by	1	CO1
	a) transfer of molecules from low concentration to high		
	concentration region		
	b) activation energy of the molecules		
	c) potential energy of the molecules		
	d) transfer of molecules from high concentration to low		
	concentration region		
1 (ii)	Tea percolation employs	1	CO 2
	a) liquid-liquid extraction		
	b) leaching		
	c) absorption		
	d) none of these		
1(iii)	Milk is dried usually in a	1	CO 3
	a) freeze drier		
	b) spray drier		
	c) tray drier		
	d) rotary drier .		
1 (iv)	For total reflux in distillation the slope of the operating line for	1	CO4
	rectifying section is		
	a) 0		
	b) 1		
	c) <1		
	d) >1		
1(v)	In the constant rate period of the rate of drying curve for batch	1	CO3
	drying		
	a) cracks develop on the surface of the solid,		
	b) rate drying decreases abruptly,		
	c) surface evaporation of free moisture occurs		
	d) none of these.		
1(vi)	The ratio of number of moles of species A to the total number of	1	CO1
	moles of the mixture is known as		
	a) Mole fraction		
	b) Mass fraction		
	c) Partial pressure		
	d) Mass density		

B. TECH/FT/ODD/SEM-V/FT504A/R18/2020-2021

1(vii)	Which of the following assumes constant molal vaporization and overflow?	1	CO 3
	a) McCabe Thiele method		
	b) Ponchan- Savarit Method c) Enthalpy concentration method		
	c) Enthalpy concentration methodd) Plate absorption column.		
1(viii)	When the liquid phase and vapor phase of a binary system obeys	1	CO2
	Raoult's and Dalton's law respectively, the relative volatility		
	is the ratio ofa) vapor pressure of component A to that of component B		
	a) vapor pressure of component A to that of component Bb) vapor pressure of component A to the total pressure.		
	c) vapor pressure of component A to the partial pressure of A		
	d) partial pressure of component A to the total pressure.		
1 (ix)	The dimension of diffusion coefficient is given by	1	CO1
	a) M L T $^{-2}$		
	b) L ² T ⁻¹ c) L T ⁻¹		
	d) M L ⁻² T		
1(x)	The composition of substances in the extraction are represented by	1	CO4
、 /			
	a) Rectangle		
	b) Isosceles triangle		
	c) Equilateral triangled) None of the mentioned		
1 (xi)	Liquid-liquid mixture is separated with solvent extraction by adding	1	CO4
1 (AI)	solvent.	1	001
	a) Soluble		
	b) Insoluble		
	c) Partially soluble		
1(v;;)	d) All of the mentioned	1	CO2
1(xii)	How does packing the column help? a) Lessens the mass transfer	1	CO2
	b) Increases the mass transfer by not breaking the large drops		
	c) Decreases the interfacial area		
	d) Increases the mass transfer by breaking the large droplets thus		
	increasing interfacial area		
	GROUP – B (Short Answer Type Questions)		
	(Answer any three of the following) $3 \times 5 = 1$	5	
		Marks	CO No
2.(a)	Explain Fick's 1 st law of diffusion.	2	CO2
2.(b)	NH ₃ gas (A) diffuses through N ₂ gas (B) at steady state condition	3	CO3
	with N_2 gas as non diffusing. At point 1 the partial pressure of		
	NH ₃ is p_A = 1.5 × 10 ⁴ pa & at point 2 p_A = 5 × 10 ³ pa . The total pressure is 1.01 × 10 ⁵ pa & temperature 298 K . At this		
	temperature & pressure the value of diffusivity is $2.30 \times 10^{-5} \text{ m}^2/\text{S}$.		
	The diffusing path is 0.15m.		
	Calculate the flux of NH ₃ at steady state.		
3.	Show that for binary gas mixture, the diffusivity of A in B equals to	5	CO2
	the diffusivity of B in A i. e. $D_{AB} = D_{BA}$		

B. TECH/FT/ODD/SEM-V/FT504A/R18/2020-2021

4.	Explain the dew point and bubble poin diagram with graphical interpretation	5	CO3
5. 6.(a)	Explain surface renewal theory for mass transfer with diagram. Find the partial pressure of A if the total pressure is 2 atm; Concentration of A is 2 mol/cu.m and total concentration is 5 mol/cu.m.	5 2	CO1 CO2
6.(b)	Describe the phenomena of absorption and stripping with suitable examples	3	CO2
	GROUP - C		
	(Long Answer Type Questions) (Answer any <i>three</i> of the following) $3 \times 15 = 45$		
		Marks	CO No
7.(a)	Define reflux ratio	3	CO1
7.(b)	A feed of 50mole% hexane and 50 mole% octane is fed into a pipe still through a pressure reducing valve and then flash disengaging chamber. The vapour and liquid leaving the chamber assumed to be	12	CO3
	$\begin{bmatrix} X & 1. & 0.6 & 0. & 0.19 & 0.0 & 0.0 \\ 0 & 9 & 4 & 45 & 0.0 & $		
	Y 1. 0.9 0. 0.54 0.1 0.0 composition of the top and bottom products. The		
	equilibrium data for this system:		
8.(a)	Derive the expression of no. of theoretical stages for liquid-liquid extraction in case of co-current contact with immiscible solvents.	5	CO4
8.(b)	100kg/h of a nicotine-water solution containing 0.01 wt. fraction nicotine is extracted with 150kg/h of kerosene containing 0.0006 wt. fraction nicotine in counter current stage column. The concentration of nicotine is 0.001 wt. fraction in the exit water. Determine the no. of theoretical stages required for the above separation. The equilibrium data for the above system is as follows: X: 0.001 0.0025 0.005 0.0075 0.0099 Y: 0.00058 0.0019 0.0046 0.0069 0.0091	10	CO3
9.(a)	X= kg of nicotine/kg of water, Y= kg of nicotine/kg of kerosene Describe the triangular diagram in case of ternary liquid-liquid extraction system.	8	CO4
9.(b)	Explain the interphase mass transfer with diagram.	7	CO3
10.(a)	A gas mixture containing 0.015 mole fraction of solute S at the inlet (and the rest inerts) is subjected to counter-current absorption with water in a packed tower. The outlet concentration of the solute is to be 1% of the inlet value. The total gas inlet flow rate is 1.0 kg/m^2 .s (MW = 29) and the pure water entering is 1.6 kg/m^2 .s. The system can be considered as dilute. The equilibrium condition can be described by Henry's Law and is given as $y = 1.75 \text{ x}$, where y and x are the mole fraction of solute S in the vapour and liquid respectively. The column uses a certain type of packings which provides an overall gas-phase mass transfer	10	CO2

B. TECH/FT/ODD/SEM-V/FT504A/R18/2020-2021

	coefficient (K _Y a) of 0.06 kg-mole/(m ³ .s.mole fraction). Determine the height of packings required for the separation		
10.(b)	Explain the terms number of gas transfer unit (N _{OG}) and number of	5	CO2
	liquid transfer unit (N _{OL}) with formula.		
11.(a)	Define relative volatility	3	CO3
` ′	·		
11.(b)	100 moles of Benzene (A) and Toluene mixture containing 50% (mole) of Benzene is subjected to a differential distillation at atmospheric pressure till the composition of benzene in the residue is 33%. Calculate the total moles of the mixture distilled. Average relative volatility may be assumed as 2.16	12	CO3