- 74/6/22

GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2022

FORMAL LANGUAGE AND AUTOMATA THEORY CS403

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: 10×1=10

1. (i)	Choose the correct option.	Marks	CO No
	a) FSM can accept strings of Regular Language but not Context Free		
	Language b) FSM can accept strings of Context Free Language but not Regular		
	Language		
	 FSM can accept strings of Both Regular Language and Context Free Language 		
	d) Both PDA and FSM can accept strings of Context Sensitive		
	Language		
(ii)	The Regular Expression representing the set of all strings over $\Sigma = \{0,1\}$	1	CO2
	starting with 0 and ending with 01 is		
	a) 0*(0+1)*01		
	b) 0(0+1)*01 c) 001(0+1)*		
	d) (0+1)*001		
(iii)	Which of the following is NOT equivalent to (P*Q*)*?	1	CO3
(111)	a) (P+Q)*	1	COS
	b) (P*+O*)*		
	c) (P+Q*)*		
	d) (P*Q)*		
(iv)	The set of all strings over the alphabet $S = \{a, b\}$ (including ε) is denoted	1	CO ₃
	by		
	a) $(a + b)^*$		
	b) $(a + b)^+$		
	c) a+b ⁺		
	d) a*b*		
(v)	A Push down automaton is different from a finite automaton because of	1	CO3
	a) a read head		
	b) a memory in the form of stack		
	c) a set of states		
	d) all of these		

B.TECH/CSE/EVEN/SEM-IV/CS403/R18/2022

(vi)	Consider L = { a ⁿ b ⁿ n>=1 } , L is a) CFL but not Regular b) CSL but not CFL c) Regular d) Any Type	1	CO2
(vii)	Type 0 is accepted by a) Linear bounded Automata b) Push down automata c) Finite state automata d) Turing machine	1	CO3
(viii)	Which is NOT a part of the mechanical diagram of 'Turing Machine'? a) Input tape b) read-write head c) Finite Control d) Stack	1	CO3
(ix)	Maximum no of states of a DFA converted from a NFA with n states is a) n b) n ² c) 2 ⁿ d) None of these	1	CO3
(x)	The class of regular language is NOT closed under a) Concatenation b) Union c) Kleene closure d) Subset	1	CO4
(xi)	The string 1101 does not belong to the set represented by a) 110*(0+1) b) 1(0+1)*101 c) (10)*(01)*(00+11)* d) (00+(11)*01)*	1	CO3
(xii)	The following transitions represent δ (q0, a, Z0) = (q0, aZ0) δ (q0, a, a) = (q0, aa) δ (q0, b, a) = (q1, ϵ) δ (q1, b, a) = (q1, ϵ) δ (q1, ϵ , Z0) = (q1, ϵ) a) acceptance of L = {a ⁿ b ⁿ , n≥1} without empty stack b) acceptance of L = {a ⁿ b ⁿ , n≥0} with empty stack c) acceptance of L = {a ⁿ b ⁿ , n≥1} with empty stack d) acceptance of L = {a ⁿ b ⁿ , n≥1} with empty stack	1	CO4
	GROUP – B (Short Answer Type Questions) Answer any three from the following: 3×5=15	Manda	CON
(a)	Construct a CFG for palindrome of binary numbers.	Marks 3	CO No
(b)	Construct a context-free grammar for the language $L = (a^n b^{2n} \mid n \ge 1)$ over $\sum = \{a, b\}$.	2	CO4

2.

Differentiate between Mealy machine and Moore machine. CO₃ Design a Finite Automata (FA) that accepts set of all strings over $\Sigma = \{0,$ 3 CO₃ 1) such that every string ends with 100 but starts with 1. 4. Construct a Finite Automata equivalent to the Regular Expression CO₃ L = ab(a+b)(ab)*bDesign a DFA that accepts set of all strings over $\Sigma = \{0, 1\}$ such that CO₃ number of 1s and the number of 0s in an acceptable string are divisible 5. (a) Using Pumping Lemma prove that 5 CO₃ $L = \{a^n b^n \mid n \ge 1\}$ is not regular. 6. What do you mean by unit production? CO₅ Remove unit productions from the following grammar. CO₅ $S \rightarrow AB, A \rightarrow a, B \rightarrow C, C \rightarrow D, D \rightarrow b.$

GROUP – C (Long Answer Type Questions) Answer any *three* from the following: 3×15=45

CO No. Marks 7. (a) Illustrate PDA with a schematic diagram. 2 CO₁ Design a PDA for the language $L = \{WW^R | W \in (a, b)^*\}$ and trace its 9 (b) CO₁ moves for an input string aabbaa. Discuss on the Chomsky classification of grammar. 4 (c) CO₁ 8. Describe a Turing Machine with schematic diagram? 2 (a) COL Design a Turing Machine for the language $L = \{a^n b^n | n > 0\}$ and draw CO₂ the state transition diagram for the same and trace its moves while scanning aabb. Illustrate the Halting Problem of Turing Machine? CO₂ (c) 3 9. Examine whether the following FSMs are equivalent. CO₁

(b) Considering the following machine, draw the corresponding Merger
Graph and the Compatibility Graph. Also develop the minimal machine which covers the given machine.

PS	NS, z			
	I ₁	I ₂	I ₃	I ₄
→ A	-	-	E,1	-
В	C,0	A,1	B,0	-
С	C,0	D,1	-	A,0
D	-	E,1	В, -	-
Е	В,0	_	C, -	B,0

CO₁

B.TECH/CSE/EVEN/SEM-IV/CS403/R18/2022

- Transform the grammar with following productions into Chomsky 10. (a) CO₃ Normal Form.
 - $S \rightarrow ASB$
 - $A \rightarrow aAS \mid a \mid \epsilon$
 - $B \rightarrow SbS \mid bb$
 - Consider the following grammar for an arithmetic expression and prove that it is an ambiguous grammar over $\Sigma = \{+, *, 1, 2\}$ and $NT = \{E, \}$ F}. Can you suggest a strategy to make it an equivalent unambiguous grammar?
 - $E \rightarrow E + E \mid E * E \mid F$
 - $F \rightarrow 1 \mid 2$
 - Construct a derivation tree for the string aabbabba for the CFG given (c)

 - $S \rightarrow aB \mid bA$ $A \rightarrow a \mid aS \mid bAA$
 - $B \rightarrow b \mid bS \mid aBB$
- Write a regular expression for integer numbers over $\Sigma = \{0, 1, 2, 3, 4, \dots \}$ 11. 5, 6, 7, 8, 9} such that the acceptable number is divisible by both 5 and
 - Construct a DFA equivalent to the following NDFA. (b)

CO₄

CO₃

CO3

CO₅

Generate the regular expression for the following FSM.

CO₅

