GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT 2022-2023

ADVANCED ENGINEERING MATHEMATICS PGCSE102

TIME ALLOTTED: 3 HOURS

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

			Marks	CO No
1.	(i)	Order of convergence of Newton Raphson method is a) 1 b) 2 c) 0 d) 1.62	1	COI
	(ii)	For a perfect matching the corresponding graph should be a) Tree b) Bipartite graph c) Complete Graph d) None of these		C02
	(iii)	Number of significant digits of 100200 is a) 2 b) 4 c) 3 d) 6	1	CO2
	(iv)	In a Poisson distribution if $2P(x = 1) = P(x = 2)$, then the variance is a) 1 b) -1 c) 4 d) 2	1	CO4
	(v)	If α is an eigen vector of the matrix A corresponding to the eigen value k if a) $A\alpha = k^2\alpha$ b) $A\alpha = \alpha$ c) $A\alpha - k\alpha = 0$ d) None of these	1	CO2
	(vi)	A system of linear equations be solved by a) LU- method b) SOR method c) Gauss Seidel Method d) All of these	1	COI

M.TECH/CSE/ODD/SEM-I/PGCSE102/R21/2022-23

(vii)		1	CO2
(VII)	$+(M/M/1: \infty / FIFO)$ queue model with arrival and service rate λ and		CO2
	μ ($\lambda < \mu$) respectively, then the 'Average length of the non-empty		
	queue' [E(m/m>0)] is given by		
	a) $\lambda/(\mu-\lambda)$		
	b) $\mu/(\mu-\lambda)$ c) $1/(\mu-\lambda)$ d) $1/(\lambda-\mu)$		
	$1/(\mu - \lambda)$		
	c) 1/(1 - w)		
	d) $1/(\lambda - \mu)$		
(viii)	Chromatic number of K_7 is	1	CO2
	a) 7		
	b) 6		-
	c) 5		
	d) None of these		
(ix)	Choose the correct statement	1	CO2
	a) every trail is a path		
	b) every walk is a trail		
	c) path is a open walkd) every vertex cannot appear twice in a walk		
	d) every vertex cannot appear twice in a wark		
7 ×	The function $f(z) = \frac{e^{z^2}}{z^4}$ has	1	COI
(x)	The function $f(z) = \frac{1}{z^4}$ has		
	a) an essential singularity at $z = 0$.		
	b) b) a pole of order 4 at $z = 0$.		
	c) a simple pole at $z = 0$.		
	d) no singularity at $z = 0$.		
(xi)	Let A be an orthogonal matrix, then	1	C01
	a) a) $\det A = 0$		
	b) $\det A = \pm 1$		
	c) $\det A = 2$		
	d) none of these		
(xii)	The residue of $\frac{z^2}{z^2+3^2}$ at $z=3i$ is	1	CO2
	a) $\frac{3}{2}$		
	a) $\frac{-3i}{2}$ b) $\frac{3i}{2}$		
	c) 3		
	d) none of these		
	GROUP - B		
	(Short Answer Type Questions) Answer any <i>three</i> from the following: 3×5=15		
		Marks	CO No.

places.

Use Newton Raphson method to compute $\sqrt[5]{20}$, correct to 3 decimal

5

CO3

M.TECH/CSE/ODD/SEM-I/PGCSE102/R21/2022-23

3		The matrix A is invertible if and only if every eigen value is nonzero.	5	CO2
4.		The marks obtained by 1000 students to a semester examination are found be approximately normally distributed with mean 70 and standard deviation 5. Estimate the number of students whose marks will be between 60 and 75 both inclusive. [Given that area under normal curve between z=0 and z=1 is 0.3413 and between z=0 and z=2 is 0.4772]	5	CO3
5		Established the Chapman-Kolmogorov equation	5	CO2
		$p_{jk}^{(m+n)} = \sum_{r} p_{rk}^{(n)} p_{jr}^{(m)} = \sum_{r} p_{jr}^{(m)} p_{rk}^{(n)}$		
6.		Use Stirling's formula to compute y(0.35) from the following table:	5	CO3
		x 0.1 0.2 0.3 0.4 0.5 y 2.9456 2.5292 2.9643 3.3899 3.8904		
		GROUP - C		
		(Long Answer Type Questions)		
		Answer any <i>three</i> from the following: 3×15=45		
			Marks	CO No.
7.	(a)	The probability density of a continuous distribution is given by	5	CO4
	(b)	$f(x) = \frac{3}{4}x(2-x)$, $0 < x < 2$. Compute mean and variance Consider the Markov chain having transition probability matrix (t.p.m.) draw transition graph of Markov chain	5	CO3
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		3 0 3 0 0 0		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		-3 $\begin{bmatrix} 2 & 0 & 3 & 0 & 0 & 0 \end{bmatrix}$		
		$-4 \begin{bmatrix} 5 & 5 \\ -1 & 1 & 1 & 1 \end{bmatrix}$		
		0 4 4 0 4		
		$0 \ 0 \ 0 \ 0 \ \frac{1}{2} \ \frac{1}{2}$		
		$6 \left(0\ 0\ 0\ 0\ \frac{1}{4}\ \frac{3}{4}\right)$		
		4 4)		
	(c)	1	5	CO3
		Expand the function $f(z) = \frac{1}{(z-1)(z-2)}$ between the annular		
		region $ z =1$ and $ z =2$.		
8.	(a)	Find $y(1.4)$ from the following table	8	CO3
		x: 0.00 0.50 1.00 1.50 2.00 2.50 3.00		
		y: 0.104 0.195 0.344 0.439 0.479 0.595 0.699		
	(b)	By using Bessel's formula correct to three decimal places.	7	CO3
	(0)	Find the chromatic polynomial of K_5 .		C () 3

M.TECH/CSE/ODD/SEM-I/PGCSE102/R21/2022-23

For Steady-State (M/M/I) Model prove that CO₂ (a) $p_0 = (1 - \rho)$ $p_n = p_0 \rho^n = (1 - \rho) \rho^n$ A self service store employs one cashier at its counter 8 customer arrive on an average every 5 minutes while the cashier can serve 10 customers in the same time. Assuming Poisson distribution for arrival and exponential distribution for service rate, determine: i. Average number of customers in the system ii. Average time a customer spends in the system (b) Find chromatic polynomial of any tree having n vertices CO₃ Consider the matrix $A = \begin{pmatrix} \dot{e} & 2 & 0 & 1 \\ \dot{e} & 5 & 3 & a \\ \dot{e} & 4 & -2 & -1 \\ \dot{u} & 4 & 4 \\ \dot{e} & 4 & -2 & -1 \\ \dot{u} & 4 & 4 \\ \dot{u$ 10. (a) CO2 Find all values of 'a' which will prove that A has eigenvalues 0, 3, and (b) CO₂ If $\{\alpha,\beta,\gamma\}$ be a basis of a real vector space V. Prove that the set $\{\alpha+\beta+\gamma,\beta+\gamma,\gamma\}$ is a basis of V. Examine if the set of vectors $\{(2,1,1),(1,2,2),(1,1,1)\}$ is basis in \mathbb{R}^3 5 (c) CO₃ 11. Write Hall's marriage theorem. 15 CO3 Define SDR (system of distinct representatives) with example. Consider the family of four finite sets $S = \{A_1, A_2, A_3, A_4\}$ where $A_1 = \{a, b, d, e\}, A_2 = \{b, c, d, e, f\}, A_3 = \{c, f\}, A_4 = \{b, e, f\}$ Show whether S satisfies the marriage condition. If yes, find two valid SDR of S.